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ABSTRACT: Attempts to map land use directly from higher spatial resolution satellite data with conventional computer
classification techniques have proven to be ineffective. This is due to two facts. First, land use is a cultural concept.
What we see on remote sensing imagery is only the physical evidence of land use as represented by combinations of
land-cover types. Second, conventional classifiers employ only spectral information on a single-pixel basis. A large
amount of spatial information is thus ignored.

In this research, a contextual classification method was developed to obtain land-use information. The number of
gray-level vectors in multispectral space was reduced using a new data-reduction algorithm through rotating multis-
pectral space into eigen space. As a result, the multispectral data were reduced to images of one feature dimension
with the loss of relatively little information. Each gray-level vector-reduced image was then used in the frequency-
based procedure to derive land-use information.

These land-use classification procedures were tested using SPOT HRV data obtained over part of the rural-urban fringe
of Metropolitan Toronto, Canada. Best overall classification accuracies (measured by the Kappa coefficients) obtained
using the three procedures were 0.616 when a classification scheme with 14 land-use classes was used. These accuracies
are significantly better than an accuracy of 0.462 which was obtained using the maximum-likelihood classification

method. The contextual classifier developed proved to be very efficient in terms of computation.

INTRODUCTION

HERE ARE SEVERAL CONTEXTUAL CLASSIFICATION METHODS
which can be used to classify an image. They make use of
dditional information, as well as the multispectral information
irom a classification unit. Commonly used contextual classifi-
cation methods use spatial features derived from spectral im-
agery in combination with the spectral bands of an image (e.g.,
Jensen, 1979; Dutra and Marscarenhas, 1984; Franklin and Ped-
dle, 1990; Gong and Howarth, 1990b; Marceau et al., 1990). Spa-
tial information may be extracted either directly or indirectly
from a pixel neighborhood (or pixel window) on a spectral im-
age. For computational simplicity, a square pixel window is
often used. Therefore, the first step in a contextual classification
is the determination of a pixel window size. Once an appro-
priate pixel window size has been determined, a large number
of statistical measures can be employed to obtain spatial fea-
tures (Hsu, 1978; Haralick, 1979). This type of contextual clas-
sification approach usually requires a feature-selection procedure
after the spatial features have been produced. There are several
drawbacks to this method. First, only one spectral image can
be used each time to extract spatial features. Second, the spatial
feature derivation and feature selection require a considerable
amount of computation and disk storage. In addition, there are
no effective ways to conduct spatial feature selection.

Other types of contextual classification include the com-
pound-decision method, and the relaxation-labeling method.
The compound-decision method represents a large group of
neighborhood-based classifiers which attempt to classify a pixel
using not only its own values, but also those of its neighbors
based on stochastic modeling. Following the development of a
simple model based on the assumption of conditional indepen-
dences in feature space for each pixel in a pixel neighborhood
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(Welch and Salter, 1971), there have been a variety of more
complicated stochastic models proposed for modeling pixel
neighborhoods (Landgrebe, 1980; Fu and Yu, 1980; Swain et al.,
1981; Chittineni, 1981; Tilton et al., 1982; Owen, 1984; Haralick
and Joo, 1986; Mohn et al., 1987). Although some initial tests of
both simulated data and small data sets of Landsat MSS imagery
showing agricultural and forest environments have been made
in some of the studies cited above, and improved results have
been obtained in these studies, little research has been done to
evaluate these approaches in an urban environment with higher
spatial resolution data sets and higher spatial frequencies in the
land-cover types. The usefulness of these compound-decision
methods, which are frequently based on unrealistic assump-
tions, is suspect. .

The relaxation-labeling method includes four different schemes:
a discrete model, a fuzzy model, a linear probabilistic model,
and a non-linear probabilistic model (Rosenfeld et al., 1976).
Different from the compound-decision method, the relaxation-
labeling method is an empirical procedure which updates iter-
atively the class memberships (or class probabilities) for a pixel
using class memberships from its neighbors. As the number of
iterations increases, class memberships from more neighboring
pixels will be incorporated, and therefore more contextual in-
formation will be involved in the classification of a particular
pixel. Among the four schemes, the non-linear probabilistic
model, known as the probabilistic-relaxation method, has been
extensively modified to improve its performance with respect
to both accuracy and computation time (Richards et al., 1982;
Haralick, 1983; Kalayeh et al., 1984; Gong and Howarth, 1989a;
1989b; Duncan and Frei, 1989; Kittler and Hancock, 1989). Sim-
ilar to the spatial feature methods, relaxation methods are com-
putationally complicated. They are not very effective in improving
classification accuracies when applied to classify urban land covers
and land uses (Gong and Howarth, 1989a; 1989b).

In this paper, we focus on the development, implementation,
and evaluation of a new contextual classification algorithm for



land-use information extraction. The method involves gray-level
vector reduction and the use of gray-level vector-occurrence
frequencies to characterize and classify land-use types. The ob-
jectives of this study are

® To develop a computationally efficient contextual classification al-
gorithm which employs spatial information from a multispectral
image; and

® To assess the contextual classification method with major empha-
sis on its ability to improve land-use classification accuracies of
SPOT HRV multispectral (Xs) data of a rural-urban fringe environ-
ment.

The study site is the Town of Markham which is situated on
the northeastern rural-urban fringe of Metropolitan Toronto,
Canada. The classification accuracy is measured by the Kappa
coefficient.

FREQUENCY-BASED CLASSIFICATION

OCCURRENCE FREQUENCIES AS A SURROGATE FOR SPATIAL
FEATURES

Occurrence frequency, fii,j,v), is defined as the number of
times that a pixel value v occurs in a pixel window centered at
i,j. For computational simplicity, the pixel window has a square
shape with a lateral length of I (I>1). For a single-band image,
v represents a gray level. For multispectral images, v represents
a gray-level vector. Within each pixel window, one can obtain
an occurrence-frequency table containing all possible vs.

When a pixel window of a given size is moved all over an
image(s), one can generate a frequency table for each pixel in
the image(s), except for those pixels close to the image bound-
ary. Those pixels within a distance to the image boundaries of
half the lateral length, I, of the pixel window are called bound-
ary pixels. Because full frequency tables cannot be obtained at
boundary pixels, these pixel positions should be avoided in
further analysis. To assure a small proportion of boundary pix-
els, the pixel window sizes used must be considerably smaller
than the image size.

The number of occurrence frequencies in a frequency table
increases linearly as the number of gray levels in an image in-
creases, and exponentially as the number (or dimensionality)
of spectral bands increases. For a single-band image quantized
into n gray levels, one can produce gray-level occurrence fre-
quency tables with a maximum number of 7 frequencies in each
table. The maximum number of frequencies in a frequency table
will increase to n™ when m spectral bands having the same
number of gray levels are used. It requires a large amount of
random access memory (RAM) in a computer to handle the n™
frequencies. For this reason, efficient gray-level vector-reduc-
tion algorithms are needed. One such algorithm will be intro-
duced later in this paper. Frequency tables can be generated
from gray-level vector-reduced images.

