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The relationship between lidar-derived metrics and biomass could vary across different vegetation types.
However, in many studies, there are usually a limited number of field plots associated with each vegetation
type, making it difficult to fit reliable statistical models for each vegetation type. To address this problem, this
study used mixed-effects modeling to integrate airborne lidar data and vegetation types derived from aerial
photographs for biomass mapping over a forest site in the Sierra Nevada mountain range in California, USA. It
was found that the incorporation of vegetation types via mixed-effects models can improve biomass estimation
from sparse samples. Compared to the use of lidar data alone inmultiplicativemodels, themixed-effects models
could increase the R2 from 0.77 to 0.83 with RMSE (root mean square error) reduced by 10% (from 80.8 to
72.2 Mg/ha) when the lidar metrics derived from all returns were used. It was also found that the SAF (Society
of American Forest) cover types are as powerful as the NVC (National Vegetation Classification) alliance-level
vegetation types in themixed-effects modeling of biomass, implying that the futuremapping of vegetation classes
could focus on dominant species. This research can be extended to investigate the synergistic use of high spatial
resolution satellite imagery, digital image classification, and airborne lidar data for more automatic mapping of
vegetation types, biomass, and carbon.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Vegetation biomass, the weight of plant materials that exist over
an area, is a critical measure of ecosystem structure and productivity
that informs a range of applications such as fire emission calculations
(e.g., De Santis et al., 2010), wildlife habitat analysis (e.g., Morris et al.,
2009), hydrological modeling (e.g., Ursino, 2007), and greenhouse gas
accounting (e.g., De Jong et al., 2010). In particular, accurate estimates
of biomass are needed in order to inform national policies and interna-
tional treaties regarding forest management and carbon sequestration
(Malmsheimer et al., 2011).

Lidar is a state-of-the-art remote sensing technology with a proven
ability tomap aboveground biomass (AGB). The accuracy and sensitivity
of themetrics derived from optical and radar imagery (such as NDVI and
backscatter coefficient) decline with increasing AGB (Waring et al.,
1995). In contrast, vegetation height metrics derived from lidar have
been found to be highly correlated to biomass even when the biomass
density is very high (Gonzalez et al. 2010, Means et al., 1999). In the
+1 808 956 3512.
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past, much research has been done to estimate AGB using airborne
discrete-return lidar (e.g., Asner et al., 2009; Banskota et al., 2011; Lim
et al., 2003), airborne profiling lidar (e.g., Nelson et al., 2009, 1988;
Stahl et al., 2011), airborne waveform lidar (e.g., Dubayah et al. 2010;
Lefsky et al., 1999; Ni-Meister et al., 2010), satellite lidar (e.g.,
Boudreau et al., 2008; Guo et al., 2010; Nelson et al., 2009), and
ground-based lidar (e.g., Loudermilk et al., 2009; Ni-Meister et al.,
2010). In these applications, statistical models were used to quantify
the relationship between biomass measurements and vegetation struc-
ture metrics derived from lidar for a number of forest plots or stands.
Their performance varies depending on the vegetation conditions, the
density of field observations, and the approach used for statistical
modeling.

Most of these existing studies have focused on the use of lidar-
derived canopy structure metrics, such as height and canopy cover,
for biomass estimation. However, studies of plant allometry sug-
gested that biomass at the individual tree level is determined not
only by canopy structure but also by factors such as trunk taper and
wood density (Chave et al., 2006; Niklas, 1995), which are closely re-
lated to the floristic characteristics of the plants. As a result, biomass
should be related to vegetation types. For example, Drake et al.
(2003) examined the relationships between lidar metrics from an
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airborne waveform lidar LVIS (Laser Vegetation Imaging Sensor) and
AGB for two study sites in Central America, one in a tropical moist for-
est in Panama and the other in a tropical wet forest in Costa Rica. They
found that the relationships between lidar metrics and AGB differ be-
tween these two sites even after the models had adjusted for the frac-
tion of crown area that was deciduous (FCAD) of canopy trees. They
attributed the differences to the underlying allometric relationships
between stem diameter and AGB in tropical forests. Næsset and
Gobakken (2008) estimated the aboveground and belowground bio-
mass for 1395 sample plots in young and mature coniferous forests
located in ten different areas within the boreal forest zone of Norway.
With one canopy height metric and one canopy density metric de-
rived from airborne discrete-return lidar, they were able to estimate
aboveground and belowground biomass with R2 of 0.82 and 0.77, re-
spectively. When variables including tree species composition were
included, the R2 increased to 0.88 and 0.85. In a recent study, Ni-
Meister et al. (2010) found that the relationships between biomass
and canopy structure are distinctly different for deciduous and coni-
fer trees in temperate forests in New England, U.S. Their analysis
was based on the canopy structure information measured in the
field as well as those derived from LVIS and Echidna® validation in-
strument (EVI), a ground-based lidar system.

The dependence of biomass-canopy structure relationship on vege-
tation types is well-known (e.g., Nelson et al., 1988; Ni-Meister et al.,
2010). One approach for incorporating vegetation type information
into biomass estimation is to stratify the forest plots according to vege-
tation types, for each of which a separate statistical model is developed
(e.g., MacLean and Krabill 1986; Nelson et al., 1988). However, such an
approach has practical and theoretical limitations. First, in most previ-
ous studies, only a limited number (typically 20–60 in total) of field
plots were available for biomassmodeling due to issues such as accessi-
bility and cost. The stratification of a study area will lead to even fewer
number of field plots per vegetation type, making it difficult to fit reli-
able statistical models for each vegetation type. Another problem of
such an approach is that it assumes that the field data contains an ex-
haustive list of all vegetation types which exist in a given area. This is
hardly true for natural forests because the vegetation types collected
through field measurements are typically only a sample of the all vege-
tation types which exist over that area.

Recent advances in mixed-effects modeling can circumvent the
aforementioned problems. In a conventional statistical model, the re-
gression coefficients (such as intercept and slopes) are treated as con-
stants. However, in mixed-effects models, these coefficients could be
modeled as random Gaussian variables with their specific values
varying among vegetation types. This approach makes it feasible to
estimate biomass even when the sample size per vegetation type is
small. Mixed-effects models have recently been used to estimate can-
opy height from satellite lidar (GLAS) data (Chen, 2010) and tree di-
ameter from airborne discrete-return lidar data (Salas et al., 2010).
Chen (2010) used mixed-effects model to test the generalizability of
height estimation from GLAS data within and across three study
sites in the Pacific coast region (one conifer site and one woodland
site in California and another conifer site inWashington). He found sig-
nificant random effects between the conifer andwoodland sites but not
between the two conifer sites. Salas et al. (2010) compared four statis-
tical models including ordinary least squares (OLS), generalized least
squares with a non-null correlation structure (GLS), linear mixed-
effects model (LME), and geographically weighted regression (GWR)
for estimating diameter of individual trees using discrete-return lidar
data. They found that LME was significantly better than the other
three models. Despite the promising results obtained in these two
lidar remote sensing studies, no studies, to our best knowledge, have
been done to explore the use of mixed-effects model for biomass esti-
mation using lidar data.

In this study, vegetation types derived from aerial photographs are
used to stratify forest for biomass modeling. Aerial photography is a
fundamental remote sensing data source that possesses fine spatial
and temporal details for producing base maps and performing envi-
ronmental analysis (Lillesand et al., 2008). It has been widely used
for mapping vegetation types for decades (e.g., Avery, 1978;
Colwell, 1946; Fensham and Fairfax, 2002; Morgan et al., 2010). The
recent advances in digital imaging and analysis also make aerial pho-
tography a rapidly-evolving tool for environmental analysis and eco-
logical management (Morgan et al., 2010). In the U.S., a number of
national programs such as NHAP (National High Altitude Program),
NAPP (National Aerial Photography Program), NAIP (National Agri-
culture Imagery Program), and NDOP (National Digital Orthophoto
Program) have collected and delivered aerial photographs every
3–10 years that cover the conterminous states from the late 1980s.
Besides their wide temporal and spatial coverage, the aerial photo-
graphs acquired through these programs are usually free or at low
cost for public use, making them ideal for detailed vegetation type
mapping (Davies et al., 2010; Higinbotham et al., 2004).

The main goal of this study is to investigate whether integrating
airborne lidar data with traditional vegetation maps derived from ae-
rial photographs can improve biomass estimation for forest landscape
in California. We specifically explore the efficacy of mixed-effects
modeling to integrate the two remotely sensed data sources. We
also compare the performance of two common but different ap-
proaches to vegetation classification.

2. Study area and data

2.1. Study area

Our study area is located in the United States Forest Service Sagehen
Creek Experimental Forest in California, which covers approximately
3925 ha and is on the eastern slope of the Sierra Nevada approximately
32 km north of Lake Tahoe (Fig. 1). Conifer species present include
white fir (Abies concolor), red fir (Abies magnifica), mountain hemlock
(Tsuga mertensiana), lodgepole pine (Pinus contorta), Jeffrey pine
(Pinus jeffreyi), sugar pine (Pinus lambertiana), and western white
pine (Pinus monticola) (Table 1). Non-forested areas include fens, wet
and dry montane meadows and shrub fields. Elevation ranges from
1862 m to 2670 m with slopes averaging 18% but can reach 70% in
parts of the watershed.

2.2. Field data collection

A systematic grid of geo-referenced 0.05 ha circular plots was
installed with a random starting location (Fig. 2). The grid consists
of three sampling densities, 500 m, 250 m, and 125 m spacing. The
entire watershed was sampled by plots spaced on a 500 m interval.
Areas not occupied by Jeffrey pine plantations were further sampled
at 250 m spacing; 125 m spacing was used in 10 unique forest types
to conduct high density sampling. A total of 523 plots were established
in the field between 2004 and 2006. These field plots were located with
a handheld Garmin eTrex recreational GPSwith horizontal accuracy of 3
to 11 m, which are called RGPS plots hereinafter. Nine of the ten loca-
tions of 125 m plot spacing were revisited in 2006 and a Trimble®
GeoXH™ handheld GPS with Zephyr Geodetic antenna was used to
re-measure the center of 81individual plots. The average horizontal ac-
curacy of the newGPSmeasurements is 0.1 mwith themajority b0.2 m
and, at the worse case, 1.5 m. These plots are DGPS plots hereinafter.

At each plot, all trees greater than 5 cm in diameter at breast
height (DBH, breast height=1.37 m) were measured with a nested
sampling design. Canopy trees (≥19.5 cm DBH) were tagged and
measured in the whole plot; Understory trees (≥5 cm DBH to
b19.5 cm DBH) were measured in a randomly selected third of the
plot. Tree measurements include species, DBH, tree height, and
vigor. Vigor was defined into six different classes: 1) healthy trees
with no visible defects, 2) healthy trees with minimal damage or



Fig. 1. Location of the study area. Top-right: Aerial photographs draped over the lidar DEM. Bottom-right: A hillshade of the lidar DEM.
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defect (broken top/dead top, abnormal lean, etc.), 3) live trees that
are near death or will be dead in the next five years, 4) recently
dead trees with little decay and that retain their bark, branches and
top, 5) trees that show some decay and have lost some bark, branches
and may have a broken top, and 6) extensive decay and missing bark
and most branches and have a broken top. The first three vigor classes
are for live trees and the last three are for dead trees.

2.3. Lidar data

Lidar data were collected from September 14 to 17, 2005 for the
study area using an Optech ALTM 2050 system on an airplane flying
at an altitude of ~800 m and average velocity of 260 km per hour.
The ALTM 2050 acquired up to three returns per pulse at a pulse fre-
quency of 50 kHz, scan frequency of 38 Hz, and a maximum scan
angle of 15°, creating a swath width of ~580 m. The point density is
about 2–4 returns per square meter. Optech, Inc. rates the RMSE pre-
cision of individual point locations surveyed by the ALTM 2050 as ±
15 cm vertical and ±50 cm horizontal.

2.4. Vegetation types from aerial photographs

USDA Forest Service (USFS) provided a vegetation type map,
which was produced by visually interpreting 1 m NAIP (National Ag-
ricultural Imagery Program) Digital Orthophoto Quadrangles (scale
1:15,840, natural color) taken on September 16, 2005 and manually
delineating the vegetation polygons. The vegetation polygonswere ini-
tially typed using the CALVEG (Classification and Assessmentwith Land-
sat of Visible Ecological Groupings) classification system (USDA, 1981),
Table 1
Common tree species in this study area and their allometric equations for calculating biomass.
stem without bark; CIR = stem basal circumference; DBH = diameter at breast height; HT =

Species Abbr. Common name Equation

Abies concolor ABCO White fir ln(BST)=3.011904+2.772
Abies magnifica ABMA Red fir ln(BST)=3.020046+2.759
Juniperus occidentalis JUOC Sierra juniper ln(BSW)=−8.5802+2.63
Pinus contorta PICO Lodgepole pine ln(BST)=−9.10508+2.33
Pinus jeffreyi PIJE Jeffrey pine ln(BST)=1.817891+2.952
Pinus lambertiana PILA Suger pine ln(BST)=3.229148+2.686
Pinus monticola PIMO Western white pine BAT=20,800+0.1544× (D
Populus tremuloides POTR Quaking aspen ln(BAT)=−2.6224+2.482
Tsuga mertensiana TSME Mountain hemlock ln(BAT)=−10.1688+2.59
which is a provisional system that meets the floristically based level of
the U.S. National Vegetation Classification Standard (NVCS) hierarchy.
The CALVEG systemwas designed to classify California's existing vegeta-
tion communities and the CALVEG types are also called “Dominant
Types” in accordance with the USFS Existing Vegetation Classification
andMapping Technical Guide (Brohman and Bryant, 2005). The CALVEG
types were crosswalked to other classification systems including SAF
(Society of American Forester) (Eyre, 1980), CWHR (California
Wildlife-Habitat Relationships) (Meyer and Laudenslayer, 1988), and
U.S. NVC (National Vegetation Classification) alliance-level vegetation
types (FGDC, 2008).

In this study, the two national-wide vegetation classification sys-
tems, SAF and NVC alliance-level vegetation types, were chosen for bio-
mass estimation due to their broad applicability (Fig. 3). The NVC
alliance-level vegetation types are based on NVCS, which establishes
national procedures for field plot records and classification of existing
vegetation types for the United States. These procedures provide a dy-
namic and practical way to publish new or revised descriptions of vege-
tation types while maintaining a current, authoritative list of types for
multiple users to access and apply (Jennings et al., 2009). The early ef-
forts of NVC started in 1994 and the first NVCS was adopted in 1997 by
FDGC (Federal Geographic Data Committee). As early as of April 1997,
a total of 1571 NVC types had been identified at the alliance-level
(Grossman et al., 1998). Since then, the vegetation classification has
been continuously evolving and updated (Jennings et al., 2009). In con-
trast to NVC that uses all vascular plant species present in a community
to help define vegetation classes, the SAF types emphasize dominant
species of a stand. In many cases, the SAF types are more broad-
ranging over both structural and environmental gradients than are the
BAT= total above ground biomass; BST = biomass of stemwith bark; BSW= biomass of
tree height.

Units (biomass, DBH or CIR, height) Source

7×ln(DBH) g, cm, – Halpern and Means, 2004
0×ln(DBH) g, cm, – Halpern and Means, 2004
89×ln(CIR) kg, cm, – Means et al., 1994
63×ln(DBH) mg, cm, – Means et al., 1994
×ln(DBH) g, cm, – Halpern and Means, 2004
3×ln(DBH) g, cm, – Halpern and Means, 2004
BH2×HT) g, cm, cm Halpern and Means, 2004
7×ln(DBH) kg, cm – Jenkins et al., 2004
15×ln(DBH) mg, cm, – Jenkins et al., 2004

image of Fig.�1


Fig. 2. Field plots of vegetation measurements. The smaller dots indicate the plots located with a recreational GPS. The larger dots indicate the plots located with both a recreational
GPS and a differential GPS. The thick line is the boundary of the vegetation type map.
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alliances recognized in NVC (Grossman et al., 1998), so in total a much
smaller number of SAF types (86 forest types) have been identified for
the whole United States.

3. Methods

3.1. Biomass calculation at the plot-level

Biomass can be most accurately calculated using species-specific
allometric equations. A comprehensive review of the literature was
conducted to search species-specific allometric equations and, during
the selection process, preference was given to equations meeting all
or most of the following criteria: 1) being derived from a high number
(~40–100) of sample trees, 2) from DBH ranges similar to those in our
dataset, 3) from geographical sites most similar to our study location,
and 4) including all or the most relevant biomass components of a
tree. The final equations we selected are from Halpern and Means
(2004), Jenkins et al. (2004), and Means et al. (1994) (see Table 1).
To derive the biomass at the plot level, we summed the biomass of
live trees with DBH>5 cm (the total biomass of understory trees
was multiplied by three given that only a random third of each plot
was measured for them) and converted the biomass total to density
based on the area of each plot. We only consider live trees because
the dead trees usually have few or no leaves and thus generate
much fewer laser returns.

3.2. Lidar data processing

The first step of lidar data processing is to filter the raw lidar points
and separate them into ground and non-ground returns (Chen et al.,
2007). Then, the ground returns identifiedwere interpolated to generate
a Digital ElevationModel (DEM) of 1 m cell size. The canopy height of in-
dividual points was calculated as the difference between their original Z
values and the corresponding DEM cell elevations. Based on the canopy
height, the following statistics were calculated for all points within a
given field plot: mean (hu), standard deviation (hstd), skewness (hskn),
and kurtosis (hkurt); proportion of lidar points within different height
bins (0 to 5 m, 5 to 10 m, …, 45 to 50 m, and >50m, denoted as p0to5,
p5to10, …, p45to50, and p>50, respectively); percentile heights (5, 10, …,
100 percentile, denoted as h5, h10, …, h100, respectively; note that 100
percentile height corresponds to maximum height); and quadratic
mean height (hqm) (see Table 2). The quadratic mean height was calcu-
lated as Lefsky et al. (1999). Two sets of lidar metrics were generated:
one is based on all lidar returns and the other is based on first returns
since some studies have found that first returns may have better perfor-
mance in predicting vegetation attributes (e.g., Kim et al., 2009). All of
the above lidar data processing was conducted using the Tiffs (Toolbox
for Lidar Data Filtering and Forest Studies) software (Chen, 2007).

3.3. Statistical analysis

The mixed-effects model used to predict plot-level biomass from
lidar metrics and vegetation types is as follows:

Y ¼ Xbþ Zbþ e
b eN 0;Gð Þ
e eN 0;Rð Þ
cov b; eð Þ ¼ 0

ð1Þ

where Y is a vector of biomass for n field plots, X is the n×p design
matrix for the p fixed effects, Z is the n×q design matrix for q random
effects, β is a p×1 vector for the fixed effects, b is q×1 vector for the q
random effects, and ε is the n×1 vector for the error random effects.
Note that 1) the random effect vector b has Gaussian (Normal) distri-
butions with zero means and variance–covariance matrix G, which is
called the G covariance structure; 2) the error vector ε could be cor-
related with variance–covariance matrix R, which is modeled with
variograms in this study; and 3) the random effects b and ε are inde-
pendent. Given that there usually exist power–law relationships be-
tween biomass and other vegetation attributes such as DBH or
height (Zianis and Mencuccini, 2004), biomass and all lidar metrics
were log-transformed so that the developed models are linear at the
log-scale.

Weused stepwise regression to select the statistically significant lidar
metrics for predicting biomass. Since both the response and predictor
variables are at the log-scale, the developed models are multiplicative at
the original scale. The multiplicative models served as the benchmark
and starting point for developing mixed-effects models; in other
words, we added and tested random effects only for the lidar metrics se-
lected in the multiplicative models. Modeling variance structure is
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Fig. 3. Vegetation type maps of the study area. (a) SAF type, (b) NVC alliance-level type.
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probably themost powerful and critical feature of mixed-effects models,
which allows correlation among observations. To find themost parsimo-
nious yet effective G covariance structure, we initially fit amodel with all
predictor variables having random effects and their covariance matrix
being unstructured (UN), then fit models with a Variance Components
(CV) covariance structure, which means that the individual random ef-
fects are independent and the off-diagonal elements of the covariance
matrix are zeros. If the estimate of any random effects is statistically in-
significant from zero across all different vegetation types, the random
effectwas dropped from themodel. A total of four different types of var-
iogram models (exponential, spherical, Gaussian, and Matern) were
tested to model the spatial dependence of the residuals and calculate
the variance–covariance matrix R. AIC (Akaike Information Criteria)
was used to help select the best models, which usually have the lowest
AIC. However, if theAIC values of twomodels have a difference less than
2, such models are considered indistinguishable (Burnham and
Anderson, 2002). Once the best models had been selected, leave-one-
out cross-validation was used to calculate the model coefficient of
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Table 2
Lidar metrics for predicting forest attributes.

Lidar metrics Description

hu, hstd, hskn, hkurt Mean, standard deviation, skewness, kurtosis of height of
lidar points

p0to5, p5to10, …,
p45to50,p>50

Proportion of lidar points within height bins (0 to 5 m, 5 to
10 m, …, 45 to 50 m, and>50 m)

h5, h10, …, h100, Percentile height of lidar points
hqm Quadratic mean height of lidar points
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determination (R2) and RMSE so that a straightforward comparison can
bemade between the results from this study and those from others.We
used SAS 9.1.3 (SAS Institute Inc.) to fit mixed-effects models.

Among the 81 DPGS plots, one has questionable GPS accuracy and
another three plots are outside of the vegetation type map so they are
excluded from our analysis. When stepwise regression was used to
estimate biomass for the remaining 77 DGPS plots, it was found that
four plots have large residuals (>3 standard deviations). After a care-
ful examination of the tree characteristics of the four plots and in-
spection of their corresponding point clouds, it was found that there
was obvious mismatch of tree information (e.g., tree density, size) be-
tween lidar point clouds and field data for three plots. It is suspected
that there might be large errors of plot coordinates or vegetation
measurements in the field data of these three plots, so they were ex-
cluded from our analysis as well. However, the remaining plot was
kept since no distinct mismatch can be identified, resulting in a
total of 74 DGPS plots in our ground truth data. Table 3 shows the
cross-tabulation of the 74 DPGS plots in the NVC alliance-level and
SAF vegetation type classification systems. We developed mixed-
effects models based on two vegetation types (SAF vs. NVC alliance-
level) and two sets of lidar metrics (derived from all returns vs. first
returns), which lead to a total of four sets of mixed-effects models
for the DGPS plots.
4. Results

When the lidar metrics from all returns were used for the 74 DGPS
plots, the two-way stepwise regression (with an enter probability of
Table 3
Cross-tabulation of 74DGPS plots in two vegetation classification systems: NVC alliance-level
type (rows N1–N16) and SAF type (HRC-Hard Chaparral, LPN-Lodgepole Pine, RFR-Red Fir,
SMC-Sierra Nevada Mixed Conifer, WFR-White Fir). The name of each NVC alliance-level
type lists 1–3 dominant tree species in that type. See Table 1 for the abbreviated species
names in each NVC type.

NVC type SAF type

HRC LPN RFR SMC WFR Total

N1: 1ABCO 2ABMA 3PIJE 0 0 0 0 1 1
N2: 1ABCO 2PICO 3ABMA 0 0 0 0 4 4
N3: 1ABCO 2PIJE 0 0 0 0 5 5
N4: 1ABCO 2PIJE 3ABMA 0 0 0 0 13 13
N5: 1ABMA 0 0 4 0 0 4
N6: 1ABMA 2ABCO 0 0 0 0 7 7
N7: 1ABMA 2TSME 0 0 1 0 0 1
N8: 1CEVE 2QUVA 3ARPA 2 0 0 0 0 2
N9: 1PICO 0 3 0 0 0 3
N10: 1PICO 2PIJE 0 7 0 0 0 7
N11: 1PICO 2PIJE 3ABCO 0 1 0 0 0 1
N12: 1PICO 2POTR 0 1 0 0 0 1
N13: 1PICO 2POTR 3ABCO 0 3 0 0 0 3
N14: 1PIJE 2ABCO 0 0 0 8 0 8
N15: 1PIJE 2ABCO 3PICO 0 0 0 10 0 10
N16: 1PIJE 2PICO1 3ABCO 0 0 0 4 0 4
Total 2 15 5 22 30 74
0.05 and leave probability of 0.1) selected two lidar metrics hqm and
p35to40 in the multiplicative model:

ln AGBð Þ ¼ 1:571ln hqm

� �
þ 0:055ln p35to40ð Þ þ 2:066 ð2Þ

where AGB is the aboveground live tree biomass in Mg/ha and hqm is
the quadratic mean height in meters, and p35to40 is the proportion of
lidar points between 35 and 40 m. Starting with the two lidar metrics
selected in Eq. (2) and using the SAF vegetation types, we follow the
procedure described in Section 3.3 to develop and test mixed-effects
models (see DGPS.A.SAF.M1-7 in Table 4 for the models developed).
When both hqm and p35to40 are modeled as random effects, it was
found that the model with the variance components (VC) covariance
structure of random effects (model DGPS.A.SAF.M2) produced much
smaller AIC compared to the one with the unconstructed (UN) covari-
ance matrix (model DGPS.A.SAF.M1, Table 4), indicating that model
DGPS.A.SAF.M2 should be preferred. An examination of model
DGPS.A.SAF.M2 revealed that (1) the estimates of the random effects
of intercept and the metric p35to40 are zeros and (2) the fixed-effects
p35to40 is not statistically significant. So, the lidar metric p35to40 was
removed and no random effect for intercept was modeled, resulting
in model DGPS.A.SAF.M3. This further reduced the AIC to 23.4 com-
pared to the AIC of 26.3 from model DGPS.A.SAF.M2. Starting with
model DGPS.A.SAF.M3, four different variogram models (exponential,
spherical, Gaussian, and Matern) were used to model the variance-
covariance matrix R (models DGPS.A.SAF.M4-7). It was found that
these models have higher AICs (models DGPS.A.SAF.M5-7) or very
small (=0.2) AIC differences (model DGPS.A.SAF.M4) compared to
model DGPS.A.SAF.M3. This indicates that, after incorporating the
fixed and random effects in model DPGS.A.SAF.M3, the residuals of
AGB have no significant spatial autocorrelation at the scale of current
minimal plot spacing (125 m) or larger. As a result, model DGPS.A.-
SAF.M3 was chosen as the final mixed-effects model in this case of
using SAF vegetation type and the lidar metrics from all returns for
the 74 DGPS plots.

Similarly, we developedmodels for the cases of using 1) SAF vegeta-
tion types and lidar metrics from first returns (see models
DPGS.F.SAF.M1-7 in Table 4), 2) NVC alliance-level vegetation types
and lidar metrics from all returns (see models DGPS.A.NVC.M1-7 in
Table 5), and 3) NVC alliance-level vegetation types and lidar metrics
Table 4
Different mixed-effects models of biomass estimation based on differential GPS plots
(denoted as DGPS in the model no.), lidar metrics derived from all or first returns
(A or F in the model no.), and SAF forest cover type. UN means that the G covariance
matrix is unconstructed; VC means that the Variance Components matrix is used as
the G covariance structure. The best model in each set is bolded.

