
A Multi-Scale Distribution Model for Non-Equilibrium
Populations Suggests Resource Limitation in an
Endangered Rodent
William T. Bean1*, Robert Stafford2, H. Scott Butterfield3, Justin S. Brashares4

1 Humboldt State University, Arcata, California, United States of America, 2 California Department of Fish and Game, Los Osos, California, United States of America, 3 The

Nature Conservancy, San Francisco, California, United States of America, 4 Department of Environmental Science, Policy and Management, University of California,

Berkeley, California, United States of America

Abstract

Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species
distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat
selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect.
Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant
kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static
bioclimatic variables. We then examine annual changes in extent at a population-level. We define ‘‘available’’ habitat based
on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in
population extent driven by multiple measures of resource availability. By modeling distributions for a population with
robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the
predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at
multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received
little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive
relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the
distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-
step approach reinforces the differing relationship species may have with environmental variables at different scales,
provides a novel method for defining ‘‘available’’ habitat in habitat selection studies, and suggests a way to create
distribution models at spatial and temporal scales relevant to theoretical and applied ecologists.
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Introduction

Species distribution models (SDMs) have become a cornerstone

of theoretical (e.g., [1]) and applied (e.g., [2]) ecological research

[3,4]. In these models, species occurrence data and environmental

correlates are used to define the limits of a species distribution

([4]). However, understanding and predicting the relationship

between environmental resources and species distributions is

complicated by the temporal and spatial scale of analysis, with

most SDMs aimed at mapping range-wide associations using

abiotic climatic factors. Perhaps because of the broad temporal

and spatial scale at which these analyses are conducted, most

recommendations suggest that SDMs operate best for populations

at equilibrium (e.g.,[5]). By contrast, most species, especially those

of conservation concern, are rarely, if ever, at equilibrium [6].

Guisan and Thuiller [7] provide a framework for modeling

species distributions at disparate scales. At broad (e.g., biogeo-

graphic) spatial and temporal scales, species’ distributions tend to

be limited primarily by abiotic factors [8]. At finer spatial and

temporal scales, species are limited by local community interac-

tions such as resource factors, dispersal, predation, and competi-

tion. Guisan and Thuiller’s work suggests a multi-step approach to

modeling. That is, they encourage practitioners to first define a

species’ range-wide distribution, and then model limiting factors

within that area to better understand relationships with environ-

mental factors at finer spatial or temporal scales. Echoing

Hutchinson [9], Guisan and Thuiller [7] refer to the broad-scale,

bioclimatic range as the ‘‘potential distribution’’, and they define

the ‘‘realized distribution’’ as the bioclimatic range filtered

through dispersal, disturbance, and biotic interactions.

Guisan and Thuiller’s [7] research closely parallels work in the

field of habitat selection. Johnson [10] defined habitat selection as

a strictly hierarchical process, with first-order selection occurring

at the level of the physical or geographical range, second-order

selection determining the home range, and so on. While Johnson

[10] described habitat selection at each scale as a decision-based

process by the individual animal, and Guisan and Thuiller [7]

formulate it as an environmental filtering process, both clearly
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suggest that local occurrences are separately constrained within a

higher hierarchical biogeographic distribution. As Wiens et al.

[11] demonstrated in their landmark study of shrubsteppe birds,

not only are these hierarchical levels of habitat selection distinct,

animals may select habitat in contrasting directions at different

spatial or temporal scales. Environmental factors that predict

habitat selection at macro scales (e.g. vegetation, cover, temper-

ature, rainfall) may have little predictive value at finer scales, or

may even be correlated with selection in opposite directions.

Habitat selection studies have long recognized this problem of

temporal or spatial scale incompatibility [12], and resource

selection studies frequently examine habitat selection at multiple

scales [13]. Despite the long history of research on habitat

selection, the problem of defining ‘‘available’’ habitat has been a

common and recurring one [14]. Typically, researchers use some

measure of a home range, a buffer around used points, or some

meaningful political or biological boundary [12]. We suggest that a

more appropriate definition of available habitat would follow the

well-understood construction of hierarchical habitat selection.

That is, a study of habitat selection at multiple scales should follow

the theory of Guisan and Thuiller [7] and Johnson [10] by

explicitly modeling habitat selection at each hierarchical stage.