There are several advantages to using frequency tables when
compared with the use of spatial statistical measures, as in spa-
tial feature methods. First, a frequency table contains more spa-
tial information than many statistical measures. For instance,
the most commonly used statistical measures such as the mean,
standard deviation, skewness, kurtosis, range, and entropy can
all be derived from a gray-level frequency table. The following
relationships show how the above mentioned spatial statistical
measures are calculated from a frequency table, f(i,j,v):
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where N, is the number of gray levels or gray-level vectors; N,
=1 X lis the size of the pixel window used. The above equa-
tions indicate that additional computation is required to obtain
statistical parameters after the frequency tables are produced.
Therefore, it becomes unnecessary to use statistical measures
because frequency tables can be quickly computed, directly
compared, and analyzed. The second advantage is that the fea-
ture-selection procedure, which is used to evaluate statistical
parameters, is no longer needed because frequency tables con-
tain more spatial information required for the classification than
the above statistical parameters. Third, disk storage is not re-
quired by frequency tables due to the simplicity of their real-
time creation.

CRITERION FOR PIXEL WINDOW SIzE SELECTION

The success of the frequency-table method in land-use clas-
sification depends largely on the appropriate pixel window size
being selected for frequency-table generation. If the window
size is too small, sufficient spatial information cannot be ex-
tracted to a frequency table to characterize a land-use type. If
the window size is too large, much spatial information from
other land-use types could be included.

There seems to be no effective criterion for selecting pixe
window sizes. Parametric feature-selection criteria such as var-
ious divergence measures (Thomas et al., 1987) and the proba-
bility trend curve (Gong and Howarth, 1990d) do not work for
frequency tables, simply because frequency tables are not par-
ametric. Driscoll (1985) examined frequency means obtained from
training samples using pixel windows with a range of succes-
sive sizes. The minimum window size was selected at which
frequency means begin to stabilize in comparison to frequency
means extracted from larger window sizes. Comparisons were
made visually. This method is, however, based only on within-
class variances. Because inter-class variances are as equally im-
portant as within-class variances for a classification, as in dis-
criminant analysis, a separability measure which accounts for
both within-class and inter-class variabilities is proposed for use
in this study.

For a particular pixel window size I X I, we can generate
mean histograms for all ¢ land-use classes using training sam-
ples. We may use h, = (f,(1),fu(2), ---, fu(N,)), where u =1,
2,..., ¢, to denote a mean histogram for each class. Because the
discriminating power of a vector comes from its capability to
separate the two classes as far as possible, while permitting each
class as little variation as possible, we define the separability
between two classes s and ¢, sep,(s, ) in the following form:
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where o represents the standard deviation of each correspond-
ing frequency. The numerator on the right-hand side of the
above equation reflects the inter-class deviation for a specific
vector, while the denominator reflects the within-class varia
tions for the vector. If the inter-class deviation remains un-



changed, the smaller the within-class variations and the more
separable are the two classes for a given vector. On the other
hand, if the within-class variations are constant, the higher the
—inter-class deviation and again the more separable the two classes
ve. The separability for all vectors is obtained by summing up
all the divisions between inter- and within-class deviations.
In order to examine the separability power of a given pixel
window size, an average is taken from separabilities for all pos-
sible class pairs. This is calculated from
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where Sep, is the average separability for all the classes with a
given pixel window size. By comparing the average separabil-
ities from different window sizes, a pixel window size is se-
lected which has the greatest average separability.

THE CLASSIFIER

The classifier used in this study is the minimum-distance clas-
sifier with the city-block metric (Gonzalez and Wintz, 1987). A
city-block distance between two vectors is calculated by first
obtaining a difference between every two corresponding vector
elements, and then summing all the absolutes of these differ-
ences. There are two reasons for selecting the city-block dis-
tance. The first is that this distance is the simplest one in terms
of computation, and therefore it could be used to handle oc-
currence frequencies extracted from an image with more gray-
level vectors. Second, because we are comparing frequencies to
make the classification decision, the use of Euclidian distance
or other metrics is meaningless. In fact, some preliminary tests
have been made in this study to compare the performances of
the city-block metric and the Euclidian metric. Overall accura-
cies were on average 5 percent higher in favor of the city-block
metric.

> For given mean histograms of all ¢ land-use classes, k, =
DLA2), s, fANY), w =1, 2,..., ¢, the city-block distance be-
tween a new histogram h(i,j) and h, is calculated from the fol-
lowing:

Ny-1

4=3

v=0

fu @) = f @ v)

The classifier compares all the ¢ distances and assigns pixel
(i,j) to the class which has a minimum distance to h(i,j).

PERFORMANCE ASSESSMENT

To evaluate the performance of the classification methods,
two criteria are often used: final classification accuracy and the
time consumed during the classification process. There are two
types of time included in the “time consumed during the clas-
sification process:” the hours of human labor and the CPU times
used by computers. While it is difficult to estimate accurately
and compare the time consumed by human labor because of
the different skill levels of different image analysts, it is rela-
tively easy to determine and compare the CPU times required
by computers. In this study, the CPU time was used as an index
for the “time consumed during the classification process.”

The most commonly used accuracy-assessment method is test-
sample checking. It requires three steps: determination of sam-
ple size and sampling strategy, sample identification (ground
confirmation) to generate reference data, and comparison of the
reference data with classification results to derive classification
accuracies. The first two steps are described in the experimental
design section. The third step is discussed below.

. For a classified image (or a map), a confusion matrix (also
alled an error matrix or a contingency table) can be made by
comparing the classification results with reference data. In this

matrix, the reference data are represented by the columns of
the matrix while the classified data are represented by the rows,
or vice versa. The major diagonal of the confusion matrix indi-
cates the agreement between these two data sets. The confusion
matrix allows various accuracy indices to be derived.

In this research, the Kappa coefficient K (Cohen, 1960) and
its estimated variance V (Fleiss et al., 1969) were calculated for
each confusion matrix to evaluate the overall agreement be-
tween the classification results and the reference data. The Kappa
coefficient was used as an overall accuracy index for each clas-
sification. It has been recommended as a suitable accuracy mea-
sure in thematic classification for representing the whole
confusion matrix (Fung and LeDrew, 1988; Rosenfield and Fi-
tzpatrick-Lins, 1986; Congalton and Mead, 1983). It takes all the
elements in the confusion matrix into consideration, rather than
just the diagonal elements, which occurs with the calculation
of overall classification accuracy. The variance was used when
significance tests were made.

For an m by m confusion matrix, let p; be the proportion of
subjects placed in the i, j* cell; let p;, and p,; be the proportions
of subjects placed in the i row and j* column respectively.
Then, with

Po = i_zlpiiand Pc = izl Pi+ P+ir

the Kappa coefficient K is defined by
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where p, and p, indicate the proportion of units which agree,
and the proportion of units for expected chance agreement,
respectively. With the above definition, Fleiss et al. (1969) showed
that the most appropriate method to estimate the variance of K
is
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To determine the difference between two K s, the significance
test proposed by Cohen (1960) for comparing two classification
results was adopted. With this method, the difference between
two Kappa coefficients resulting from two classifications is first
obtained. The square root of the sum of the variances Var be-
tween the two classifications is then calculated. A z-value can
be determined by dividing the difference by the square root. A
z-value greater than 2.58 indicates a significant improvement at
the 0.99 probability confidence level.

