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Ecosystem Modeling is an important tool for digesting data, making predictions and
to interpolate and extrapolate in time and space.

While this lecture will focus on Ecosystem models per se, so far through this class
you have been slowly exposed to a variety of models. Here we pull the ideas
together



Why Model Ecosystems?

Diagnose and Understand Complex sets of Measurements
— Tease apart convoluted and confounding processes and attributes
— Provides Paradigm or Hypothesis on how Ecosystem Functions

Assess behavior in situations and/or at scales or conditions beyond
which measurements can be made

— Regional and Global Scales

— Reconstruction with Past Climate Data

— Elevated CO,, Acid Deposition, Droughts, Warming, Fertilization

— Long-Term Successional Sequences

Integrate Information across time and space
— Interpolate and Extrapolate information

Predict future conditions and states
Make Management and Policy Decisions

— What If Exercises

* Logging, Gap Size, Fire, Species Removal/Addition, Rate of Spread or

Retreat
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All models are wrong; some models are useful

Attributed to George Box, statistician

ESPM 111 Ecosystem Ecology

Since all models are wrong the scientist cannot obtain a "correct” one by excessive
elaboration. On the contrary following William of Occam, we should seek an
economical description of natural phenomena. Just as the ability to devise simple
but evocative models is the signature of the great scientist, so is over-elaboration
and over-parameterization often the mark of mediocrity.

This quotation by Box has re-calibrated my perspective on the value of different
types of models. | see value in simple toy models, with a few equations and
interactions, to tease out some basic understanding of a system. There is merit is
simple statistical models for management decisions and there is need for highly
mechanistic and theoretical models for prediction and fuller understanding. The
type of model you chose and use depends upon you application and the data in
hand.

George E. P. Box (1976) Science and Statistics Journal of the American Statistical
Association, Vol. 71, No. 356. (Dec., 1976), pp. 791-799




Basic Components/Processes of Ecosystem Models

Weather
Light Energy, Temperature,
Rainfall, Humidity, Wind
Velocity, CO2, soil
moisture

l houra Biophysical and Physiological Models
Physiclogy:
Photosynthesis,
Respiration, Transpiration

Biophysics:
Leaf Energy Balance

hours/days

Growth and Allocation
Leaves, Stems, Roots,
Light Interception, Water and
Nutrient Uptake

Soil:

Texture, DEM, C/
N,bulk density, days/seasons

; Biogeochemical Models
lydraulic Properties

Biogeochemistry:
L 5

Mineralization, Nitrification,
enitrification

years

Gap Models
Ecosystem Dynamics:
Reproduction, Disperal, Recruitment,
Ci ion, Facilitation, Mortality, a H
e S Biogeographical Models

Dynamic Vegetation Models
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As shown early in the semester, this is the conceptual ecosystem ‘model’ we have
been dealing with throughout the semester. This is coupled, nested and includes a
variety of model classes, including biophysical and physiological models,
biogeochemical models, gap, biogeographical and vegetation dynamic models



Set of Ecosystem Topics that are Modeled to different
degrees of detail

* Light

« Water

» Carbon Pools

* Nutrients (N, P)

» Climate Interactions (Warming, CO2)
 Disturbance (Fire, Logging, Grazing)
* Land Use Change

 Pollution and Acid Deposition

ESPM 111 Ecosystem Ecology

Different types of ecosystem models serve different purposes. Here is a list of the
type of processes these models can address



Sources of Model Uncertainty

System Complexity
— Appropriate Set of Equations Must be Applied

Model Parameters
Driving Input Variables

Temporal and Spatial Resolution

— Time Step, Pixel Resolution, Number of
Layers

Validation Data

ESPM 111 Ecosystem Ecology




Implementation of Models

Model application

(fully considering uncertainties &
limitations)
A

> Model (re)formulation

vV
Scaling &
Generalization

Model Validation

b (using independent data) //
o Optimization
= assessment

of uncertainty)

(through space and/or time) Data /
A s 4
- Uncertainties

(plausibility and evaluation

Williams et al ESPM 111 Ecosystem Ecology

\
¥
Model characterization
& state/parameter
optimization
(consistency checks,
uncertainty analysis, and

. multiple data constraints)
\ ]

/
P

Modeling is an iterative process, balanced by data, experimentation and hypothesis
testing. Models tend to represent a ‘best’ view of a system given current knowledge.
But as model algorithms become falsified, we acquire more data and the models

and their parameters evolve and improve, new knowledge is achieved.