Guisan and Thuiller’s [7] multi-step approach has been used to

model distribution limited by dispersal [15], and habitat type [16],

but to our knowledge has not been used to examine the role of

resource availability. Resource availability has long been hypoth-

esized as a key factor limiting species’ distributions [17], and recent

work has supported this (e.g., [18], [19], [20]). In particular, the

temporal dynamics of resource availability can be critical to fine-

scale distribution modeling in either space or time. While species

at broad spatial and temporal scales may be considered at

equilibrium, managers are frequently tasked with understanding

shifts in distribution at much finer time intervals, such as between

years or even seasons [21,22]. At such temporal scales, variability

of resources can greatly impact species distributions, particularly

where the presence of a species is positively or negatively related

with resource availability [23].

Recent advances in remote sensing techniques have allowed for

estimates of resource abundance at fine temporal scales [24]. In

particular, the Normalized Difference Vegetation Index (hereafter

‘‘NDVI’’) has been used as a reliable estimate of biomass in

grassland systems [25], and population dynamics in herbivores

have been shown to be correlated with NDVI (e.g., [26], [27],

[28]). Recent work has shown that NDVI can be a useful predictor

of distribution in large herbivores [29].

In this study, we created a multi-step species distribution model

for the giant kangaroo rat (Dipodomys ingens, hereafter ‘‘GKR’’).

The GKR is an endangered rodent endemic to southern-central

California [30]. GKRs are believed to be limited to areas with

loamy soils, flat or gently rolling hills, and to areas with mean

annual precipitation no greater than approximately 30 cm

[31,32]. First, we estimated the potential distribution (or first-

order habitat selection) of the GKR using population-wide

occurrence data and static environmental predictor variables

(slope, soil particle size, and six climatic variables relating to

temperature and precipitation) using the machine-learning meth-

od Maxent [33]. Maxent represents an ideal method for modeling

the ‘‘potential distribution’’ because it assumes the most uniform

distribution of a species’ occurrence across the study area,

minimally constrained by the provided environmental correlates.

Maxent is a presence-background model, and in fact its authors

suggest the results may represent the species’ potential distribution

[33]. Over broader spatial scales and longer time scales, we

predicted a negative relationship between GKR presence and

precipitation.

We used this model of potential distribution to define available

habitat in order to understand finer scale temporal dynamics in

GKR population extent (i.e., annual changes in the ‘‘realized’’

distribution). These temporal models incorporated a suite of

primary productivity estimates based on the NDVI. In particular,

we predicted, based on previous research [30,32,34], that GKR

presence would show a positive correlation with resource

abundance within their potential distribution, possibly with a time

lag reflecting a delayed demographic response of GKR to resource

availability. Due to the GKR’s strong association between

population demographics and precipitation, other factors that

may also limit population extent (e.g., predation and competition)

were not considered in these models.

Methods

Study site and focal species
The GKR is a state and federally endangered, burrowing,

granivorous rodent endemic to deserts grasslands of California,

USA [32]. Once widespread in the western San Joaquin Valley,

habitat loss from agriculture and other development have severely

restricted its range to a half-dozen populations in and around the

California Coast Range [30]. The GKR is considered both a

keystone species and an ecosystem engineer [35,36]. As grasses

begin to senesce in April, GKRs remove all herbaceous vegetation

from the top of their burrows [31,37]. This behavior results in

clear circles of bare soil, 2–7 m in diameter, where GKRs are

present. Aerial surveys have therefore been a useful tool in

mapping GKR population extent in years of high primary

productivity [38].

This study is primarily focused on the Carrizo Plain National

Monument (hereafter ‘‘Carrizo’’), an area that contains the largest

remaining population of GKRs. Carrizo represents the largest

representative landscape of San Joaquin Valley annual grassland

[39]. Carrizo experiences variable precipitation (mean = 20 cm,

sd = 10 cm) that contributes directly to variability in primary

productivity, which in turn may drive dramatic annual changes in

GKR distribution [32]. Based on aerial surveys, GKR population

extent in Carrizo was estimated to expand more than 50%

between 2001 and 2006 [38]. Understanding the role of primary

productivity in driving these changes is crucial to biodiversity

management for this endangered ecosystem. Both the size of the

GKR population and its management and monitoring history

make Carrizo an ideal study site for examining the role of resource

availability on species distributions.

