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Abstract. Understanding tree growth as a function of tree size is important for a
multitude of ecological and management applications. Determining what limits growth is of
central interest, and forest inventory permanent plots are an abundant source of long-term
information but are highly complex. Observation error and multiple sources of shared
variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals)
make these data challenging to use for growth estimation. We account for these complexities
and incorporate potential limiting factors (tree size, competition, and resource supply) into a
hierarchical state-space model. We estimate the diameter growth of white fir (Abies concolor)
in the Sierra Nevada of California from forest inventory data, showing that estimating such a
model is feasible in a Bayesian framework using readily available modeling tools. In this
forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained
variation between individual trees. Plot-level resource supply variables (representing light,
water, and nutrient availability) do not have a strong impact on inventory-size trees. This
approach can be applied to other networks of permanent forest plots, leading to greater
ecological insights on tree growth.

Key words: Abies concolor; competition intensity; hierarchical model; individual variation; Markov
chain Monte Carlo; OpenBUGS; permanent plots; state-space model.

INTRODUCTION

Understanding the limitations on tree growth is

important in many ecological and management appli-

cations. Not only is tree growth a basic demographic

process that profoundly influences tree population

dynamics (Harcombe 1987, Metcalf et al. 2009), but it

is also one of the primary means of evaluating forest

management goals (Chojnacky 2001). Tree growth rates

partly determine tree mortality (Das et al. 2007), and

individual-based forest simulators require growth data

to parameterize their models (e.g., SORTIE [Pacala et

al. 1996]). Cambial growth underlies estimates of carbon

sequestration (Mohan et al. 2007, Berner et al. 2011) and

tree growth as a function of size is an important element

in dendrochronological analysis (Bunn 2008). A tree’s

growth is metabolically limited by its size (Macfarlane

and Kobe 2006, Coomes et al. 2011) and competition is

a fundamentally limiting factor in closed-canopy condi-

tions (Lines et al. 2010, Kunstler et al. 2011). In

addition, the supply of energy, water, and nutrients

(typically measured by proxies such as insolation, water

deficit, and soil type) can strongly limit tree growth and

can mask density dependence (He and Duncan 2000).

Permanent forest plot data are an ideal way to learn

about growth limitation. Typically these data include

tagged trees whose diameter at breast height (dbh, breast

height ¼ 1.37 m) is measured at regular intervals.

Changes in dbh are often used to measure tree growth

(e.g., U.S. Forest Service Forest Inventory and Analysis

network and Smithsonian Center for Tropical Forest

Science network).

Unfortunately, long-term monitoring data are typi-

cally highly complex, including observation error,

missing data and uneven time intervals, spatial nesting

and autocorrelation, and repeated measures on the same

individuals. Most typical statistical models cannot

account for all of these issues. More sophisticated

hierarchical models can incorporate these shared sources

of variation as well as the error inherent in the

observations (e.g., Royle and Dorazio 2008, Cressie et

al. 2009, Ponciano et al. 2009, Clark et al. 2010).

Hierarchical models can accommodate nested random

effects to account for correlations between measurements

from the same site, the same plot within site, or the same

individual, as well as incorporating crossed random

effects for different years. In addition, we can explicitly

model measurement error by treating the unmeasured,

true sizes as ‘‘latent states’’ that are statistically related to

measured sizes. Freely available software (e.g., lme4 in R

[Bates and Maechler 2010], OpenBUGS [Lunn et al.

2009]) and multiple textbooks on hierarchical modeling

(Clark 2007, Royle and Dorazio 2008, Kery 2010, Kery

and Schaub 2012) place this set of tools in the hands of

managers and ecologists, allowing them to make better

use of complex long-term data sets.

Previous work using hierarchical models with forest

inventories has addressed many spatial and temporal
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particulars of these data, as well as inevitable observa-

tion error. Spatial autocorrelation is a chief issue in

permanent plot data, and has been accounted for using

correlated spatial random effects in Banerjee and Finley

(2007) and Finley (2011). One temporal issue in

inventory data is the difficulty of inferring annual

growth rates from tree diameter censuses taken at

longer and sometimes uneven time intervals. Gregoire

et al. (1995) used a continuous-time temporal autocor-

relation between measurements to account for these

uneven intervals, but comment that their measure of

elapsed time as a distance measure may not be

meaningful. This temporal mosaic of sampling intervals

is common in permanent plot networks as it can be

difficult to maintain regular measurement intervals.

Even if regular intervals are maintained in any particular

network, mismatched time intervals are inevitable when

analyses include data from different plot networks.

Diameter censuses are easy to execute and typically can

include many trees, but are prone to errors due to

improper diameter tape placement and bark loss.

Therefore, unrealistic negative growth increments are

common and many ad hoc methods are used to account

for this issue (e.g., by adding an arbitrary amount to all

growth increments, which biases estimates toward larger

annual growth rates). A way of realistically accounting

for observation error is needed (Clark et al. 2007).

Previous studies have balanced the strengths and

weaknesses of diameter censuses by estimating hierar-

chical models combining diameter measurements on all

trees in some years with tree ring data on some trees in

all years in order to infer annual growth (Clark et al.

2007, 2010). Some of these studies include tree size and

limiting factors such as canopy cover and climate

variables (Clark et al. 2010, 2011, 2012). Other studies

have incorporated random effects for spatial nesting

with measures of competition and methods of account-

ing for uneven time intervals (Weiskittel et al. 2007). But

none of these existing models have demonstrated how to

infer annual growth from a mosaic of sampling intervals

by explicitly estimating the unmeasured sizes as well as

modeling the repeated measures on individual trees as a

random effect.

In this study, we develop a hierarchical model to infer

annual growth rates from a mosaic of sampling intervals

while incorporating multiple sources of unexplained

variation. This state-space model (de Valpine 2003)

includes growth as a function of tree size, resource

supply, and competition; random effects to account for

year-to-year variation, repeated measures on trees, and

spatial nesting; and explicit modeling of unmeasured

tree sizes and the associated observation error. Our

model incorporates the conceptual sophistication of

many previous models in such a way that these effects

can be estimated simultaneously and compared. While

previous studies do include limiting factors, we include

interactions between tree size and both fixed and

random variables to more completely incorporate size

dependence in every aspect of growth, allowing us to

explain which of these has the biggest impact. In
addition, our model handles time by including random

year effects as well as latent states. This approach results
in crossed random effects between time and spatial

nesting factors, which are technically challenging to
estimate. Due to the combination of these crossed and
nested random effects, unequal time intervals, and

observation error, standard statistical analysis software
packages will not suffice and we use Markov chain

Monte Carlo (MCMC) to estimate parameters in
OpenBUGS. We then compare the relative magnitudes

of each estimated source of variation and of the effects
of different explanatory variables. This case study

illustrates the utility of these tools for forest monitoring
data and suggests how these methods can be extended to

other such data sets.

METHODS

Study site

Blodgett Forest Research Station (BFRS) is located in
the central western slopes of the Sierra Nevada (388520

N; 1208400 W), California, USA. The research station’s
1780 ha are divided into compartments (8–80 ha each)

containing plots (0.04 ha each) measured periodically to
monitor forest composition and structure. (See Appen-

dix A for number of trees, plots, and compartments in
this study as well as sampling intervals.) The data we use

in this study comes from the reserve compartments,
which have seen no management other than fire

suppression in the last 100 years. As such, the reserve
compartments at Blodgett are representative of much of

the western slopes of the Sierra Nevada, which have seen
a similar management history and experience similar

abiotic conditions.
BFRS currently consists of mature second-growth

mixed conifer forest. Trees have not yet reached their
maximum size, and diameter growth appears to be an

approximately linear function of diameter. Due to fire
exclusion in the reserve compartments, later-succession-
al shade-tolerant coniferous species are most common.