There remains debate on the merits and demerits of model data fusion, using
Bayesian statistics, in this era of big data vs mechanistic models. If there are big
datasets to mine and the questions remain within the domain of the dataset, model
data fusion has strengths. How well they can predict future states outside the
bounds of the data remain contentious. Here is where mechanistic models may

have an advantage.




Art of Modeling

Use Model Hierarchy Assessments to
address ‘how good is good enough’
regarding model detail

Use Multiple constraints to Minimize over
fitting

Use Independent Data to Fit and to
Validate Models

Consider Representativeness of Data
Use Good Numeric Methods
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Model Pitfalls

+ Garbage In = Garbage Out
» Watch out for Non-Linearities
— Apply at Proper Time-Step and Space-Scale
« Validate, Validate, Validate /
+ Don’t Parameterize Model Algorithms with the p U
Same data used to Validate w13 Tazontics
« Equifinality, a combination of parameters yield the
same answer
— An appeal to Multiple Constraints
* Closure: Equal number of Equations and
Unknowns is needed
* Avoid Auto-Correlation, y =f(y)
» Avoid Extrapolating Empirical Regression models
beyond the range of the dataset
« Use Mechanistic and Prognostic Models to predict
the future and to upscale information
« Are Driving Variables Representative of the
Conditions Experienced by the Organ or
Organism?
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My experience over the years of some model pitfalls, as well and ideas from a great
paper by Belinda Medlyn et al. in Tree Physiology



Biophysical-Physiological Models
Based on Ohm’s Law and Beer’s Law

Energy Balance

Water Balance
Photosynthesis
Stomatal Conductance

Light Transmission

Reflectance

Leaf Area Index
Rizﬂ:;i, Canopy radiative transfer models

Mesophyll
Resistance 500

400

s
=]
<]

~
=]
=]

Direct shortwove rodiotion

=]
=]

- i
Cuticle L ) £ 2 .
Resistance Cumulotive PAI
AV
F= ZR Leaf Resistance Network I(L) = [(0) eXp(—kL)
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Ohm’s Law is often applied to compute fluxes between leaves/canopies and the
atmosphere

Beer’s law is important for telling us how much sunlight is available at different
locations in the plant canopy. We need to combine Beer’s Law and Ohm'’s law to
upscale flux information from the leaf to the canopy



Soil-Plant-Atmosphere-Water Continuum

50 MPa T W
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Resistance Analog model for water transport through the soil-plant-atmosphere

continuum
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Mathematical Representation:
Model Algorithms

1. Empirical, Regression J(t.x,y)=af (t)-bf (x)-¢f ()
Based Fltx,y)=af () + B () + e ()

1. Multiplicative

2. Additive Rn=H+1E+G
2. Mechanistic/Diagnostic
3. Prognostic dc
) —=f(n
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Models can be very simple
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Minimize the Sum of the Squares

Z(yj _;i)z = Z(yi _ﬁo +ﬁ]xf)2

¥
Best-FitCurve
(Residual) J’,--Jr", /
s
-
a= 1
Y%
ASIDPE
Intercept :
: x
X

y=p+Bx
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Least squares fit models, be they linear, non-linear, and multi-variate, are ways of
fitting data to simple equations

http://www.originlab.com/www/helponline/origin/en/UserGuide/lllustration_of the Le
ast_Squares_Method.html