Other factors that often limit a species’ realized distribution –

predation, parasitism, competition and dispersal – were not

believed to be limiting factors for GKR in Carrizo. Within the

study area, the open and flat topography, coupled with GKR

reproductive habits allow for rapid dispersal. Within Carrizo,

GKR appear to be competitively dominant [31,36]. Because of

these features of their ecology, GKR distribution was less likely to

be affected by dispersal or competition and, thus, the GKR was a

good species for testing models of realized distribution based solely

on resource abundance.

This study was carried out in strict accordance with the

recommendations in the Guidelines of the American Society of

Mammalogists for the Use of Wild Mammals in Research. The

protocol was approved by the Animal Care and Use Committee at

the University of Californa, Berkeley (R304).

A Multi-Scale Distribution Model for Non-Equilibrium Populations
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GKR Distribution
We obtained estimates of GKR distribution from three sources:

(1) historical occurrence records from the Global Biodiversity

Information Facility (GBIF); (2) contemporary trapping sites

throughout GKR range; and (3) aerial surveys of GKR population

extent within Carrizo.

Occurrence records were downloaded from the GBIF using the

dismo package [40] in R [41], and limited to points collected since

1950 (N = 38). We obtained an additional 185 records of GKR

presence or absence from trapping conducted in 2010 and 2011.

157 points were selected randomly throughout GKR range, and

trapped for three nights with five traps [42]. Eight additional sites

were stratified across a range of habitat suitability values from a

preliminary distribution model constructed in 2008, and a final 20

presence points were obtained from ongoing trapping in the center

of Carrizo [36]. Of the 185 sites trapped, 120 were occupied in

either 2010 or 2011, and thus included in the range-wide potential

distribution model. Additional details on trapping methodology

are provided in Bean et al. [42].

In 2001, 2006, 2010 and 2011, we conducted Carrizo-wide

aerial flight surveys in late summer to estimate GKR extent. Using

800 m wide transects with two observers (i.e., monitoring 400 m

on each side) and a global positioning system (GPS), we mapped

the total extent of active burrows. GPS points were recorded

whenever the observers entered or left areas of observable GKR

activity. These points were then connected as lines and buffered

400 m on each side to create an estimate of total extent. These

surveys were shown to be a reliable estimate of GKR population

extent in a given year [38].

Potential Distribution Modeling
We created a multi-step model to estimate GKR distribution.

We first used Maxent to estimate the potential GKR distribution

with range-wide occurrence data (museum records and our

trapping data] and static environmental variables. Second, we

used logistic regression to estimate limits to the potential

distribution based on local resource abundance (Fig. 1).

We used the software package Maxent to estimate GKR

potential distribution [33]. Maxent uses a maximum entropy

approach to estimate the most uniform distribution of a species’

occurrence across the study area, minimally constrained by the

provided environmental correlates. Maxent is a presence-back-

ground model, and therefore may better model the species’

potential distribution [33].

To estimate the potential distribution for GKR, we selected a

suite of environmental variables believed to limit GKR distribu-

tion range-wide. We obtained 19 climate layers [43] frequently

used in distribution modeling as independent variables [44].

Bioclim layers are estimated as mean conditions from 1950 to

2000. We limited the variables to six we believed sufficient in

describing GKR distribution, and that had limited correlation with

each other. These included annual mean temperature (BIO1);

annual precipitation (BIO12); minimum temperature of the

coldest month (BIO6); precipitation of the driest month (BIO14);

and precipitation of the driest quarter (BIO17). In addition, we

used slope [45], and soil particle size derived from the SSURGO

database [46]. Soil particle size was converted to raster format

using ArcGIS 9.2, and all inputs were analyzed at 30 s resolution

(the coarsest resolution of all predictor variables). Soil particle size

was classified as categorical, with the rest classified continuous.