White fir (Abies concolor) is one of these dominant
species and is becoming more dominant over time

throughout the Sierra Nevada (Ansley and Battles 1998,
Collins et al. 2011). Due to the fact that the forest is still

recovering from a clearcut in the early 1900s (Battles et
al. 2008), tree diameter is a good representation of tree

canopy position. The explanatory variables we include
in our model are the following: tree size (dbh) in cm, plot

basal area in m2/ha, insolation in W�h�m�2, topographic
slope in percent, elevation in m, annual water deficit in

mm (Table 1), and categorical soil type (as a proxy for
soil nutrients). We detail both the measurement methods

and the auditing of these data in Appendix B.

Statistical model and estimation

Given the importance of annual growth in assessing
tree performance, and that we have a mosaic of

September 2013 1289TREE GROWTH FROM INVENTORIES



sampling intervals for different trees, we choose an

annual time step t for our model. Our statistical model

for tree growth in each year is hierarchical at several

levels. In all the following formulae, subscript i is for

compartment, j is for plot, and k is for tree. Superscript

m indexes the explanatory variables in Table 1. First, we

represent the observation process by modeling observa-

tions of tree diameter in cm, yijk(t), as a function of

latent (unknown) tree size xijk(t) in cm with normally

distributed observation error with variance r2
dbh : yijk(t)

; N [xijk(t), r2
dbh]. Next, our process model representing

annual tree growth is

xijkðt þ 1Þ; N

�
aijkðtÞ þ bijkðtÞxijkðtÞ þ

X
m

cmzm
ij ðtÞ

þ
X

m

jmzm
ij ðtÞxijkðtÞ;r2

e

�
: ð1Þ

We assume that size in the next year is a linear

function of several other explanatory variables, which

are denoted zm
ij (t) and have parameters for slope cm and

interaction with size jm. The modeling framework does

allow for more complex functional forms (e.g., Weiskittel

et al. 2007) as needed, but our data do not warrant this

complexity. The zm are centered and scaled based on

these variables as measured in our inventory. The scale of

the latent states x is established using the measured

inventory sizes y (see Appendix C for details on

standardization). The zm are measured at plot and/or

year level: insolation, topographic slope, elevation, and

soil category are all measured at plot level, i.e., zinsol
ij ,

ztslope
ij , zelev

ij , and a group of five indicator variables

representing a tree’s soil type (zC
ij , zH

ij , zHB
ij , zHM

ij , and zJ
ij; see

soil types listed in Fig. 1) ; basal area is measured at plot

and year level, zba
ij (t); and annual water deficit is

measured at year level, zdef(t) (Table 1). We assume that

size in the next year xijk(tþ 1) is a linear function of size

in the previous year, xijk(t), with soil-type-dependent

slope and intercept (e.g., for Jocal soil type, slope bJ ¼
bijk(t)þ jJ and intercept aJ¼ aijk(t)þ cJ). In Results, we

report the average growth increment ā and average effect

of size on growth increment b̄ � 1, which are weighted

averages over soil types and for average values of

explanatory variables. Residual error, with variance r2
e ,

accounts for additional unexplained variation in growth.

At the next hierarchical level, we model the collective

random effects on intercept aijk(t) and slope bijk(t) with

respect to size x as a combination of random effects for

tree (qa
ijk and qb

ijk), plot (pa
ij and pb

ij), compartment (ca
i and

cb
i ), and year (wa(t) and wb(t)). The intercept effects

reflect differences in overall growth increment while the

slope effects reflect differences in growth as a function of

size. The random effect intercept for a specific tree is

determined by the random tree, compartment, plot, and

year effects as follows: aijk(t)¼ qa
ijk þ ca

i þ pa
ij þwa(t). The

slope is similar: bijk(t) ¼ qb
ijk þ cb

i þ pb
ij þ wb(t). The

random effects for tree, compartment, plot, and year

follow normal distributions and, in Results, we display

the standard deviations for each of these random effects

(e.g., ra,c for the standard deviation of compartment

intercept effects). At each level of nesting, random

effects are assumed to be independent (see Appendix C

for more details on model specification).