Multiplicative Model

g (PARVPD,T,y) = g, o * i(PAR) [, (VPD)- f5(T)- fi(y)
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Concepts of Jarvis Model for Stomatal Conductance

ESPM 129 Biometeorology
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Example of Boundary Line Analysis
To fit the Jarvis-Reed Model

y =-0.01x%+ 0.34x2- 6.92x + 46.53 y=-2.65x2 + 6.91x + 1.74 y=7.3 (1 =@ D0IRPPFD,

O =N WA OO~
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Figure 4. Scatter diagrams of the measurements of leaf diffusive conductance plotted against air temperature, air
vapor pressure deficit and photosynthetic photon flux density, with the hypothetical boundary line fitted for
cach environmental variable.

ESPM 111 Ecosystem Ecology

http://dx.doi.org/10.1590/S1677-04202004000100008
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Non-Linear Biophysical Processes

Vmax [S]
V=—
Kn+[S]

[S]

R=R, e rw0)ar R ‘/
T

(Caw Caw)

AwE = S(RH—G)JrPa Cp(caw** Caw)/ I+
wE=

-
S+y-~

'

Monson and Baldocchi, 2014 ESPM 111 Ecosystem Ecology

Examples of other models we commonly use to calculate processes like enzyme
kinetics, respiration and latent heat of evaporation



Other Non-Linear Biophysical Processes

Photosynthesis

Transpiration

Respiration

y al  dC
b+cl e+ fC
aA’ +bA* +cA+d =0

e (T)~exp(T)
aLE? + bLE +¢c =0

Leaf Temperature

R, ~exp(T)
LT~T1t u

ESPM 111 Ecosystem Ecology
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Classic and Ubiquitous Enzyme Kinetics Model

Michaelis-Menten Kinetics

3)
- _ VlC]
47 K, +[C]
2 -
Km
0 T T T T
0 10 20 30 40 50

[C]
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Parameters must be fit to use these models. K is the C value at one-half Vmax

18



Supply Demand Curves

14 4 —8— F=Vmx C/(K +C)
—0— F=(C-Ca)lr, r=10
—— =100

—&— r=500

Flux

T T T T T
0 200 400 600 800 1000 1200

2 K+C

In many gas exchange processes there becomes a balance or equilibrium between
the supply provided by the diffusion and turbulent transport of a gas from the free
atmosphere through the boundary layers and stomata to the site of biochemical
consumption in the leaf. In turn the rate of biochemical consumption is a function of
the local concentration of C. Ultimately the flux that occurs is at the intersection
between the supply and demand curves. If the resistance is nearly zero and the
conductance infinite then the intersection occurs at Ca=C

19



Canopy Representation

Canopy as a Turbid Medium, with Randomly Distributed Leaves

How do we treat a plant canopy? Do we have to know where every leaf and plant
is? This can be done. But for practical applications we use statistical models. We
assume a canopy is a turbid medium, with randomly distributed leaves, in space,
with known leaf inclination angle distributions

20



Hierarchy of Canopy Radiative Transfer Models

Reality 3-D Representation

2-D Representation 1-D Representation

ESPM 228 Adv Topics Biomet and
Micromet

Here are various treatments of light transmission models. The most general is the

1D representation. It works well for closed canopies.
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Geometrical Abstraction of the Canopy

One-Dimensional
— Big-Leaf

Cescatti A and Niinemes U. - Light harvesting: from leaf to landscape -

— Dual Source, Sun-Shade

— 2-Layer

» Vegetation and soil

— Multi-Layered

Two-Dimensional
— Dual source

» sunlit and shaded
» Vegetated vs Bare Sail

Three-Dimensional
— Individual Plants and

Trees

ESPM 111 Ecosystem Ecology
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Big-Leaf Vegetation/Bucket Soil - Hierarchy of Ecosystem Models:

Space:
« Big-Leaf Vegetation/Bucket Soil
* Sun/Shade Vegetation

* Layered Vegetation and Soil

Time:

Multi-layer Vegetation/Soil & Sun/Shade « Hour

« Day

g aq E

ESPM 111 Ecosystem Ecology
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CANOAK

Mcdeled NP (g C'm?/d)

Role of Proper Model Abstraction

JM. Chen ¢t al.