The output of this initial Maxent distribution model was a map

of habitat suitability (Fig. 1), with each 30 s cell representing an

index of suitability. To convert the map from a continuous

suitability distribution to a binary map of potential distribution, we

selected a threshold, above which cells were classified as potential

GKR distribution and below which cells were classified as outside

potential GKR distribution. A number of methods have been

proposed for selecting thresholds [47–49]. However, the optimal

thresholds recommended in previous work focused on best

predicting overall presence or absence for a species. In this case,

we were interested in defining the maximum potential distribution

for the species. Therefore, in order to err on the side of

inclusiveness, we selected a threshold (0.059) that included 99%

of presence points from the modeled potential distribution.

Realized Distribution Modeling
Having produced an estimate of the potential distribution for

GKR, we then examined the effects of resource availability on

GKR realized distribution for four study years. Because the GKR

relies on grass seeds as a food resource, we expected a positive

correlation between primary productivity and GKR presence.

GKRs dry and cache most of the seeds they collect in

underground chambers [37], so GKR presence in a given area

may lag primary productivity for a year or more.

To create a spatially explicit measure of primary productivity in

Carrizo we acquired 16-day composites (250 m6250 m) of NDVI

measured by the Moderate Resolution Imaging Spectroradiometer

(‘‘MODIS’’) platform [50]. The NDVI is calculated as

NIR � Rð Þ = NIR z Rð Þ ðEquation 1Þ

where NIR represents spectral reflectance within the near infrared

band (841–876 nm), and R represents the visible red band (620–

670 nm). Values approaching 21.0 tend to represent areas with

water, while areas greater than 0 and approaching 1.0 tend to

represent areas of photosynthetic activity [51]. Pre-processed 16-

day composites of NDVI measured from MODIS have been

shown to better measure primary productivity than single

measures. These composites correlate well with biomass in

grassland systems [25].

We created a suite of generalized linear models (GLM) to

predict GKR presence using the NDVI for each year (2001, 2006,

2010 and 2011) [13]. We examined two drivers of GKR presence:

first, and of primary interest, we tested the effect of primary

productivity (i.e., resource abundance) on GKR presence. Second,

we tested if GKR presence in the previous year would also be a

significant predictor of GKR presence in the current year. The

independent variables included in the model to evaluate these

predictions represented resource abundance in the current or

previous year, or were proxies of GKR presence in the previous

year (Table 1). These hypotheses were first tested independently

before being included in the suite of models (Fig. 2).

First, to estimate resource abundance, we used the highest

recorded NDVI value for a given growing season (November

through May, the typical rainy season in the Mediterranean

climate of coastal California) as an estimate of primary produc-

tivity for that 250 m6250 m cell. In estimating distribution for

GKR in 2006, for example, we estimated primary productivity in

the previous year as the peak NDVI from November to May,

2004–2005; and primary productivity in the current year as peak

NDVI from November to May, 2005–2006. NDVI can be inflated

by soil moisture if the soil is visible [51] and NDVI appeared to

peak approximately 1–2 weeks before the typical peak growth in

Carrizo, suggesting that soil moisture was influencing NDVI

measurement. However, precipitation and aboveground biomass

are correlated and, despite the lag in measurements, peak NDVI

has repeatedly been shown to correlate strongly with peak

aboveground biomass in grasslands [24,52].

A Multi-Scale Distribution Model for Non-Equilibrium Populations
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Figure 1. Flow chart of multi-step modeling approach. Here we present a multi-method, multi-scale approach to estimating species
distributions. In the first step, Maxent is used to relate contemporary trapping and historical museum records with static environmental variables. The
result is a model of potential distribution at a range-wide scale. Predictor variables included soil particle size (‘‘Soil’’), annual mean temperature
(‘‘Bio1’’), minimum temperature of coldest month (‘‘Bio 6’’), annual precipitation (‘‘Bio 12’’), precipitation of driest month (‘‘Bio 14’’), precipitation of
driest quarter (‘‘Bio 17’’), and slope. We then selected a threshold to define all available habitat for GKR, with the 99% Maxent value for training data
used as the threshold. Finally, within the potential habitat in the Carrizo Plain National Monument, we examined annual changes in population extent
based on aerial surveys and driven by measures of resource availability (NDVI).
doi:10.1371/journal.pone.0106638.g001
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For three of the four years of surveys, no estimate was available