We estimated the parameters, random effects, and

latent states in a Bayesian framework using Markov

chain Monte Carlo (MCMC) sampling techniques in

OpenBUGS (Lunn et al. 2009). While the MCMC

needed some adjustments to produce useful results,

ultimately we were able to estimate the full, complex

model with all explanatory variables and sources of

variation. We used R (R Development Core Team 2009)

to format the data and generate initial values for

random effects. We could not use completely arbitrary

initial values generated by BUGS because we encoun-

tered difficulties with slow mixing due to the complexity

of the model. Instead we used spline-interpolated sizes

(Wood 2006) in a linear mixed-effects model (lmer;

Bates and Maechler 2010) to generate plausible starting

values for random effects and latent sizes. Initial values

for intercept and slope parameters for explanatory

variables were set to zero.

We used uninformative priors, with the exception of

observation error standard deviation. When we included

very small values in our prior distributions for this

parameter, MCMC chains mixed poorly. As we expect

at least a small amount of observation error, we chose

an inverse gamma or a uniform prior with a nonzero

minimum, based on the minimum rounding error

inherent in the diameter tape. In Results, we report

estimates from the uniform prior model for all

parameters other than observation error (for which we

report results for both priors). We assessed convergence

both visually and using Gelman-Rubin diagnostics in

the coda package (Plummer et al. 2010). See Appendix

TABLE 1. Explanatory variables.

Covariate name Mean SD Minimum Maximum Units Level

Insolation 628 688.10 36 106.87 499 531.88 692 878.06 W�h�m�2 plot
Slope 15.19 10.09 1.00 43.00 % plot
Elevation 1315.73 35.48 1272.54 1450.85 m plot
Basal area 62.02 26.17 0.90 135.48 m2/ha plot/year
Annual water deficit �174.87 66.63 �311.93 �66.67 mm year
Tree size, dbh 30.75 20.56 0.25 131.32 cm tree/year

Notes: Soil is categorical and is not shown here, but most soil types originate from granites, and Cohasset is more developed than
the Holland soil family. See Appendix B for details on soils and other explanatory variables.
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D for details on priors, initial values, trace plots, and

convergence tests. Finally, while we do not demonstrate

a formal model selection procedure here, we do estimate

several simpler models to check the robustness of our

estimates to removal of other model components and to

different choices for observation error priors (Appendix

G).

RESULTS

The mean for growth increment ā was 0.463 (with a

95% credible interval of 0.339, 0.600) cm per year, and

for change in growth increment with size b̄� 1 was 0.013

(0.006, 0.020) per year. We thus confirm that size has a

significant effect on growth and should be included in

the model. For all explanatory variable parameters on

the same standardized, unitless scale, we list means and

95% credible intervals in Appendix E. The credible

intervals of parameters for insolation, elevation, and

annual water deficit overlap zero. On the other hand,

basal area’s effect on growth increment cba and its

interaction with size jba do not significantly overlap

zero. The effect of topographic slope on growth

increment ctslope is borderline significant as well, though
its interaction with tree size jtslope is not (Fig. 1). Note

that some of the parameters such as the effect of annual

water deficit (cdef and jdef ) are poorly determined (have

a flatter posterior and consequently a broader credible

interval). Though several of the soil type effects also

overlap each other, some are distinct from each other

and from their average, and all of their intercepts are

significantly different from zero. Of the soil types,

Cohasset has the highest slope jC and the second

highest intercept cC, consistent with the typically high

productivity of these soils (see Appendix E for

parameter estimates). The estimates for these significant

variables (basal area, topographic slope, and soil effects)

are robust to the removal of the others (insolation and

elevation), and vice versa (e.g., removal of topographic

slope does not render insolation significant). In contrast,

when annual deficit is removed, the magnitude of

random year effects increases (see Appendix G for

comparisons between the full model and several

simplified models).