Model no. Fixed effects Random
effects

G cov.
structure⁎

Variogram
model

AIC

DGPS.A.SAF.M1 Intercept, hqm,
p35to40

Intercept, hqm,
p35to40

UN None 49.2

DGPS.A.SAF.M2 Intercept, hqm,
p35to40

Intercept, hqm,
p35to40

VC None 26.3

DGPS.A.SAF.M3 Intercept, hqm hqm VC None 23.4
DGPS.A.SAF.M4 Intercept, hqm hqm VC Exponential 23.2
DGPS.A.SAF.M5 Intercept, hqm hqm VC Spherical 23.8
DGPS.A.SAF.M6 Intercept, hqm hqm VC Gaussian 23.6
DGPS.A.SAF.M7 Intercept, hqm, hqm VC Matern 25.2
DGPS.F.SAF.M1 Intercept, hqm,

h40, p35to40
Intercept, hqm,
h40, p35to40

UN None 50.7

DGPS.F.SAF.M2 Intercept, hqm,
h40, p35to40

Intercept, hqm,
h40, p35to40

VC None 28.9

DGPS.F.SAF.M3 Intercept, hqm hqm VC None 26.0
DGPS.F.SAF.M4 Intercept, hqm hqm VC Exponential 26.0
DGPS.F.SAF.M5 Intercept, hqm hqm VC Spherical 25.9
DGPS.F.SAF.M6 Intercept, hqm hqm VC Gaussian 25.5
DGPS.F.SAF.M7 Intercept, hqm, hqm VC Matern 27.5



Table 5
Different mixed-effects models of biomass estimation based on differential GPS plots
(DGPS in the model no.), lidar metrics derived from all or first returns (A or F in the
model no.), and NVC alliance-level vegetation type. UN means that the G covariance matrix
is unconstructed; VCmeans that theVariance Componentsmatrix is used as the G covariance
structure. The best model in each set is bolded.

Model no. Fixed effects Random
effects

G cov.
structure⁎

Variogram
model

AIC

DGPS.A.NVC.M1 Intercept,
hqm, p35to40

Intercept,
hqm, p35to40

UN None 104.0

DGPS.A.NVC.M2 Intercept,
hqm, p35to40

Intercept,
hqm, p35to40

VC None 31.8

DGPS.A.NVC.M3 Intercept,
hqm

hqm VC None 25.8

DGPS.A.NVC.M4 Intercept, hqm hqm VC Exponential 25.2
DGPS.A.NVC.M5 Intercept, hqm hqm VC Spherical 25.9
DGPS.A.NVC.M6 Intercept, hqm hqm VC Gaussian 25.5
DGPS.A.NVC.M7 Intercept,

hqm,
hqm VC Matern 27.7

DGPS.F.NVC.M1 Intercept,
hqm, h40,
p35to40

Intercept,
hqm, h40,
p35to40

UN None 161.4

DGPS.F.NVC.M2 Intercept,
hqm, h40,
p35to40

Intercept,
hqm, h40,
p35to40

VC None 33.7

DGPS.F.NVC.M3 Intercept,
hqm

hqm VC None 28.8

DGPS.F.NVC.M4 Intercept, hqm hqm VC Exponential 28.3
DGPS.F.NVC.M5 Intercept, hqm hqm VC Spherical 28.6
DGPS.F.NVC.M6 Intercept, hqm hqm VC Gaussian 28.5
DGPS.F.NVC.M7 Intercept,

hqm,
hqm VC Matern 30.5
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from first returns (see models DGPS.F.NVC.M1-7 in Table 5). With the
same rationale as above, we selected the best models for these three
cases, which are model DPGS.F.SAF.M3, DGPS.A.NVC.M3, and
DGPS.F.NVC.M3, respectively. Note that the multiplicative models
based on first returns include an additional lidar metric, h40. However,
in the correspondingmixed-effectsmodels, thismetric is not statistically
significant any more. As a result, all best mixed-effects models have the
same model structure in terms of the fixed effects, random effects, G co-
variance structure, and R covariance matrix (i.e., variogram models).

Table 6 summarizes the fitting statistics of multiplicative and the
best mixed-effects models developed based on the 74 DGPS plots.
The examination of fitting statistics of the mixed-effects models indi-
cates that all mixed-effects models, based on either NVC alliance-level
or SAF vegetation types, outperformed the corresponding multiplica-
tive models. For example, when all returns were used, the R2 in-
creased from 0.77 to 0.83 for NVC alliance-level types and to 0.82
for SAF types. The RMSE decreased by about 10% for all returns and
by about 5% for first returns. Among all models based on the DGPS
Table 6
Model fitting statistics calculated with leave-one-out cross validation for multiplicative
and mixed-effects models.

Multiplicative
model

Mixed effects model

NVC alliance-
level
type

SAF type

R2 RMSE
(Mg/ha)

R2 RMSE
(Mg/ha)

R2 RMSE
(Mg/ha)

DGPS plots
(n=74)
All returns 0.77 80.8 0.83 72.2 0.82 72.8
First returns 0.77 80.2 0.81 74.5 0.81 75.1

RGPS plots (n=74)
All returns 0.66 98.7 0.70 94.0 0.72 92.5
First returns 0.67 97.4 0.70 95.2 0.68 98.2
plots, the mixed-effects model based on all returns and NVC
alliance-level vegetation type (model DGPS.A.NVC.M3) has the high-
est R2 (0.83) and the lowest RMSE (72.2 Mg/ha). However, since the
model based on all returns and SAF vegetation type (model DGPS.A.-
SAF.M3) has almost the same R2 (0.82) and RMSE (72.8 Mg/ha) as
model DGPS.A.NVC.M3 while using a smaller number of vegetation
classes (5 SAF classes instead of 16 NVC classes), it was considered
as the best model from the aspects of both model parsimony and fit-
ting statistics. Fig. 4 shows the biomass map of the study area based
on model DGPS.A.SAF.M3.
5. Discussion

5.1. Comparison with previous studies

Our results indicate that the mixed-effects models have better
performance than the corresponding fixed-effects models. This find-
ing is consistent with previous studies that used other remotely-
sensed data: Meng et al. (2007) used NDVI derived from Landsat
ETM+imagery and forest inventory data to develop a linear fixed-
effects model and linear mixed-effects models to estimate merchant-
able biomass for the state of Georgia. They found that the linear
mixed-effects model with random effects in both intercept and
slope best fits the data and achieved a R2 of 0.57 while the fixed-
effects model produced a R2 of 0.31 only.

Some previous studies found that the integration of lidar data and
optical or radar imagery does not necessarily produce better results in
biomass modeling. For example, Hyde et al. (2006) found that the ad-
dition of Quickbird and SAR/InSAR structure metrics (such as NDVI
and backscatter intensity) to LVIS (Laser Vegetation Imaging Sensor)
resulted in no improvement for estimating biomass across 120 one-
hectare circular plots in the Sierra Nevada of California. This was
explained by the fact that the structure metrics from lidar, radar,
and Quickbird are redundant (Hyde et al., 2006). Using different in-
puts (categorical vegetation types instead of continuous structure
metrics such as NDVI) and statistical approaches (mixed-effects in-
stead of fixed-effects models), we found that it is possible to improve
biomass estimation by integrating lidar and optical remote sensing
data. The difference between this study and Hyde et al. (2006) might
be attributed to our different modeling strategy (i.e., considering the
biomass dependence on vegetation types) and our use of mixed-
effectsmodels and vegetation types, butmore research is needed to fur-
ther investigate this issue.

The two multiplicative models have the same R2 (0.77) and simi-
lar RMSE (80.8 Mg/ha for all returns; 80.2 Mg/ha for first returns).
These fitting statistics are comparable to those from Gonzalez et al.
(2010), which used the lidar data collected by the same lidar system
(Optech ALTM 2050). They used field measurements of 39 plots col-
lected by a modified FIA (Forestry Inventory and Analysis) design to
develop stepwise regression model to estimate aboveground live
tree biomass in North Yuba in the Tahoe National Forest in California,
a site only ~50 km away from our study area. Their final model in-
cluded lidar metrics such as quadratic mean height and five percen-
tile heights (p10, p20, p30, p40, and p50), with R2 of 0.80, slighter
higher than our fixed-effects model. However, their model RMSE is
123 Mg/ha, much larger than 80.8 Mg/ha of our fixed-effects model
(Eq. 2). The causes of the large RMSE difference between this study
and Gonzalez et al. (2010) are multifaceted: besides using fixed- in-
stead mixed-effects models, their study uses field plots consisting of
four subplots of 17.95 m radius while we use single plots of 12.62 m
radius: the larger field plot introduces more variability of canopy
structure, making it more difficult to characterize using a single set
of metrics; another reason for the larger RMSE in Gonzalez et al.
(2010) is that they incorporated uncertainty in their field biomass
using Monte Carlo simulations.



Fig. 4. Biomass map of the study area (based on model DGPS.A.SAF.M3).
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5.2. Advantages of mixed-effects models

When vegetation types or other information are available to parti-
tion a study area into different strata, an alternative approach is to fit
a statistical model for each stratum. Compared to the approach of fit-
ting individual stratum-specific regression models, mixed-effects
models have the advantage of using fewer parameters while possibly
achieving comparable or even better performance. For instance, Meng
et al. (2007) compared a mixed-effects model with the approach of
fitting an individual regression model within each region (IRR).
They divided the state of Georgia in USA into five eco-regions, each in-
cluding 10 to 67 counties. The mixed-effects models were developed at
the county-level, so theminimal sample size of each stratum (eco-region)
is 10. They found that the mixed-effects model obtained slightly better
performance than the IRR approach even though the mixed-effects
model used much fewer parameters.

In our study, the need to use mixed-effects models instead of fit-
ting individual vegetation type specific statistical models is obvious
because we have very limited numbers of plots per vegetation type
(see Table 3). For example, among the 16 NVC alliance-level vegeta-
tion types, 11 types have 5 or less field plots associated with each.
Using the SAF classification system leads to fewer types and thus
higher average number of plots per vegetation type. However, there
are only 2 plots for the Hard Chaparral (HRC) and 5 plots for the
Red Fir (RFR) types. Fitting statistical models for such small samples
is clearly questionable from the statistical standpoint (Green, 1991).

Mixed-effects models deal with the biomass dependence on vege-
tation types from a different perspective: the coefficients of the bio-
mass models for different vegetation types could be assumed to
vary as random Gaussian variables. This assumption puts a constraint
on the variability of model coefficients and prevents unreliable esti-
mates of model coefficients from being produced even when the sam-
ple size is small. Take model DGPS.A.SAF.M3 as an example (see
Table 4), which is essentially a random slope model with the coeffi-
cient of hqm (at the log scale) varying among different vegetation
types:

lnAGBij ¼ 1:6971ln hqm;ij

� �
þ bi

�ln hqm;ij

� �
þ 1:3860 ð3Þ

where AGBij is the aboveground live tree biomass for plot j of vegeta-
tion type i; hqm,ij is the quadratic mean height of all lidar points for
the plot j of vegetation type i. bi is the random coefficient estimated
with the empirical best linear unbiased predictions (EBLUPs) for vegeta-
tion type i and it represents the estimated deviation from themean slope
(i.e., 1.6971). Fig. 5 shows the estimated biomass models for different
vegetation types. These regression lines could be much different from
the ones derived from vegetation type specific regressionmodels. For in-
stance, a regular “least squares” regressionmodel for the HRC vegetation
type will create a line that passes through the two HRC plots; such a line
will be highly sensitive to the small sample size problem and thus will
have less generalization ability for prediction. Instead, in the mixed-
effects models, the regression line of a given vegetation type is a combi-
nation of a) the coefficients of the fixed effects (1.3860 for intercept, and
1.6971 for slope for this example as shown in Eq. 3), and b) the estimated
coefficients of the random effects (bi in Eq. 3). The mean regression line
(determined by the coefficients of the fixed effects) can be thought as an
initial estimate for the regression model of a specific vegetation type,
much like the prior estimate in Bayesian statistics. This is the essential
reason why mixed-effects models could be less susceptible to the small
sample size issue. Additionally, if more samples are available for a
given vegetation type, mixed-effects modeling will take advantage of
the available sample data and the estimated model will be closer to the
one derived from the regular least square regression, exemplified by
the models for the WFR, SMC, and LPN vegetation types shown in
Fig. 5. This explains why mixed-effects models are effective in modeling
biomass when vegetation types of a wide range of sample sizes exist.
5.3. NVC alliance-level versus SAF vegetation types

One of the interesting results from this study is the lack of differences
between the mixed-effects models developed from the two vegetation
types (NVC alliance-level vs. SAF). The differences are less than 0.01 for
R2 values and less than 0.6 Mg/ha for RMSE. As introduced in
Section 2.4, NVC alliance-level types define a vegetation class based on
all vascular plants present while SAF types are defined by the dominant
species. Thus, NVC alliance-level types represent a finer scale of vegeta-
tion classification. However, from the perspective of biomass estimation,
the more coarsely scaled SAF types perform nearly as well because the
dominant species account for the vast majority of AGB. These results
suggest that we can focus classification and mapping schemes on the
dominant species for mixed-effects modeling of biomass.

image of Fig.�4


Fig. 5. Mixed-effects model of biomass estimation kmodel DGPS.A.SAF.M3). RFR-Red Fir,
WFR-White Fir, LPN-Lodgepole Pine, SMC-Sierra Nevada Mixed Conifer, HRC-Hard
Chaparral.
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5.4. Lidar metrics from all returns vs. first returns

A few studies have also used lidar metrics derived from first
returns only for predicting biomass. For example, Hall et al. (2005)
found that a canopy cover metric derived from first returns was
able to predict the foliage biomass and total aboveground biomass
in a Ponderosa pine forest in Colorado with R2 of 0.79 and 0.74, re-
spectively. Kim et al. (2009) found that the model using first returns
improved the R2 by 0.1 for predicting the total aboveground biomass
in a mixed coniferous forest in Arizona compared to the one using all
returns.

Our results indicate that using first returns reduced RMSE by
0.6 Mg/ha compared to using all returns, which are in line with the
findings from Kim et al. (2009). However, the improvement is too
small to be considered statistically significant. It is interesting that,
among the mixed-effects models, the ones based on all returns out-
performed the ones based on first returns. The R2 increased from
0.81 to 0.83 for NVC alliance-level type and, correspondingly, the
RMSE decreased by 3%. The reasons for this contrasting pattern and
the discrepancy between this study and previous studies are unclear,
but it might be related to specific forest conditions and the way with
which the specific lidar system generates individual returns (Wagner
et al., 2007).

5.5. Biomass estimation using field data located with a recreational GPS

The accuracy of remote sensing based biomass maps is influenced
not only by the specific earth observation data and the statistical ap-
proaches used, but also by the accuracy of the calibration data used
for deriving models and estimates. One of the common problems in
field data is the low geo-location accuracy caused by either the use
of low-cost GPS or the existence of dense forests. Dominy and
Duncan (2001) reported the difficulty of quality satellite reception
beneath a dense forest canopy, with the degree of spatial error seri-
ously affecting fine-scale vegetation mapping. Miura and Jones
(2010) used a Garmin eTrex GPS (average±5.5 m horizontal error)
to locate the centers of 25-m radius circular plots for field measure-
ments and related to airborne lidar data. They had to manually shift
the plots to achieve a better registration between lidar data and
field measurements. However, few studies have evaluated the im-
pacts of GPS accuracy on biomass estimation using lidar data.

The availability of both differential GPS coordinates and recrea-
tional GPS coordinates for the 74 plots in our study site made it
possible to directly assess the impacts of plot coordinate accuracy
on biomass estimation. Table 6 reported the fitting statistics of the
multiplicative and mixed-effects models based on RGPS plot coordi-
nates. The use of recreational instead of differential GPS in our study
site resulted in a decrease of R2 by 0.10–0.13 and an increase of
RMSE by about 21–31%. This degradation in performance due to
GPS accuracy will likely vary depending on the site-specific condi-
tions (e.g., canopy structure, spatial heterogeneity, and topography).
Nevertheless, our results emphasize the value of differential GPS to
locate field plots for vegetation measurements.

6. Conclusions

Lidar is a state-of-the-art technology for mapping biomass, which
relies on the fundamental relationship between biomass and canopy
structure metrics such as height. Motivated by the biomass depen-
dence on vegetation types, this study uses an innovative method,
mixed-effects models, to integrate airborne lidar and vegetation
types derived from aerial photographs tomap biomass over the Sagehen
Creek Experimental Forest in the Sierra Nevada of California. Itwas found
thatmixed-effectsmodels can effectively dealwith the small samples as-
sociated with each vegetation type and can improve biomass estimation
compared to the use of lidar data alone in multiplicative models.

The vegetation of our study sitewas classified based on twodifferent
systems: SAF and NVC alliance-level classes. We found that, despite its
emphasis on dominant species, the SAF cover types are as powerful as
the NVC alliance-level vegetation types in the mixed-effects modeling
of biomass. This result suggests that vegetation classification for carbon
assessment could focus on dominant species given the strong relation-
ship between forest stand biomass and dominant species. The vegeta-
tion types of this study were visually interpreted from aerial
photographs. Formany places, especially those in developing countries,
updated aerial photographs are not always available. Due to the increas-
ing accessibility of high spatial resolution satellite imagery such as
Worldview-2, further research should be done in the future to investi-
gate the use of high spatial resolution satellite imagery, digital image
classification, and airborne lidar data for biomass and carbon mapping.
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