Ecological Modelling 124 (1999) 99-119

10 |
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/
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Fig. 9. One-10-0on¢ comparison of the measured NPP with the modeled NPP for a mature aspen stand. (a) big-leal model, and (b)
daily integrated model with sunlit-shaded keaf separation

ESPM 111

Ecosystem Ecology
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High-Resolution Voxel Based Trees

o

A
-

Courtesy of Martin Beland ESPM 111 Ecosystem Ecology

With LIDAR we can now measure where every tree is and assess the distribution of
foliage using voxels of varying size. As we go to more open canopies it is better to
treat the light environment in better detail

25



Model Input GIS:f(x,y,z,t)

+ Climate and Weather ¢ Spatial Resolution

= tScnlarractiiation, precipitation, + 0.5 Degree?
emperature N
+  Topography 30 km?
— Digital Elevation Model ¢« 1km?
+ Soils . s
— Bulk density 1 m?
— hydraulic/thermodynamic » :
properties Temporal Resolution
- CNN * hourly?
— Soil moistureftemperature . daily?
— Roots ’
+  Vegetation « annual?
— LandUse * Decadal?
— Structure
LAI, biomass (C) = =
- Function Disturbance
* Ps and gs Capacity * Fire
* Logging
* pests

ESPM 111 Ecosystem Ecology

Be careful about representativeness of inputs. Is the temperature at a weather
station the same as that of a forest, 10 km away?
What about sub grid spatial variability?



Topography and Land Use for Regional PnET

Elevation

Landcover from AVHRR

Min = 0 m (blue) Max= 1871 m (red)

John Aber, Univ New Hampshire
ESPM 111 Ecosystem Ecology

Examples of maps of inputs needed to drive regional ecosystem models
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John Aber, Univ New Hampshire

Mean Annual Temperature

Min =-4.7 deg C (blue) Max = 11.3 deg C (gree~)

Regional Inputs for Regional Pnet

Mean Annual Precipitation

Min = 71 em {red) Max = 230 cm {green}

Annual Nitrogen Deposition

Min = 3.3 kg Nna-y (red) Max = 11.9 kg Nmayr (green]

ESPM 111 Ecosystem Ecology

More variables

28



New Data Layers on Stand Age and Disturbance History

Y. Pan et al.: Age structure and disturbance legacy of North American forests

719

uncertamty in the age map (a).

Pan et al 2011 Biogeoscience
ESPM 111 Ecosystem Ecology

Fig. 1. (a) Forest age distribution in North America (excluding Alaska and Mexico), which was developed by combining forest inventory data
(of US and Canada) with several remote sensing based disturbance data sources. (b) The standard deviations of forest ages that characterize

Exciting and new data layer on disturbance
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Sources of Geospatial Information for Ecosystem Models

Atlas of the Biosphere

Land Use,Climate,etc NASA Land Products
http:/iwww.sage.wisc.edu/atlas/ https://lpdaac.usgs.gov/data_access
International Soil Moisture Network Carbon Dioxide Information Center
https://ismn.geo.tuwien.ac.at/ http://cdiac.esd.ornl.gov/

Flux Networks, Fluxnet Climate Change in California

http://www.fluxdata.org/default. aspx http://cal-adapt.org/

Gridded Climate Data

http://www.cru.uea.ac.uk/data National Atmospheric Deposition Program

http://www.esrl.noaa.gov/psd/data/gridded/ )
http://nadp.sws.uiuc.edu/mdn/
http://lwww.prism.oregonstate.edu/
http://daymet.ornl.gov/
ESPM 111 Ecosystem Ecology
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Ecosystem Models,

Gap Models

— Jabowa

- FORET

— SORTIE/ED/ED-2
Biogeochemical

— