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» Environmental Change Concepts and Results
— Phenology/Pollination
— Fire
— Land Use Change
— Trophic Level Matches and Mismatches
— Range Shifts
— Extinctions
— Evolution and Plasticity
— Biodiversity/Invasion/Disease
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Phenology is the study of periodic plant
and animal life cycle events and how these
are influenced by seasonal and
interannual variations in climate.
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Phenology is an important topic in ecosystem ecology. It is the timing of life events.
Often they are cued by temperature, so changes in temperature can make
phenological events occur earlier or later. Phenological records are simple,
examples of citizen science, and exist hundreds of years in some circumstances
(flowering of cherries in Japan, timing of leaf out at estates in England and botanical
gardens in Europe). Hence, they provide an integrative and unbiased measure of
global change. Ecological issues involve asynchrony between flower and insects,
or the extra mining of soil water with earlier leaf out.



Trends in Length of Season, Temperate Vegetation
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Fig, 3 Interannual variations of area-averaged SOS, EOS, and LOS of temperate vegetation in the Northern Hemisphere for 1982-2008.

Jeong et al 2011 GCB
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Many records are showing longer growing seasons. This one is based on satellite
records, going back to the early 1980s



PHENOLOGY SHIFTS AT START VS. END OF GROWING SEASON 2397
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Fig.8 Schematic diagrams of summarized growing season changes over the Northern Hemisphere (> 30°N), Europe (0°-30°E, 40°N—
60°N), East Asia (30°E-60°E, 110-130°N), and the United States (90-130°W, 30-50°N).

Jeong et al. 2011 GCB
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Lengthening is happening by earlier springs and later autumns in many locales.



Pdf of Slopes in Temporal Trends of Phenology across Europe
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Fig.3 Histograms of phenological trends in Europe. All temporal trends (1971-2000, time series 15+ years) as linear regression
coelficients (daysyr '} cally reported to the COST725 (n=103199) for four different groups.

Menzel et al 2006 GCB
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Other phenological metrics. Based on extensive studies of phenology gardens in
Europe



Disturbance and Land Use Change

* Fires

+ Deforestation/Logging

» Urbanization

* Desertification

*  Woody Encroachment

» Afforestation/Reforestation
« Storms

» Invasive Species

» Soil Degradation

1973

ESPM 111 Ecosystem Ecology

Disturbance and land use change are other important changes induced by human’s
impact on this planet. They can come in many direct and indirect forms.



Earth at Night
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Mankind seems to be everywhere. According to a paper by Sanderson 83% of land
is appropriated by human use



Human Footprint on Earth
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Figure 3. The human footprint, a quantitative evaluation of human influence on the land surface, based on

land transformation, access and electrical s and lized to reflect the of human influence across each terrestrial biome defined
within biogeographic realms. Further views and additional information are available at“Atlas of the Human Footprint” Website, www.wes.org/humanfootprint,
Data are available at www.cissin.columbiaedu/wild_areas/. National boundaries are not authoritative.

describing human population densi

Sanderson et al 2002 Bioscience
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Here is the human footprint across the planet. Few places are unchanged. And as
we add more and more roads in remote areas the change comes fast.



Land Use Change:
Gains and Losses are Occurring
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Land use is changing positively and negatively with regards to forests. Temperate
forests seem to be aggrading as people abandoned farms and moved to cities.
Tropics are experiencing deforestation, as remote areas are open and exploited for

resources and landless peasants look for a better life.
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Revised estimates of C loss from deforestation and degradation
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igure 1| Carbon emissions from deforestation and forest degradation (D&FD) and fossil fuel emissions
o 1980 onwards. Lindated datasets and annroaches are denicted with a solid line. outdated ones

Van der Werf et al Nature Geoscience, 2009
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Deforestation is seen as a significant source of carbon to the atmosphere.
Estimates are on the order of 1 to 2 PgCly



Trends in Amazon Deforestation:

Good News, 40% drop in Deforestation

Deforestation in the Brazilian Amazon, 1988-2010

thousand sq km

http:/fwww.ucsusa
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There has been a decline in Amazon deforestation

12



US Deforestation

Virgin Forests 1989
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In the US, we already cut down most our forests. Hence, | am a proponent of saving

the little virgin forest that exists
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US Afforestation

http://iwww.biology.eku.edu/RITCHISO/envscinotes3.html
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Forest regrowth is occurring
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Stand Age Distribution of European Forests
Following the Decline in Agriculture:
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Forest across Europe tend to be young. Go question rises about the ability for these
forests to be as strong a C sink as they age.



Forest Mortality

Pinyon Pine Decline in Southwest
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We are seeing natural mortality of forests across the west due to prolonged

droughts
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Change in Mortality in Western Forests:
Ascribed to warming and drying
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Van Mantgen et al. 2009 Science
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Mortality rates have been increasing across regions, species, size and age class
and elevations
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Storm Damage in Europe
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Fig. 5 Volumes of wood damaged by storms as reported in
European countries for 1850-2000 and as scaled up for total
Europe for 1950-2000.
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Storm damage seems higher lately, but this may be a record of watching this

statistic, too
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Trends in Forest Fires

Hotter, Drier, more Mortality
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Fires are and will be an important factor affecting forests and a signal of climate

change
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Fire Frequency, Globally

In many Areas Fires are Natural and Frequent
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Fig. 2. Current p hy on Earth, ill

Bowman et al. 2009 Science

and (B) annual average number of fires observed by satellite (49).
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Fires are a natural component of many of the world’s ecosystems
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Carbon Emissions by Fire
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Fig. 1. (A) Emissions anomalies from fire during the August 1997 to
September 1998 period (g C m™2). This period had the highest emissions
during 1997 to 2001 and is defined in the text as the El Nifo period
because it overlaps substantially with negative indices of the Southern
Oscillation Index. Elevated emissions occurred across Central America,

Van der Werf et al 2004 Science
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1997 - 2001 mean annual fire emissions (g C / m” / yr)

South America, southern Africa, Southeast Asia, Canada, and the Russian
Far East. Emissions anomalies in each 1° by 1° grid cell were estimated
with VIRS, ATSR, and MODIS satellite data and the CASA biogeachemical
model. (B) Mean annual carbon emissions from fires during 1997 to 2001

(g C m~2 year").
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Fires are a critical factor in emitting carbon to the atmosphere. More carbon is
emitted by fire during droughts associated with El Nino



A Western US Forest Wildfires and Spring-Summer Temperature o . i
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Fire frequency in the West is trending upward



Extent and Trends of Global Fires

1960-1970 1990-2000
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Fig. 4 17x1° maps of burned area (% of cell burned) for the periods 1900-1910, 1930-1940, 1960-1970, and 1990-2000.

Mouilillot and Field, 2005 GCB
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Global Change and Biodiversity

« Rates of Warming may exceed migration
capability of species
« Habitat will be lost during shifts in climate

« Species diversity is related to reductlon in

habitat patch size, N=cA"

Malcom and Markham, WWF, 2000

ESPM 111 Ecosystem Ecology
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Ecological Consequences

« Endemic species may fail to migrate
» Weedy species may predominate

« Migration will depend on access to
corridors

ESPM 111 Ecosystem Ecology
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Ecosystem Migration

* ‘Dynamic’ equilibrium models assume that the
rate of climate change and rate of vegetation
response is similar

» Holocene migration of boreal forest: 10-45
km/century

» Expected shift in boreal zone due to global
warming: 17-50 km/decade

Kirilenko et al. 2000

ESPM 111 Ecosystem Ecology
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Ipcc AR5 report. Plant species and ecosystems don’t move so fast, compared to
larger animals, insects and mollusk that move with currents



Extinction
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Projected future
extinction rate is

more than ten times
higher than current rate

Current extinction rate
is up to one thousand
times higher than the
fossil record

Long-term average
extinction rate

Current extinction rates are much greater than natural and historical rates
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Biodiversity and Lake Acidity
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They reveal the often complex—and sometimes surprising—ways that acid rain has
reshuffled aquatic food webs in sensitive waters. One trend is crystal clear, a team
led by Nierzwicki-Bauer reported this past July in Environmental Science &
Technology: More acid meant less biodiversity. The researchers came up with a
grim rule of thumb: For every one-digit drop in pH (from 6 to 5, for instance, which
represents a 10-fold increase in acidity), there were 2.5 fewer genera of bacteria,
1.43 fewer bacterial classes, and 3.97 fewer species of phytoplankton. A one-digit
drop in pH also meant nearly two fewer crustacean species and about four fewer
species of aquatic plants, rotifers, and fish. “Lots of studies had examined acid
rain's impact at a chemical level,” says Nierzwicki-Bauer. “We tried to quantify how it
changes the biota.”
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Ecosystems and Climate Change

The advance of spring events (bud burst, flowering, breaking hibernation, migrating,
breeding) has been documented on all but one continent and in all major oceans for
all well-studied marine, freshwater, and terrestrial groups.