In order to examine classification accuracies on a class-by-
class basis, the conditional Kappa coefficient (Bishop et al., 1975)
was derived by comparing the classification results and the ref-
erence data. The conditional Kappa coefficient K; is a class ac-
curacy index which is derived from the agreement between the
i*" row and i** column in the confusion matrix for a particular
land-use class i. The formula used to calculate the conditional
Kappa coefficient is

K = Pii — Pi+ P+i
Pi+ — Pi+ P+i
Notations in this formula are the same as above.
EIGEN-BASED GRAY-LEVEL VECTOR REDUCTION

As explained in the above section, in order to make better
use of the frequency-based classification technique, the number



of gray-level vectors in multispectral space has to be reduced.
The simplest way of doing this is by compressing the number
of gray levels in each band of the image. In this section, it is
demonstrated that gray-level vector reduction in multispectral
space is not appropriate. A more efficient method that is done
in eigenvector space will be described.

GRAY-LEVEL VECTOR REDUCTION IN MULTISPECTRAL SPACE

The easiest way to reduce the number of gray-level vectors
is to compress the number of gray levels in each individual
spectral band. This is illustrated using two multispectral bands
as an example in Figure 1. Band 1 and Band 3 in Figure 1 are
hypothesized to be the green and near-infrared spectral bands,
respectively. Each cell in Figure 1 corresponds to a two-dimen-
sional gray-level vector. The shaded gray-level cells represent
the magnitudes of various frequencies. The darker the shades,
the higher are the occurrence frequencies in a particular cell.
The white cells are empty (i.e., they have zero frequencies).
The empty cells indicate that no pixel in the hypothesized two-
dimensional image takes these gray-level vectors. In real mul-
tispectral space, there is a large proportion of empty cells. Should
gray-level vectors be reduced, it is these empty cells that should
be discarded first. Figure 1a shows the original multispectral
space. Figure 1b shows the reduced multispectral space by com-
pressing every successive two gray levels from the original bands
into one gray level. It can be seen from Figure 1b that, although
a number of empty cells have been removed, similar numbers
of non-empty cells have also been reduced. The more bands
that are used to construct multispectral space, the more empty
gray-level vectors there will be. In general, it is impossible for
the simple gray-level compression method to significantly re-
duce empty gray-level vectors in multispectral space without
losing a similar amount of useful information provided by the
non-empty cells.

More sophisticated gray-level reduction algorithms exist for
each individual band. For instance, Sezan (1990) proposed an
algorithm that locates peaks and valleys from a histogram of an
image. Therefore, gray levels can be reduced without loss of
much information. He tested the algorithm with some artificial
images such as a face, a body, and a building. The histograms
of these images have rugged appearances and therefore it is
relatively easy to identify peaks and valleys on these histo-
grams. However, the histograms of the SPOT HRV image used
in this study are smooth and close to unimodal. Algorithms
such as Sezan’s may not prove very useful for the type of image
used in this study. A more efficient gray-level vector-reduction
method is therefore needed.

GRAY-LEVEL VECTOR REDUCTION IN EIGEN SPACE

Table 1 shows the covariance and correlation matrices for the
SPOT HRV XS image of the study site (details of the data are
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Fic. 1. Gray-level vector reduction by reducing the number of
gray levels in each individual band. White cells indicate empty
frequencies. The darker a cell, the higher the frequency it rep-
resents.

presented later). It can be seen that the correlation between the
two visible bands, Band 1 and Band 2, is over 0.98. This indi-
cates that Band 1 and Band 2 are almost identical. Each of the
two visible bands has a relatively lower negative correlation
with the infrared band (Band 3).

To have a better understanding of the relationships betweer.
the three image bands in multispectral space, the scattergrams
of each band-pair are shown in Figure 2. Each scattergram rep-
resents a projection of the gray-level vector distribution in three-

TABLE 1. COVARIANCE, CORRELATION MATRICES, AND THE EIGENVALUES
AND EIGENVECTORS DERIVED FROM THE COVARIANCE MATRIX

Covariance Matrix

Band 1 Band 2 Band 3
Band 1 162.1904 205.1519 —70.3281
Band 2 268.9121 -112.1104
Band 3 270.7012
Means 55.6970 46.5744 81.4280
Correlation Matrix
Band 2 Band 3
Band 1 0.9823 —0.3356
Band 2 —0.4155
Eigenvectors
Vector 1 —-0.5214 —0.3484 0.7789
Vector 2 —0.6954 —0.3556 —0.6245
Vector 3 0.4946 —0.8673 —0.0569
Eigenvalues 502.4820 196.4858 2.8361
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dimensional multispectral space onto the plane constructed by
the corresponding axes.

It can be seen in Figure 2a that the data projected on the Band
1—Band 2 plane form in essence a thick line, while on the other

lanes all look like a tasselled-cap (Kauth and Thomas, 1976).
ihese indicate that the gray-level vector distribution in three-
dimensional space is approximately two-dimensional. Almost
one dimension of multispectral space is wasted in the multis-
pectral data.

Principal component (PC) transformations can reduce the data
redundancy effectively through transforming the data from
multispectral space to the eigenvector space of the data (e.g.,
Richards, 1986). From Table 1, it is noted that the first two
components contain over 99.6 percent of the total variances.
Because the data variability is to be preserved for discrimination
purposes, only the first two principal components need to be
kept. This results in a reduction of data dimension and therefore
reduces the amount of data to be handled. However, simply
reducing the dimensionality of the data is not sufficient if fre-
quency tables are to be used in the classification. If the two
principal components were to be quantized into 8-bit images
and preserved for further analysis, the number of vectors re-
sulting from the two 8-bit PC images would still be too big to
work with. It is also inappropriate to quantize the two remain-
ing PC images into the same number of gray levels because the
proportions of variances contained in these two components
are largely different. If they are quantized into the same number
of gray levels, more variance in the first PC will be compressed
than in the second PC. Gray-level reduction based on PC images
equally quantized will cause more information loss in the first
PC and a relative increase in the noise level in the second PC.

To overcome the problems caused by equal quantization, a
new partition is proposed. It has the desirable performance of
balancing the information loss in the eigen space and preserving

-the eigen structure of the original data while conducting gray-

»vel vector reduction.

To illustrate the approach, Figure 3 shows the generalized
eigen structure of the SPOT HRV data used in this study. In this
figure, only the first two eigen vectors and the plane they con-
structed are shown. The variance in the third PC is too small to
be considered. Our focus is on partitioning the preserved eigen
plane. Figure 4 shows a partition of the preserved eigen plane
with equal quantization of eight gray levels. It is obvious that
along the second eigen axis there are too many partitions which
make gray-level cells on the preserved eigen plane become rec-
tangular. The partitioning method proposed in this study is
shown in Figure 5. Because there is more variation along the
first eigen axis than there is along the second eigen axis, there

A 1stEigen Axis

2nd Eigen Axis

Preserved Eigen
Plane

Band 3

Fic. 3. Eigen structure of ihe SPOT HRV data used
in this study.

are more gray-level partitions on the first eigen axis than on the
second axis.