The way these explanatory variables interact with size

is more apparent when growth increment as a function

of size is shown for low and high values of the

explanatory variables (Fig. 2). These results on the

original size scale allow biological interpretation (see

Appendix C for algebra underlying the rescaling of

covariates after estimation). The slope of all lines is

significantly greater than zero, indicating that size is

significant for all values of the other explanatory

variables. Several of the effects of the high and low

values of specific covariates make sense: for higher water

deficits, growth is lower, and growth is higher overall in

Cohasset soils. However, variables other than basal area

show high overlap between high and low values and thus

do not substantially affect tree growth (soils overlap

considerably as well).

Observation error standard deviation rdbh is estimat-

ed at 0.149 (0.082, 0.218) cm with a uniform prior and

0.111 cm (0.073, 0.175) with an inverse gamma prior.

Residual standard deviation re is estimated at 0.387

(0.358, 0.414) cm. Because standard deviations can

never be less than zero, determination of significance is

not simple. However for our results a practical choice

was to calculate a ratio of the lower credible bound to

the width of the credible interval to represent the

posterior’s separation from zero. The posteriors that

were visually distinct from zero had ratios ranging from

0.22 to 3.76, while those that were not separated from

zero had ratios on the order of 104 or 103. We consider

FIG. 1. Parameter posterior densities for main effects of
explanatory variables on overall growth increment (c) and
interaction with tree size (j). In addition to these continuous
explanatory variables, the effects due to different categorical
soil types are shown in black. The gray line indicates the
average growth increment (upper figure, ā) and effect of tree
size on growth increment (lower figure, b̄� 1). (Top) Effects of
continuous explanatory variables and soil types on the overall
growth increment (ā and c’s). (Bottom) Effects of explanatory
variables on the slope of future size with respect to current size
(b̄ � 1 and j’s).
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those in the first group to be significant and those in the
second group not to be significant (see Table E2 in

Appendix E for these ratios). Based on this reasoning,
among the intercept random effect standard deviations,

the year, tree and plot effects are significant (ra,w, ra,q,
and ra,p; Fig. 3). Of the slope random effect standard

deviations, only plot (rb,p) is significant (see Appendix E
and Fig. 3). Though several of the sources of unex-
plained variation have a significant effect on the overall

growth increment, the variation they introduce is
substantially less than the variation introduced by

overall residual variation. Several of the random effect
standard deviations are not well determined: year and

compartment intercept effects have particularly broad,
flat posteriors. Finally, we also examined explicitly

estimated latent tree sizes xijk(t) for nine trees in the
inventory. Some trees’ unmeasured sizes are better

constrained by the data than others (small trees in
particular are poorly estimated, with wide credible

bands); but for several larger trees the annual growth
between censuses has narrow credible bands and

reasonable values (Appendix F: Fig. F1).

DISCUSSION

Our study demonstrates the feasibility of estimating a

hierarchical model from forest inventory data with the

full richness of both categorical and continuous
explanatory variables, many sources of variation, and

observation error. We have successfully estimated
annual growth from a mosaic of sampling intervals.

Backward model selection strategies require one to start
with the most complex model available, and we have

shown that this most complex model can be estimated.
Forest inventory data sets with this kind of sampling
structure and with individually marked trees are

becoming more common, so this modeling approach
could be applied to many other forest dynamics

problems.

Tree size, basal area, and resource supply

Our estimations confirm that dependency of tree

growth on size and competition intensity cannot be
ignored when modeling growth, e.g., in other applica-

tions such as population dynamics or dendrochronolo-
gy. Our annual average growth increment of 0.463 cm

per year at average conditions on these plots is high but
reasonable, as BFRS is a productive site and its second-

growth forests are still increasing in biomass. We chose a
linear model for diameter growth for this study, but the

modeling framework easily accommodates other func-
tional forms for dependency on size and competition

(see Cao [2000], Nord-Larsen [2006], Weiskittel et al.

FIG. 2. Explanatory variable effects on growth increment (measured as change in dbh) as a function of size (dbh), rescaled to
centimeters. All plots show that growth increases with tree size in the previous year. Solid lines are the means from posteriors of
parameter estimates; dashed lines are 95% credible intervals. For all explanatory variables other than soil type, black shows growth
increment for a low value of the explanatory variable (�2 SD) and dark gray for a high value (þ2 SD). Credible intervals for soil
type overlap a great deal and are not shown for clarity.
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[2007], and Cao and Strub [2008], who have incorpo-

rated complex functional forms with uneven inventory

time intervals). In particular, we could explore nonlinear

functions that allow tree growth to slow as trees reach

very large sizes (as in Clark et al. 2007, 2010, 2011,

2012), although forests at BFRS are young enough not

to show this behavior.

Basal area’s dominance among the remaining explan-

atory variables has two possible explanations. First,

competition is a likely limiting factor in forests like

BFRS. As in many Sierra Nevada forests, fire suppres-

sion has allowed shade-tolerant species to dominate

younger cohorts and regeneration. Tree density is high

and recruitment to the canopy is only possible in distinct

canopy gaps. Second, though we conclude that elevation

and insolation are not important at plot level, these

variables occur in a narrow range at BFRS relative to

the species’ fundamental niche (Lutz et al. 2010).

Variation in these variables at BFRS is small relative

to the U.S. Forest Service’s permanent plot data in a

similar latitude range (see Appendix H for details of

comparison to Forest Inventory and Analysis data), and

other studies show larger responses when larger ranges

of covariates are available (Clark et al. 2012). The fact

that annual water deficit did not have a strong effect on

growth is surprising given the documented relationship

between growth and climate for white fir trees in

northern California (Yeh and Wensel 2000). One

explanation for this result is that water deficits at BFRS

tend to be lower than comparable forests in the region

(see Appendix H). Also recall that when water deficit is

removed from the model, the intercept year standard

deviation increases (see Appendix G). So although the

effect of annual water deficit cannot be precisely

estimated, its magnitude may be biologically important.

Finally, this data set does not include many trees smaller

than 11.4 cm dbh, and these smallest individuals may be

more strongly influenced by resource supply than larger,

more established individuals, and also at a spatial scale

below plot level.

Sources of variation

The behavior of our model implies that observation

error standard deviation may not be independently

estimable in this kind of model. Priors allowing the

standard deviation to approach zero, including uniform

and half-t-distribution priors (Gelman 2006, Knape et

al. 2008), result in bad mixing as the system struggles to

move away from a scenario in which observations

perfectly match latent states. This behavior could be due

to the MCMC samplers in OpenBUGS; different

software may not have this problem. Some observation

error in this system is expected, however, and including

it should improve other estimates. We chose a minimal

lower bound on the observation error standard devia-

tion, based on the rounding error in the measurement

tape (0.073 cm; see Appendix D for details of this

calculation). Our estimates are larger than this mini-

mum, but still much smaller than the 1 cm (0.8%)

reported by Clark et al. in a study combining tree cores

with dbh measurements (Clark et al. 2007) and the 2.7%
reported by Gonzalez et al. (2010) for repeated dbh

measurements made in similar forests (though this latter

study included outliers and obvious errors, which we

have removed from our inventory; see Appendix B).

Models like ours for similar data sets should check to

confirm that observation error can be estimated and

may likewise consider an informative prior to ensure a

minimum amount of observation error. Analysts may

also try different MCMC samplers, which may be less

sensitive to this behavior.

FIG. 3. Random-effect standard-deviation posteriors. (A)
The intercept, a, standard deviations (compartment ac, year aw,
tree aq, and plot ap), with the average growth increment ā from
Fig. 1 shown for scale in gray. Observation error standard
deviation rdbh and residual error standard deviation re are
shown on the same plot for comparison. Only for observation
error, we show posteriors for both the inverse gamma (dashed)
and uniform (solid) prior models. (B) The slope, b, standard
deviations (rb,c, rb,w, rb,q, and rb,p); again, the growth
increment slope b̄ � 1 from Fig. 1 is shown for scale in gray.
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Even after accounting for basal area, the significant

plot random effect standard deviations essentially give

each plot its own size relationship with growth. Plots at

BFRS are approximately two to three neighborhoods in

size (Canham et al. 2006, Das et al. 2011), so

neighborhood effects could be acting below the plot

level. Density dependence in closed canopy forests can

be complex, so an effect due to plot in addition to an

overall basal area measurement at the plot level is

reasonable. The importance of slope random effects in

addition to intercept random effects implies that models

may need to include variation in more than just the

overall growth intercept. The broad, flat posteriors of

some random effect standard deviations may be the

result of a small sample size to estimate them; in

particular, the broad posterior for the year effect

variance is not surprising as some years do not have

data and the annual increment cannot always be

precisely estimated.

The nontrivial tree intercept standard deviation, even

when size is included in the model, implies that some

trees have a growth advantage over their entire lifetime

in the inventory. This slightly different average growth

of different trees is ecologically important: for example,

in population models, individual quality (Ellner and

Rees 2006) can have important impacts on population

growth. Unfortunately it is impossible with our data to

determine whether this individual quality reflects genetic

superiority, a favorable microsite when the tree first

established, or some other neighborhood factor. The

significance of this individual variation highlights the

importance of studying forests at the individual tree

level (Clark et al. 2012).

Future work and implications for practice

We have demonstrated the use of a complex

hierarchical model including explanatory variables and

multiple random effects on long-term forest inventory

data. Though our model accounts for uneven time

intervals effectively, it does not include the sophistica-

tion of explicitly including underlying spatial autocor-

relation (Banerjee and Finley 2007, Finley 2011). In

addition, though we have included a variety of

explanatory variables, there is a constellation of possible

variables we could have included. Ultimately, one would

want to use both knowledge of the system and a model

selection procedure to determine what functional form

to use and which explanatory variables and random

effects to keep in the model, which we do not

demonstrate here.

The results of these models can be directly used to

parameterize population models (e.g., integral projec-

tion population models [Metcalf et al. 2009, Ghosh et al.

2012]) or forest simulators (e.g., SORTIE). Comparative

studies using rich long-term data sets can illuminate

patterns in ecological processes over large geographical

areas. These studies may test basic ecological theories

such as resource limitation and niche theory, or applied

questions about management practices (e.g., how the

effectiveness of fuel hazard reduction treatments could

be affected by climate change). Data on individually

tagged trees, rather than plot-level data, are becoming

the norm, and long-term monitoring data are maturing.

Forest permanent plots are common in Long-Term

Ecological Research sites (over one-third of the Inter-

national Long-Term Ecological Research sites are listed

as ‘‘forest’’). Since 1999 when the U.S. Forest Service

Forest Inventory and Analysis program moved to

annualized inventory, their program includes remea-

surement of tagged trees, and numerous other long-term

data sets are available from a variety of sources (e.g., the

Smithsonian Center for Tropical Forest Studies).

As policymakers, managers, and ecologists alike call

for adaptive management strategies (Federal Register

2012), including long-term monitoring as a key compo-

nent in assessing ecosystem interventions, sophisticated

modeling is needed to appropriately analyze these data

so that inference can feed back into management

planning and therefore complete the adaptive manage-

ment cycle. Monitoring data are often rich in covariates

and highly complex in sources of variation, and uneven

time intervals are a common problem. Our study,

including the appendices, which detail the modeling

process, and the supplements, which include the code

and data to run the model, should help more ecologists

and managers to try these types of sophisticated models

and open up new ways of using inventory data from

across the world.
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Hansson, and D. Hasselquist. 2008. An analysis of hatching
success in the great reed warbler Acrocephalus arundinaceus.
Oikos 117:430–438.

Kunstler, G., C. H. Albert, B. Courbaud, S. Lavergne, W.
Thuiller, G. Vieilledent, N. E. Zimmermann, and D. A.
Coomes. 2011. Effects of competition on tree radial-growth
vary in importance but not in intensity along climatic
gradients. Journal of Ecology 99:300–312.

Lines, E. R., D. A. Coomes, and D. W. Purves. 2010. Influences
of forest structure, climate and species composition on tree
mortality across the eastern US. PLoS ONE 5:e13212.

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. 2009. The
BUGS project: evolution, critique and future directions.
Statistics in Medicine 28:3049–3067.

Lutz, J. A., J. W. van Wagtendonk, and J. F. Franklin. 2010.
Climatic water deficit, tree species ranges, and climate change
in Yosemite National Park. Journal of Biogeography 37:936–
950.

Macfarlane, D. W., and R. K. Kobe. 2006. Selecting models for
capturing tree-size effects on growth-resource relationships.
Canadian Journal of Forest Research 36:1695–1704.

Metcalf, C., C. Horvitz, S. Tuljapurkar, and D. Clark. 2009. A
time to grow and a time to die: a new way to analyze the
dynamics of size, light, age, and death of tropical trees.
Ecology 90:2766–2778.

Mohan, J. E., J. S. Clark, and W. H. Schlesinger. 2007. Long-
term CO2 enrichment of a forest ecosystem: implications for
forest regeneration and succession. Ecological Applications
17:1198–1212.

Nord-Larsen, T. 2006. Modeling individual-tree growth from
data with highly irregular measurement intervals. Forest
Science 52:198–208.

Pacala, S., C. Canham, J. Saponara, J. Silander, R. Kobe, and
E. Ribbens. 1996. Forest models defined by field measure-
ments: estimation, error analysis and dynamics. Ecological
Monographs 66:1–43.

Plummer, M., N. Best, K. Cowles, and K. Vines. 2010. coda:
output analysis and diagnostics for MCMC. http://cran.
r-project.org/package¼coda

Ponciano, J. M., M. L. Taper, B. Dennis, and S. R. Lele. 2009.
Hierarchical models in ecology: confidence intervals, hypoth-
esis testing, and model selection using data cloning. Ecology
90:356–362.

September 2013 1295TREE GROWTH FROM INVENTORIES



R Development Core Team. 2009. R: a language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling
and inference in ecology: the analysis of data from
populations, metapopulations and communities. First edi-
tion. Academic, Amsterdam, The Netherlands.

Weiskittel, A. R., S. M. Garber, G. P. Johnson, D. A. Maguire,
and R. A. Monserud. 2007. Annualized diameter and height
growth equations for Pacific Northwest plantation-grown

Douglas-fir, western hemlock, and red alder. Forest Ecology

and Management 250:266–278.

Wood, S. N. 2006. Generalized additive models: an introduc-

tion with R. Chapman and Hall/CRC, Boca Raton, Florida,

USA.

Yeh, H.-Y., and L. C. Wensel. 2000. The relationship between

tree diameter growth and climate for coniferous species in

northern California. Canadian Journal of Forest Research

30:1463–1471.

SUPPLEMENTAL MATERIAL

Appendix A

Number of trees and plots in each compartment, and number and length of time intervals (Ecological Archives A023-067-A1).

Appendix B

Measurement methods and auditing of explanatory variables (tree size, basal area, insolation, elevation, slope, annual water
deficit, and soil type (Ecological Archives A023-067-A2).

Appendix C

Additional details on statistical model and algebra regarding standardization of explanatory variables (Ecological Archives
A023-067-A3).

Appendix D

Details on model estimation and the evaluation of model results (Ecological Archives A023-067-A4).

Appendix E

Table of parameter estimates (Ecological Archives A023-067-A5).

Appendix F

Latent unmeasured sizes for nine trees (Ecological Archives A023-067-A6).

Appendix G

Examples of simpler models (Ecological Archives A023-067-A7).

Appendix H

Comparison of conditions at BFRS with FHA data from a similar latitude (Ecological Archives A023-067-A8).

Supplement 1

BUGS model code for full model (Ecological Archives A023-067-S1).

Supplement 2

BUGS-formatted Abies concolor data suitable for running full model (Ecological Archives A023-067-S2).

Supplement 3

Initial values for full model (Ecological Archives A023-067-S3).
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