Variation in phenological response between interacting species has already resulted
in increasing asynchrony in predator-prey and insect-plant systems, with mostly
negative consequences.
Poleward range shifts have been documented for individual species, as have
expansions of warm-adapted communities, on all continents and in most of the major
oceans for all well-studied plant and animal groups.
These observed changes have been mechanistically linked to local or regional
climate change through long-term correlations between climate and biological
variation, experimental manipulations in the field and laboratory, and basic
physiological research.
Shifts in abundances and ranges of parasites and their vectors are beginning to
influence human disease dynamics.
Range-restricted species, particularly polar and mountaintop species, show more-
severe range contractions than other groups and have been the first groups in which
whole species have gone extinct due to recent climate change.

— Tropical coral reefs and amphibians are the taxonomic groups most negatively impacted.
Evolutionary responses have been documented (mainly in insects)

— there is little evidence that observed genetic shifts are of the type or magnitude to prevent
predicted species extinctions.

Parmesan 2006 Ann Rev Ecol ESPM 111 Ecosystem Ecology
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Ecological Impacts of Climate on Biota

Fitness to new environment
Population dynamics

Migration ability and speed
Distribution and abundance of species
Ecosystem structure and function

Parmesan et al, 2000 BAMS; Kirilenko et al. 2000 Ecol Modeling

ESPM 111 Ecosystem Ecology
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Meta Analysis of Temperature-Related Traits

« Changes in:

— Density and
Range

— Phenology
(flowering, egg
laying, migration)

— Morphology and
body size
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Vulnerability of Biodiversity to Climate

* Vulnerability

— extent to which a species or population is threatened with decline,
reduced fitness, genetic loss, or extinction owing to climate change

+ Exposure
— extent of climate change likely to be experienced by a species or locale
+ Sensitivity

— degree to which the survival, persistence, fitness, performance, or regeneration
of a species or population is dependent on the prevailing climate

+ Adaptive Capacity
— capacity of a species or constituent populations to cope with climate

change by persisting in situ, by shifting to more suitable local
microhabitats, or by migrating to more suitable regions.

Dawson et al Science 2011

ESPM 111 Ecosystem Ecology
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Required Rates of Migration

» High rates of migration (> 1000 m/yr) are
required for 17 to 21% of worlds surface, based
on 2 vegetation models and climate change
scenario

« High Rates of Migration are 10 times historical
rates since past glaciation

« Highest rates of Migration, Taiga/tundra, mixed
and boreal conifer forests

Malcom and Markham, 2000

ESPM 111 Ecosystem Ecology
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Climate and Avian Habitat and Populations in
Great Plains

* Reproductive success
— Habitat suitability
— Food availability
— Predation
— Disease

ESPM 111 Ecosystem Ecology
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Phenology and Global Change

Days earlier (-) or later (+) than ambient
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Rainfall
+ 50% & 20 days
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Trends in France

Forest transition—
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Kauppi et al. 2006 PNAS
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Phenology and Global Change
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DP = 2x ppt

DP double precipitation
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Europe and the Middle East at Night
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Amazon Deforestation

C. D’ALMEIDA ET AL.
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Hurtt et al 2006 GCB
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Large Scale Tree Die-Off
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Land Use Trends in Central Valley

—e—Total
g —=—Fresno
'E —a— Kings
e | —o—Madera
% —o— Merced
:E —o—Tulare

1895 1915 1935 1955 1975 1995
Year

FiG. 1. Land area on which irrigation was applied in five coun-
ties utilized in this study. Mariposa County had negligible land
under irrigation.

Christy et al 2006 J Climate
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Fire and Mankind

REVIEW

Modern human dispersals

Industrial combustion
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text for data sources used.) Dotted lines indicate periods of uncertainty.
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