for GKR presence in the previous year. Instead of a direct estimate

from aerial surveys, it was therefore necessary to create proxies of

GKR presence in the previous year. Because GKR clear their

burrow mounds of vegetation, we assumed that GKR would have

a direct effect on the NDVI after peak green up. First, we assumed

that later in the summer, the areas with GKR would have lower

plant biomass than areas without GKR. We therefore included the

lowest measured NDVI value from later in the year (April to

December) as a proxy for GKR presence, assuming a negative

correlation between the two (i.e., areas with GKR would have

lower minimum NDVI). Second, we assumed that GKR removed

vegetation from around their burrows faster than vegetation

naturally senesced. To estimate vegetation removal by GKR, we

measured the slope of NDVI decline from its peak. We subtracted

the NDVI value from one time step (i.e. 16 days) after peak from

Figure 2. Relationships between primary productivity (measured as NDVI) and GKR presence. GKR were expected to have a positive
relationship with maximum primary productivity in the previous and current year; a negative relationship with the minimum primary productivity
measured in the previous year; and a negative relationship with the rate of decrease of primary productivity in the previous year. Relationships are
shown from 500 random points estimated from aerial surveys in 2011. All differences were significant (t-test, p,0.05).
doi:10.1371/journal.pone.0106638.g002

Table 1. Hypothesized relationships between estimates of primary productivity (NDVI) and the local presence of the giant
kangaroo rat.

Candidate Predictors Hypothesized Mechanism

Maximum NDVIT1,T0 Estimate of primary productivity, a bottom-up limitation on GKR presence (with potential one year lag)

Minimum NDVIT0 Proxy for GKR presence in previous year

NDVI slope during plant senescenceT0 Proxy for GKR presence in previous year (GKR remove vegetation more quickly than it senesces)

T1 represents the Normalized Difference Vegetation Index data from the same year as the rat distribution was estimated; T0 is data from the previous year.
doi:10.1371/journal.pone.0106638.t001
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the peak NDVI value, and again hypothesized that a larger

difference would suggest GKR activity. These two measurements

(minimum NDVI and NDVI slope) were used as proxies for GKR

presence in an area, and in effect represent a null model of GKR

distribution: if current GKR distribution could be predicted solely

from the prior year’s presence, plant biomass would not be

considered a factor limiting the realized GKR distribution.

Although individual GKR burrows (,27–36 m2) represent a

small fraction of a single MODIS pixel (250 m6250 m), the

heterogeneity of the landscape supports analyses at this scale. The

density of the GKR burrows, and the strong difference in signal

between the perturbed bare soil on burrow and dried grass off

burrow, suggest that a mixed pixel with GKR activity has a

significantly different signal than one without GKR activity.

GKR distribution models were ranked using Akaike Informa-

tion Criteria (AIC) [53]. Models were created for all of the

presence points, with year included as a fixed effect. For each year

of the model, we used 500 random points from the potential

distribution, 250 within GKR realized distribution and 250

outside active areas.

The accuracy of the best model (as identified using AIC) was

assessed with the PresenceAbsence package in R [54]. For each

model, we calculated a threshold to test predicted presence and

absence points for each model. Each threshold was set to the

observed prevalence [48]. We then calculated the percent

correctly classified (PCC), Cohen’s kappa, sensitivity, specificity,

and the true skill statistic (TSS, sensitivity + specificity -1), a

prevalence-independent measure of accuracy [55]. Testing data

was obtained in two ways: for all four years, we randomly selected

500 new points from the aerial surveys in each year, in the same

manner as the training data. We also used the set of 105 GKR

trapping points in Carrizo collected in 2010 and 2011 to test the

models in those years.

Results

Potential Distribution Modeling
As expected, GKR potential distribution is limited to a narrow

band of habitat on the western San Joaquin Valley and nearby

Coast Ranges (Fig. 1). The most important variables in predicting

GKR distribution included precipitation of the driest quarter,

precipitation of the driest month, and minimum temperature of

the coldest month (Table 2). Surprisingly, annual precipitation was

not an important predictor of GKR distribution. Instead,

precipitation in the driest month and driest quarter were more

important predictors. Probability of GKR presence was highest in

areas where the driest month received a mean of 0 mm

precipitation. Similarly, probability of GKR presence was highest

in areas where the driest quarter received a mean of 4 mm

precipitation. GKRs inhabited areas that have a narrow band of

mean annual temperatures between 14u and 16uC.