The new gray-level vector-reduction scheme can now be for-
malized and generalized. Given the covariance matrix and the
mean gray-level vector, M = (m,, m,,..., m)*, calculated from
k multispectral bands of the image, the multispectral coordi-
nates from multispectral space S, can be rotated into eigen co-
ordinates in eigen space E, (Richards, 1986). Let V,, V,,..., V;
represent the eigenvectors. A gray-level vector, G = (g, §2,---,80)",
in multispectral space can be transformed into a gray-level vec-
tor, G,= (vy, vy,...,0)7, in eigen space. This can be obtained
from

Uy &1
L) &2

= (VIIVZI ceer Vk)T :
[ 8k

Let (82, 5%, ..., S%) represent the eigenvalues corresponding to
each eigenvector. These eigenvalues are the variances along
each eigen vector direction in eigen space. In order to keep the
same signal to noise level between eigen axes (e.g., to make
square cells on the eigen plane in Figure 5), our partition of
eigen space is so designed that the number of gray levels along

7
1st Eigen Axis

FiG. 4. Partition of the eigen space into
equal gray levels along each eigen vec-
tor.

1st Eigen Axis

N

Fic. 5. Partition of the eigen space using the
method proposed in this study.



each eigenvector is proportional to the square root of its corre-
sponding eigenvalue. That is:

No _Na_ _

Sel sez - Sek
where N,;, N,,... N, are the numbers of gray levels used for
each corresponding eigenvector. As can be seen from the above
equations, we have only k-1 equations but k unknown variables

N., N.,..., N,. To determine all the k unknowns, one condition
is added:

— Nek

N,*N,: .. N, = Ng

where N¢ is the total number of gray-level vectors to be ex-
pected for the partition of the eigen space.

To implement the eigen space partition, the origin of the ei-
gen space (the same as the origin in multispectral space) needs
to be shifted to the new origin E, = (e, e,,..., &)T which is the
mean gray-level vector M in multispectral space. E, is obtained
through the following:

e m,
(29 my
= (V,V, ..., V)T
[ ny

Where the partition starts and how far apart each gray-level
interval is along an eigen axis can now be determined. 2.1S,,; at
each side of the origin along eigen axis i were selected as the
starting and ending points for the gray-level partition. This was
determined from the normal distribution curve by assuming
data were normally distributed along each eigen axis. Based on
this assumption, the use of 2.1 guarantees 97 percent of the
gray-level vectors in multispectral space fall into the range [~ 2.1
S.i, + 2.15,] on eigen axis i. The remainder (less than 3 percent)
will fall outside the range. Depending on the actual data dis-
tribution, the number ““2.1” can be slightly adjusted to keep a
majority of gray-level vectors falling into the specified range.
The gray levels along each eigen axis are numbered in an as-
cending order from 0 with an increment of 1 to N,,—1. Figure
6 illustrates the division of the i eigen axis into N,; gray levels.

By dividing each eigen axis into the number of gray levels
obtained above, the original multispectral space will be parti-
tioned into N pieces or gray-level vectors in eigen space. The
purpose, which is to reduce the large number of gray-level vec-
tors in multispectral space, will therefore be achieved. From the
transformed gray-level vector of a pixel, G, = (v;, v,...,0)7, the
reduced gray-level vector, G,= (r,, 7,,...,7)7, can be obtained
according to the division along each eigen axis, as described
above. For example, r, is reduced from v, according to the fol-
lowing rule:

a= (v, —e + 21S,)(N,, — 2)/4.2S5,, + 1

ifa<1
ifa >N, — 2
a else
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Fic. 6. Division of an eigen axis into a specific number of gray
levels.

In order to allow the frequency-based classification algo-
rithms easy access to the data after gray-level vector reduction, __
it was decided to use only one image to store the data. A I
beling system was developed to assign a number to each gray-
level vector created in eigen space. A number n, for a particular
gray-level vector, G,= (r,, ,...,7)", is calculated according to
the following equation:

e =1"Ng - Ng oo " Ny
+ 71" Nag "Ny oo Ne(k—Z)
+ ...
+n

After this labeling, all the partitioned gray-level vectors in
eigen space will range from 0 to Ny —1.

In summary, it takes four steps to obtain reduced gray-level
vectors using the new algorithm. In the first step, the algorithm
generates the covariance matrix and mean gray-level vector from
the original multispectral image by using either samples or the
entire image. In the second step, the eigen values and their
corresponding eigen vectors are derived from the covariance
matrix. In the third step, the eigen space is partitioned into an
expected number (Ng) of pieces. Finally, the gray-level values
of every pixel in the multispectral image are transformed into
the eigen space and each pixel is assigned a new gray-level
vector number (n.). The assignment is done according to the
section (new gray-level vector) in the partition of the eigen space
into which the transformed coordinates of each pixel fall.

EXPERIMENTAL DESIGN

The proposed algorithms have been implemented with the
FORTRAN 77 programming language on a VAX 11/785 computer
under the VMS operating system at the Faculty of Environmen-
tal Studies, University of Waterloo. In this section, the stud:
site and data are introduced. The design of the land-use clas
sifica- tion scheme, the training strategy, and the test sample
selection will then be described.

STuDY SITE AND DATA

The Town of Markham is located at 43° 52’ N; 79° 15’ W. This
site has been used for a variety of remote sensing studies of
land-cover/land-use classification and rural-to-urban land con-
version over a period of several years (Martin, 1975; Martin,
1986; Johnson and Howarth, 1987; Howarth et al., 1988; Martin
et al., 1988; Martin, 1989; Gong and Howarth, 1989a; 1989b;
1990a; 1990b; 1990c; 1990d). It provides a good study site for
this research as large tracts of natural and agricultural land are
being rapidly converted to urban uses. The spatial structure
within the study area presents a variety of patterns. These
structural patterns are considered to be useful signatures for
discriminating some of the land-use types whose spectral sig-
natures are often difficult to differentiate. The second reason
for selecting a rural-urban fringe environment is that the diver-
sity of various land uses is well suited for studying the robust-
ness of the classification algorithms proposed in this research.

The SPOT scene (K614 J262) had both panchromatic and mul-
tispectral (Xs) images acquired on 4 June 1987. In this study,
only the 20-m by 20-m spatial resolution SPOT HRV XS data were
used. For this research, a cloud-free subscene of 512 by 512
pixels which covers a large portion of the Town of Markham
(approximately 10 km by 10 km) was selected. A black-and-
white reproduction of a standard false-color composite covering
part of this subscene is shown in Figure 7.

Because the selected test site is small and relatively flat, both
topographic and atmospheric conditions were assumed to b
homogeneous throughout the image. Based on these assump-



Fi. 7. A black-and-white reproduction of a standard false-color composite of a portion of the

study area covering approximately 300 by 400 pixels (6 km by 8 km). This image for picture
center K614 J262 was acquired on 4 June 1987. Fields and a golf course occupy the upper
left part of the image while urban uses, a tract of agricultural land, and cleared land cover the

rest of this subscene.

tions, there is little or no topographic effect on the data and any
atmospheric effects on the data are homogeneous in the study
area. They can be considered as a contribution from atmos-
-pheric haze. To remove homogeneous haze effects from each

and of the image requires only the subtraction of a constant
from each pixel value. However, this would not change the
radiometric structure of the data. In addition, the subsequent
classifications used in this study are statistically invariant to
linear transformations. Thus, no radiometric correction was made
to the image.

In addition to the SPOT HRV data, various scales of topo-
graphic maps were available for the study area. While useful
for field visits, they were five to six years old and were outdated
for training and test-sample selection due to recent land-use
changes. For these purposes, timely 1:8,000-scale aerial photo-
graphs were available which cover the entire study site. These
aerial photographs were taken in April 1987, about two months
prior to the acquisition of the SPOT HRV data.

LAND-Use CLASSIFICATION SCHEME

The land-use classification scheme (Table 2) was categorized
by modifying the land-use classification schemes used by the
local Planning Departments of both the Town of Markham and
Metropolitan Toronto. Fourteen land-use classes were included.
This represents an effort to map a range of land uses at a level
suitable for the SPOT data used.

Some spatial-spectral characteristics of the 14 land-use classes
are briefly described in Table 2 as well. These land-use classes
can be divided into two groups:

® those which are dominated by an individual spectral class on the
SPOT XS image; and
® those which are composed of more than one spectral class.

Five of the 14 classes are considered to be in the first group.
These are mature crop, parks, cleared land, deciduous trees,
and water. All the other classes belong to the second group.
According to the definitions of land cover and land use in Gong

and Howarth (1990c), the first group can also be called land-
cover classes while the second group consists of land uses. Be-
cause the majority of the classes in Table 2 are land-use classes
and the emphasis of this study was to demonstrate the effec-
tiveness of the frequency-based classifier in the classification of
land uses, hereafter in this paper no distinction between land
cover and land use is made.

SUPERVISED TRAINING

The training procedure used in this research is straightfor-
ward. In order to achieve maximum flexibility, it was decided
to use a block-training strategy. The advantage of this type of
training is its ease in specifying training areas. By so doing, the
image analyst also implicitly identifies the spatial structure for
a particular class. The shape and the size of the training block
contain important clues for selecting the appropriate pixel win-
dow size to be used in generating frequency tables.

Blocks of training samples were extracted using the Dipix
ARIES III image analysis software package. A polygon was drawn
to enclose image blocks representative of a specific land-use
class. Training sample selection was assisted by referring to the
1:8,000-scale aerial photographs.

TEST-SAMPLE SELECTION

Test samples were selected using the stratified systematic un-
aligned sampling strategy (SUSS) (Jensen, 1983) as a guideline.
In this procedure, a random sample is picked from every 16 by
16 stratum on the image. Consequently, for the data set used
in this research a total of 1024 samples was identified. Because
Suss allocates samples according to the area of each class, classes
with small areas will receive too few sample pixels while classes
with large areas will have too many sample pixels. In order to
maintain a similar confidence level for the accuracy estimate for
each class, it was decided to select approximately 30 sample
pixels for each class. Therefore, instead of using all the sample
pixels selected by SUSS, only part of the sample pixels were used
in the selection and identification of test pixels. For those classes



with areas that are not large enough for the SUSS to allocate the
desired number of pixels, additional pixels located a few pixels
away from existing sample pixels were randomly selected. Again,
pixel identification was aided by using the 1:8,000-scale aerial
photographs. In order not to bias the accuracy assessment, the
test samples were selected without overlapping with training
samples.

GENERATION OF GRAY-LEVEL VECTOR-REDUCED IMAGES

With the gray-level vector-reduction algorithm, the original
three bands of SPOT Xs imagery can be reduced to one image.

TABLE 2. LAND-USE CLASSIFICATION SCHEME AND SPATIAL-STRUCTURAL
CHARACTERISTICS OF LAND-USE CLASSES WHEN OBSERVED ON THE
SPOT HRV XS IMAGE

Code  Land-Use Class Color Characteristics
1 Old Urban Residen- Red Well-landscaped residential
tial areas where trees, lawns,
driveways, and roof tops
dominate
2 New Urban Resi- Green Fewer trees when compared
dential to old residential areas; a
very regular pattern
3 Rural Residential Blue A low density of roof tops
which are surrounded by
vegetation
4 Industrial/Commer- Yellow Roof tops of large buildings
cial/Institutional and little vegetation
5 Idle land Pink No vigorous growth of veg-
etation
6 New Crop and Pas- Turquoise Fields where vegetation
ture does not fully cover the soil
or where the surface shows
moderate vegetative growth
7 Mature Crop Orange Fields in which high-density
vegetation is growing pro-
viding high spectral reflec-
tance in the infrared band
8 Golf Course Light Gray Dominated by three types

of land covers: well-main-
tained grass, normal grass,
and trees. The spectral re-
flectance of the well-main-
tained grass is very high in
the infrared band
Dark Green Large areas of grassland in
the urban area
Denuded of vegetation and
top soil showing evenly
high reflectance in every
band (Martin et al., 1988)
Land where construction is
underway; varied reflec-
tance is associated with
building foundations and
superstructures, construc-
tion materials, and partially
installed roads (Martin et
al., 1988)
A few patches of forest land
dominated by deciduous
trees; other trees such as
those scattered through old
urban residential areas,
parks, and valleys do not
belong to this class
Valley land which is com-
posed of rivers or streams,
wet grass, and trees
Several relatively large
water surfaces such as res-
ervoirs and ponds

9 Parks
10 Cleared Land Dark Blue

11 Land Under Con-
struction

Purple

12 Deciduous Trees Light Blue

13 Hazard Land Dark Red

14 Water Pale Green

Two factors affect the resultant gray-level vector-reduced im-
ages. They are the method used to calculate the covariance ma-
trix for constructing the eigen space, and the number of gray-
level vectors specified for the output image. The covariancr
matrix determines the orientations of the rotated coordinate axe
from the multispectral space to the eigen space. In other words,
the new coordinate axes in the eigen space change as the co-
variance matrix changes. When the covariance matrix is calcu-
lated using all pixels in an image as sample pixels, the eigen
space built by this covariance matrix does not emphasize or
favor any parts of the image. When the covariance matrix is
obtained from only part of the image, the eigen space enhances
the information provided by those pixels whose gray-level vec-
tors are similar to the ones in the particular part of the image.
Therefore, the eigen space can enhance some information while
suppressing other information in the image by means of selec-
tive sampling from the image. Selective sampling places an em-
phasis on specific information from the imagery which is different
from a systematic or a random sampling scheme that tends to
be as representative as possible of the original imagery.

The training sample was used in this study to calculate the
covariance matrix (Table 3). By comparing the eigenvectors and
eigenvalues in Tables 1 and 4, it can be seen that the eigen
vector directions are different in the two eigen spaces, which
means that the eigen axes in the two eigen spaces are different.
The total variance in the training sample is much smaller than
that of the systematic sample. This means that the eigen struc-
ture built by the training sample enhances the differences among
those pixels having gray-level vectors similar to those selected
in the training sample. There is a slight difference between the
means in these tables which corresponds to origins in the eigen
spaces built by the two sampling strategies.

The number of gray-level vectors specified for the output im-
age determines how much detail from the original image is to

be preserved in the output image. Too few gray-level vectors

will cause more inter-class confusion, while too many gray-leve
vectors will cause high within-class variation. In addition, the
larger the number of gray-level vectors specified, the more com-
putationally. expensive it is for the frequency-based classifier.
Five sets of gray-level vectors, 10, 20, 30, 40, and 50, were tested.
For convenience, the resultant images are named IMG10T, IMG20T,
IMG30T, IMG40T, and IMG50T, respectively. Figure 8 displays an
example of a gray-level vector-reduced image (IMG40T). It should
be noted that the gray levels in these gray-level vector-reduced
images lose their original physical meaning after the gray-level
vector reduction, and that these images were used as inter-
mediate results for land-use classification only.

The CPU time required to produce a gray-level vector-reduced
image in the eigen space was approximately 50 seconds. The

TABLE 3. COVARIANCE MATRIX DERIVED FROM THE TRAINING SAMPLE
AND ITS EIGENVALUES AND EIGENVECTORS

Covariance Matrix

Band 1 Band 2 Band 3

Band 1 55.7356 88.6321 —72.8320
Band 2 143.2875 —121.1418
Band 3 154.2422

Means 51.1682 40.4893 87.0765

Eigenvectors

Vector 1 —0.3974 —0.3839 0.8335
Vector 2 —0.6475 —0.5264 —0.5511
Vector 3 0.6503 —0.7586 —0.0394
Eigenvalues 319.3556 33.3336 0.5762
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*The numbers in the row and column headings indicate the casses listed in Table 2.
Fiz. 8. Gray-level vector-reduced image with 40 specifiad gray-level vectors. The image shows
exactly tha same area ag in Plate 1,
algorithm was designed in such a manner that it is independent RESULTS AND DISCUSSION

of changes in the number of gray-level vectors specified.

Lanp-Use CLASSIFICATION

For each gray-level vector-reduced image, ten pixel window
gsizes ranging from 3 by 3 to 21 by 21 were used in the land-use
classification. At a specific pixel window size, a land-use clas-
sification map was created for any gray-level vector-reduced
image. A land-use map was derived through

# applying the trai rocedure to obtain uency averages for
e -

® classifying a gray-level vector-reduced image using the frequency-

Therefore, ten land-use maps were produced for each gray-level
vector-reduced image. This resulted in a total of 50 land-use

maps.

Lamp-Use CLassiFicamion REsults OsTAiNED Using A
Maamum-LixeuiHooo CLassiFiER

For comparison purposes, a maximum-likelihood classifier
{MLC) was applied to the SPOT HRV X5 image; it resulted in the
land-use map displayed in Flate 1. Training and test samples
were the same as in the frequency-based classification. Kappa
values, conditional Kappa values, and their corresponding var-
iances have been calculated. The Kappa value is 0.462.

From Plate 1, it can be seen that all the urban land-use classes
are inter-mixed. In agricultural areas, field boundaries have been
classified into urban land-use classes by the MLC. The entire
map looks rather fragmented. The greatest confusion is be-
tween golf courses (light gray) and parks (dark green). While
the golt course class has been partly allocated to the parks and
the mature crop (orange) classes, because of their similar spec-



tral signatures, the parks class has been omitted almost entirely
by the MLC. Rural residential (blue) and new crop and pasture
(turquoise) have also been partly allocated to the parks class by
the MLC. Hazard land (dark red) has been identified as golf
course. Other confusions occur between mature crops and de-
ciduous trees (light blue), industrial land (yellow) and idle land
(pink), rural residential and new crop and pasture, and between
cleared land (dark blue) and land under construction (purple).

Table 4 shows the confusion matrix, conditional Kappa val-
ues, Kappa value and its variance for the land-use map dis-
played in Plate 1. The numbers in the row and column entries
in Table 4 represent the land-use classes as listed in Table 2.
From Table 4, additional confusion can be found between con-
struction and industrial, construction and idle land, and be-
tween water and industrial. Conditional Kappa values for rural
residential, new crop and pasture, parks, cleared land, hazard
land, and water are low.

LAND-UsE CLASSIFICATION RESULTS OBTAINED FROM GRAY-
LEVEL VECTOR-REDUCED IMAGES

Table 5 shows Kappa values and their variances for land-use
maps generated from gray-level vector-reduced images ob-
tained using the training-sample method. The column entries
in this table are the five gray-level vector-reduced images used
in land-use classification. The row entries are the ten pixel win-
dow sizes used for each image. With ten gray-level vectors, the
Kappa values at eight pixel window sizes are greater than the
Kappa values derived from the MLC. At a pixel window size of
7, the classification accuracy improvement is significant at the
0.9 confidence level. At all the pixel window sizes, improved
classification accuracies were achieved when compared with the
results of the MLC, as 20, 30, 40, and 50 gray-level vectors were
used, respectively. With IMG20T, classification accuracy im-
provements are significant at the 0.99 confidence level at four
pixel window sizes. With both IMG40T and IMG50T, classification
accuracy improvements are significant at the 0.99 confidence
level at six pixel window sizes. The best classification result,

TaBLE 5. KaPPA VALUES AND THEIR VARIANCES CALCULATED FROM
LAND-Use CLASSIFICATION ResuLTs DERIVED FROM GRAY-LEVEL
VECTOR-REDUCED IMAGES USING THE TRAINING SAMPLE*

Pixel Window

Size IMG10T IMG20T IMG30T IMG40T IMGS50T
3 0.491 0.487 0.558 0.586+* 0.592+
729 736 729 714 708
5 0.523 0.518 0.599+ 0.610+ 0.596+
734 731 699 691 701
7 0.543 0.538 0.589+ 0.594+ 0.588+
728 721 698 695 705
9 0.515 0.561+ 0.600+ 0.616+* 0.597+
736 710 691 679 696
11 0.523 0.539 0.589+ 0.597+ 0.582+
729 713 693 691 699
13 0.521 0.530 0.550 0.574+ 0.582+
723 714 708 697 695
15 0.496 0.524 0.538 0.552 0.557
726 721 711 707 707
17 0.468 0.518 0.524 0.544 0.535
728 724 713 710 716
19 0.451 0.479 0.527 0.527 0.529
726 734 715 719 716
21 0.449 0.493 0.507 0.524 0.521
724 732 719 717 721

*Decimal numbers are Kappa values while integers are variances en-
larged by 10°.

*Indicates significance test passed at the 0.99 confidence level.
Underlines indicate column maxima which correspond to optimal
pixel window sizes.

0.616, was achieved by the use of IMG40T at the pixel window
size of 9 (Plate 2). This has made an improvement of 0.154 as
compared with the MLC accuracy.

It can be seen in Plate 2 that the land-use classes appear to—~
be very homogeneous. This land-use map looks more like
product made by manual interpretation. The differences be-
tween this map and the one obtained by the MLC (Plate 1) are
readily apparent. The “pepper and salt” effect of Plate 1 has
been reduced dramatically. Confusion between rural and urban
land-use classes has been reduced. Golf course (light gray) was
classified without too much assignment of pixels to other veg-
etation classes. Table 6 shows the confusion matrix for this land-
use map which summarizes the agreements and confusions of
this map as compared with ground confirmation samples.

AVERAGE SEPARABILITY VERSUS CLASSIFICATION ACCURACIES

For each gray-level vector-reduced image, an average separ-
ability was obtained at each pixel window size. To test the ca-
pability of the average separability in predicting optimal pixel
window size, the average separabilities and their corresponding
Kappa values have been plotted versus pixel window size (Fig-
ure 9).

From Figure 9(a), it can be seen that each curve has a single
peak at the pixel window size of 5. Following a dip after each
peak, the average separability curves gradually increase as the
pixel window size becomes larger. Although the pixel window
sizes selected in this research were not large enough to discover
the trends of these curves as the pixel window size exceeded
21, our land-use classification results suggest that the use of
even larger pixel window sizes is likely to result in lower clas-
sification accuracies. This can be seen from Figure 9(b) where
the high classification accuracies mainly occur when relatively
small pixel window sizes are used.

However, by comparing Figure 9(a) and Figure 9(b), there is
not an exact correspondence between peaks in the separability
curves and the greatest Kappa value curves. The optimal pixe
window sizes are 7, 9, 9, 9, and 9 for IMG10T, IMG20T, IMG30T,
IMG40T, and IMGS0T, respectively. This is contrary to what was
expected during the design of the separability measure. It was
expected that there would be a close relationship between the
separability and the classification result. This leads us to con-
clude that the proposed separability index is not effective in
predicting the optimal pixel window size. Similarly to some
suspicions voiced in other studies concerning the failure of
transformed divergence as a feature selection criterion (Gong
and Howarth, 1990d), it is suspected that the failure of the
separability measure proposed in this study was due to the
differences in composition between the training sample and the
test sample. Only the training sample was involved in the cal-
culation of the separability measures while the derivation of
accuracies also involved the test sample.

The magnitudes of the separability curves seem to be related
to the number of gray-level vectors in gray-level vector-reduced
images. This is supported by all the curves in Figure 9. The
higher the number of gray-level vectors, the lower is the aver-
age separability, given the same pixel window size. More im-
portantly, as the number of vectors and clusters becomes higher,
the separability curves become positioned closer to each other
(i-e., the separability curves have an asymptotic behavior). When
Kappa-value curves are examined in Figure 9(b), although not
obvious, the differences between Kappa-value curves for higher
numbers of gray-level vectors are smaller. Therefore, the se-
parability curve may be used to approximately estimate the
number of gray-level vectors required to obtain better classifi-
cation accuracies. This is important because there is no a priori
knowledge about the number of gray-level vectors required in —
a gray-level vector-reduced image which will result in a more
accurate land-use map.



PraTe. 1. Land-use classification results obtained by applying the maximum-likelivood classifiar
to the SPOT HAW X5 image. The image shows exactly the same area as in Figure 7. The clas-
sification accuracy measured by the Kappa coefficlent is 0.462. Class names and colors are
listed in Table 2,

PraTe 2. Land-use map cbtained from mMG4oT using the frequency-based classifier with a pixel
window size of © by 9 pixels. The image shows exactly the sama area as in Piate 1. The
classification accuracy measured by the Kappa coefficient ks 0.516. Class names and colors
ara listed in Table 2.

CLASSIFICATION AccuRacy FOR EacH CLass Versus PixeL curves are grouped and displayed in three graphs. Figure 10{a)
Winpow Size shows the three residential classes and the industral‘commer-
clalfinsttutional class; Figure 10(b) shows curves for the three
agricultural classes, plus deciduous trees, hazard land, and water;
and Figure 10(c) shows curves for the two recreational land-use

Figure 10 shows the conditional Kappa values obtained from
mMc40T plotted against pixel window size. This allows a condi-
tional Kappa value curve to be produced for each class. The 14



TABLE 6.

CONFUSION MATRIX FOR THE LAND-USE MAP PRODUCED FROM IMG40T WITH A PIXEL WINDOW Size oF 9*

Classified Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 30 4 1 2
2 1 20 1 3
R 3 3 17 1 1 2
e 4 2 24 4
f 5 4 9 1 30
e 6 2 3 13 13 3 3 8
r 7 14 6
e 8 1 2 22 1
n 9 4 8 2 11 2
c 10 1 1 24 6
e 11 4 1 14
s 12 1 3 3 6 2
13 6 3 18
14 2 1 1 5 6

*The numbers in the row and column entries represent the land-use classes in the same order as listed in Table 2.
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Fia. 9. Average separabilities and Kappa values for IMG10T, IMG20T,
IMG30T, IMG40T, and IMGS0T plotted against pixel window size; (a)

separability curves, (b) Kappa-value curves. Dashed line is the
Kappa value obtained with the MLC.

classes and two transitional land uses. Each curve starts with
the conditional Kappa value of the particular class obtained from
the MLC, which serves as a reference for comparison and is
plotted against the label MLC.

It can be seen from Figure 10 that different classes reach their
maximum accuracies at different pixel window sizes. In Figure
10(a) maximum values are obtained at pixel window sizes of 13,
19, 15, and 17 for old residential, new residential, rural resi-
dential, and industrial, respectively, while in Figure 10(b) max-
ima are achieved at pixel window sizes of 3, 3, MLC, 3, 3, and
MLC for idle land, new crop and pasture, mature crop, decid-
uous trees, hazard land, and water, respectively. It is inter-
preted that spatially heterogeneous classes reach their maxima
at relatively larger pixel window sizes, while spatially homo-
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Fia. 10. Conditional Kappa values for land-use classification
results obtained from IMG40T. Pixel window size “1" indicates
classification accuracies obtained with the mMLC.

geneous classes reach their maxima at smaller pixel window
sizes. The contrast between the two types of land-use class can
be clearly observed from Figure 10(c) in which the two spatially
homogeneous classes, parks and cleared land, reach their max-
ima at a pixel window size of 3, while the more spatially het-
erogeneous classes golf course and land under construction reach
their maxima at pixel window sizes of 17 and 7, respectively.
The five land-use classes which achieve their maximum classi-
fication accuracies at the smallest pixel window size of 3 or 5
are those classes with only one dominant land-cover type, as
mentioned above.

A trend can be observed that for spatially heterogeneous land-
use classes such as urban land uses, a relatively large pixel
window size is required. On the other hand, for spectrally ho-

mogeneous classes such as the five spectrally pure classes (see -

Table 2 and the section of the paper describing the “Land-Use
Classification Scheme”), a small pixel window size is preferred.



It is interesting to note that with IMG40T the accuracies of mature
crop and water have not been improved by the frequency-based
classification method as compared with the accuracies obtained
with the MLC. The relatively lower accuracies of the mature crop
and the water achieved by the frequency-based classifier indi-
cate that for spectrally pure classes it may be difficult for this
type of classifier to obtain better classification accuracies than
those of the MLC method.

THE PIXEL-WINDOW EFFECTS AND POSSIBLE SOLUTIONS

In general, the frequency-based classification methods can
significantly improve the land-use classification results, when
compared with the conventional MLC. However, the accuracy
is still relatively low. It is interesting to observe in Plate 2 that
many land-use classes are partially or completely surrounded
by a narrow zone of other classes. Most notably:

® agricultural fields are surrounded by old urban residential (red)
and rural residential (blue);

® parts of the new urban residential (green) have been classified as
idle land (pink) and industrial land (yellow) in a pattern with
industrial surrounding the idle land;

® golf course (light gray) has been assigned to the boundaries be-
tween mature crop (orange) and new crop and pasture (tur-
quoise); and

® cleared land (dark blue) surrounded by land under construction
(purple).

Other errors include

® rural residential (blue) has been intermixed with old urban resi-
dential (red), new crop and pasture (turquoise), and hazard land
(dark red);

industrial (yellow) has been assigned to land under construction
(purple);

idle land (pink) has been classified as industrial land (yellow);

® new crop and pasture (turquoise) has been classified as hazard
land (dark red); and

parks (dark green) have been assigned to golf course (light gray)
and new crop and pasture (turquoise).

In fact, a large portion of the confusion in the frequency-based
classification results has a spatial pattern to it, and this is related
to the spatial distributions of various land-use classes. As can
be seen, most of the errors occur at boundaries between differ-
ent land-use classes. This “boundary confusion” problem is
caused by the pixel window effect (i.e., the effect of the pixel
window-based frequency-extraction method). This is best illus-
trated by cleared land within an urban area. There should be
only two resultant land-use classes: an urban land-use type
neighboring a cleared-land type. However, as a pixel window
is moved from the urban area across the boundary to the cleared
land, the gray-level vector proportions contained in the histo-
gram of this pixel window undergo a series of changes; from
urban dominating, to similar proportions of urban surface and
bare soil, to a high proportion of bare soil and a low proportion
of paved surface, and finally to bare soil dominating the pixel
window. The central two proportion configurations are transi-
tional from urban area to cleared land, and may correspond to
land under construction or new residential. Therefore, as the
pixel window moves across the boundary between urban area
and cleared land, more than two land-use classes will be ob-
tained. This pattern can be found in Plate 2 at many locations.
In most cases, these are errors.

Because the pixel window effect is a spatial process, it should
be corrected spatially. It seems that two methods are promising.
The simpler one is based on a morphological approach and will
be called region-growing. The second method is a region-based
contextual classification.

Region-growing is a process in which a region expands at its
boundary until a specific target is met. In the region-growing
method, one could set a distance threshold in the frequency-

based classifier beyond which a pixel remains unclassified. In
this manner, many transitional patterns will be thresholded and
therefore remain unclassified. At the next step, a morphological
erosion filter could be applied to the unclassified area until much
or all of the entire unclassified area is eroded.

In the region-based contextual classification, one has to first
correctly segment the image into a number of regions. Each of
these regions can then be treated as an object. The frequency-
based classifier can be applied to classify the image object-by-
object. The difficult part in this method is the image segmen-
tation. The regions have to contain different structure and cover
components in order for the frequency-based classifier to be
effectively applied.

COMPUTATIONAL EFFICIENCY OF THE FREQUENCY-BASED
CLASSIFICATION ALGORITHM

The frequency-based classifier is coded so that, as the pixel
window size increases, the required amount of CPU time re-
mains the same. Therefore, when the image size is kept con-
stant, the amount of CPU time required by the frequency-based
classifier is determined only by the number of gray-level vectors
in a gray-level vector-reduced image.

Table 7 lists the CPU times required by the frequency-based
classifier on a VAX 11/785 computer when a pixel window size
of 21 is used. For comparison purposes, the CPU time, 7 minutes
and 47 seconds, used by the MLC method is also included.

The computational requirement of the frequency-based clas-
sifier is linear in relation to the number of gray-level vectors
used. The classification time, plus the time for preparing a gray-
level vector-reduced image, is comparable to that spent by the
MLC method in this study. While the time required by the MLC
is linearly related to the number of classes, it increases expo-
nentially as the number of image bands is increased. As the
number of image bands used in the MLC increases, the time
required by the MLC is likely to be longer than the time needed
by the frequency-based classifier.

SUMMARY AND CONCLUSIONS

A contextual method for land-use classification has been de-
veloped and evaluated using the SPOT HRV XS data obtained
over the rural-urban fringe of northeastern Metropolitan To-
ronto. It involves two steps: gray-level vector reduction and
frequency-based classification.

A new algorithm for gray-level vector reduction was devel-
oped and illustrated. The technical basis of the frequency-based
contextual classifier and its advantages over commonly used
contextual classification methods, such as those based on spatial
feature extraction, have been introduced and discussed. A new
criterion, average separability, for pixel window size selection
was developed. The Kappa coefficient, the estimated variance
of a Kappa value, and the conditional Kappa coefficient were
used in the accuracy assessment of land-use classification re-
sults.

TaBLE 7. CPU TiME REQUIRED ON A VAX 11/785 COMPUTER FOR
LAND-USE CLASSIFICATION

CPU Time
Number of Elements Minutes Seconds
10 4 9
20 6 19
30 8 30
40 10 41
50 12 51
147’ 47"
(required by the MLC)




Some of the major findings from the experimental results are
as follows:

® The frequency-based classification method can improve land-use
classification accuracies obtained by the MLC. The overall classi-
fication accuracy measured by the Kappa coefficient was only 0.462
when the maximum likelihood classification (MLC) method was
used in the classification of 14 land-use classes. This has been
improved to 0.616 when a gray-level vector-reduced image with
40 gray-level vectors was classified using a frequency-based clas-
sifier with a pixel window size of 9 by 9 pixels.

® The significance of some accuracy improvements with the fre-
quency-based method reached a confidence level of 0.9 for the
land-use classification scheme and the SPOT HRV XS data used in
this research.

® The contextual classification methods developed in this research

are particularly effective in identifying spatially heterogeneous land-

use classes, although in most cases these methods can also im-

prove the classification accuracy of spatially homogeneous land-

use classes.

The gray-level vector-reduction algorithm is demonstrated to be

very fast. The use of the frequency-based classification method

requires similar or even less computation than the MLC method.

To our knowledge, no other contextual classifiers are as compu-

tationally efficient as the method demonstrated in this study.

® Two parameters are important in the frequency-based classifica-
tion. These are the pixel window size and the number of gray-
level vectors to be used. However, as in other contextual classi-
fication algorithms, there is no effective indicator for the optimal
pixel window size and the optimal number of gray-level vectors.
The average separability measure proposed in this research pro-
vides an approximate measure to estimate the appropriate num-
ber of gray-level vectors and clusters.

In conclusion, the two general objectives of this research, (1) to
develop computationally efficient contextual classification
methods, and (2) to improve land-use classification accuracies
of higher spatial resolution satellite data, have been achieved.
Various aspects of these approaches have been evaluated. These
methods are easy to implement and are computationally more
efficient than commonly used contextual classification methods.
They proved to be successful according to their capabilities for
improving conventional computer-assisted land-use classifica-
tion accuracies.

It is recommended that the algorithm developed in this re-
search be used when higher spatial resolution remotely sensed
data acquired over urban areas or rural-urban fringe areas are
used for land-use classification. The potential of the methods
proposed in this research need to be tested in other environ-
ments.

Further research is required to develop a procedure for op-
timal pixel window size prediction. It is recommended that, in
addition to the training sample, the test sample has to be in-
volved in such a procedure.

The pixel window effect is one of the major problems of the
frequency-based classification method. It adds systematic spa-
tial error patterns to the land-use classification results. Two
methods (morphological region-growing and region-based con-
textual classification) have been proposed to reduce or over-
come this effect. Tests of these methods or the development of
new methods to overcome the pixel window effect will be im-
portant areas of research for further improving the performance
of the frequency-based classification method. Research is also
needed to experiment with frequency features other than the
histogram features used in this study. For instance, co-occur-
rence frequencies may add more discriminating power to the
frequency-based classification.
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