The area classified in the Maxent model as the potential

distribution of GKR closely resembled the combined distribution

from 2001, 2006, 2010 and 2011 (Fig. 3). However, there were

portions of Carrizo in the northwest and southeast classified as

suitable that were not part of the realized distribution in any of the

years monitored. AUC for the potential distribution model was

0.98.

Realized Distribution Modeling
In the best model of GKR realized distribution, population

extent was positively related to primary productivity in both the

previous and current year, suggesting a strong influence of bottom-

up regulation on GKR distribution (Table 3). GKR presence in

the previous year also was an important predictor of GKR

presence in the current year. Both proxies of prior GKR presence

performed as expected: GKR distribution was negatively corre-

lated to both minimum NDVI and the slope from the peak NDVI

from the previous year. Realized distribution model accuracy from

the testing data was ‘‘useful’’ (AUC = 0.74). The threshold was set

at 0.50 (as expected, due to the prevalence of the model data [48]).

Using the aerial surveys as testing data, model sensitivity was 0.70

and specificity 0.71. The model Kappa score and the true skill

statistic (TSS) were 0.40. The best model correctly classified 70.1%

of all test points as inside or outside the GKR’s estimated realized

distribution. Using the trapping data (obtained independently of

the training data), sensitivity = 0.65; specificity = 0.66; Kap-

pa = 0.29 and TSS = 0.29, while 65.8% of all test points were

correctly classified.

Discussion

This study joins a growing body of literature that attempts to use

ecological theory on limits to population extent and species ranges

to inform, interpret and advance species distribution models (e.g.

[1,16,56,57]). Specifically, we presented a technique of multi-step

modeling to define a species’ potential and realized distribution,

and in doing so explored the relationship between primary

productivity and animal distribution.

Consistent with theory on potential and realized distributions

[4,7], our results showed that the potential distribution of GKR

was larger than any of the distributions observed in the four years

of aerial surveys. In other words, there were areas within Carrizo

that should have been suitable for GKR, but monitoring

documented them as uninhabited. This result supports conclusions

of Guisan and Thuiller [7], and Grinnell [17] and Hutchinson [9]

before them, who suggested that species’ distributions are limited

by more than fixed environmental conditions, a fundamentally

important concept for distribution modelers and ecologists.

The fact that distribution models built only on static bioclimatic

factors may poorly estimate realized distributions has several

important implications for how these models are applied to

questions in biodiversity conservation. For example, distribution

models are often relied upon to project the impact of climate

change on species’ distributions. Without incorporating mecha-

nisms that limit the focal species’ realized distribution, these

models are likely over-estimating the range of conditions within

which the species will survive and reproduce under different

climate change scenarios [58,59]. At the same time, we may be

ignoring important local ecological processes by examining

patterns of distribution at range-wide spatial scales [60]. In this

study, GKR potential distribution was limited to areas with little to

no rain in the driest months of the year; therefore, future increases

in precipitation might be expected to reduce GKR distribution.

However, we found that within the area of potential distribution,

GKR were positively correlated with primary productivity. It is

possible, then, that an increase in mean annual precipitation

would decrease the potential distribution range-wide (where

agriculture has already rendered suitable habitat uninhabitable),

but increase the realized distribution within a core conservation

area.

Within the potential distribution, we found that the best model

of factors limiting the realized distribution of GKR showed a clear,

positive correlation between primary productivity (measured as

peak NDVI) and the presence of GKR in the previous year. This

result conforms to recent findings from studies of other species that

show rapid changes in distribution in response to temporal and

A Multi-Scale Distribution Model for Non-Equilibrium Populations
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spatial variability of NDVI (e.g., Mongolian gazelles (Procapra
gutturosa; [19,20]); and African buffalo (Syncerus caffer; [61,62]).

A key step in our approach required a selection of threshold to

convert a continuous model of habitat suitability at the range-wide

scale to a binary presence-absence map of potential distribution (or

‘‘available habitat’’ sensu Johnson [1980]). An alternative

approach that might prove useful to explore would utilize the

continuous distribution of habitat suitability as an informative

prior in modeling habitat selection at finer scales. However, it is

unclear whether animals select habitat in this manner. We suggest

that, for GKRs, climate, soil, and topography serve as a simple

filter to defining the potential distribution. That is, for example,

either a GKR can construct a burrow in a particular soil type or it

can’t – we do not expect GKRs to have a continuous response to

resource abundance in relation to soil particle size. Nevertheless,

additional research on the relationship across habitat selection at

multiple scales is warranted.

This study of GKR distribution in Carrizo, while conducted at a

relatively small spatial scale, focused on the temporal dynamics of

species’ distributions. Niche and distribution theory tend to assume

a species is at equilibrium, but this study and others (e.g., [21,63])

show that for many applications, considering the temporal

dynamics of a species’ distribution is essential. Although the

importance of non-static suitability models in grassland systems

has been recognized [64], the difficulties in addressing such

variability have thus far limited research in this area [65].

This study focused specifically on resource abundance as a

limiting factor for GKR.

While the approach presented here combining distribution

models at different scales allows new insights, it is not without its

shortcomings. One particular problem is our inability to identify

the ‘‘true’’ potential distribution. By its very nature, it may be

impossible to know a species’ potential distribution; in fact the

potential distribution may only be a theoretical construct. We can

only measure the realized distribution and estimate the potential

distribution from those measurements. This issue is highlighted

regularly in the invasive species modeling literature. Species that

appear to have a limited distribution in their native range often

show a spectacular ability to live in ‘‘unsuitable’’ conditions when

introduced to new areas (e.g., [66,67]). In these cases, the species’

realized distribution in its native range is so limited by

competition, dispersal, and other ecological factors that any

estimate of its potential distribution will be woefully inadequate for

predicting the spread of a species. Oftentimes, ecological limits to

the realized distribution may be correlated with environmental

conditions, thereby preventing true knowledge of the species’ limits

of its potential distribution. In this case, additional steps (e.g.

physiological tests) may be required to estimate its potential

distribution.

As for GKR’s competitive dominance, the relationship between

precipitation limitation and competition may be impossible to

untangle. The Heteromyidae in general appear to have evolved to

claim a desert-grassland niche unfilled by other small mammals.

The observed relationship between dry summer months and GKR

presence may be as much related to the lower limit for larger

rodents (e.g., the California ground squirrel, Otospermophilus
beecheyi) than an upper limit for GKR. Again, this illustrates the

conceptual difficulty surrounding niche theory, but the temporal

mechanisms outlined in this study ought to remain relevant. GKR

display differing responses to precipitation at range-wide and local

Table 2. Variable importance for range-wide model of giant kangaroo rat distribution reported by Maxent.

Variable Percent Contribution Permutation Importance

Precipitation of Driest Quarter 33.5 29.8

Annual Mean Temperature 21.1 0.4

Precipitation of Driest Month 16.2 33.2

Minimum Temperature of Coldest Month 15.8 22.9

Slope 5.8 5.8

Annual Precipitation 3.9 6.8

Soil Particle Size 3.7 1

doi:10.1371/journal.pone.0106638.t002

Figure 3. Results of GKR distribution mapping and potential distribution modeling. Hatched polygons show areas of GKR activity in 2001,
2006, 2010 and 2011. Dark grey areas indicate the thresholded potential distribution for GKR from a range-wide Maxent model using presence points
from confirmed GKR trapping locations and museum records. A fixed model is unsuitable for predicting annual changes in population extent.
doi:10.1371/journal.pone.0106638.g003
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scales. This fact is a crucial finding for those interested in modeling

ecologically relevant species’ distributions.

Incorporating detailed mechanisms into species distribution

models, at ecologically relevant scales and informed by ecological

theory is an important next step in the field of spatial ecology. We

have presented an approach to estimating a species’ potential

distribution and address questions about the ecological limits to its

realized distribution. We presented further evidence that non-

equilibrium populations are often limited not just by fixed,

environmental conditions, but also other ecological conditions that

vary spatially and temporally. Such research will be important as

distribution modeling moves from the ‘‘how’’ to the ‘‘why.’’
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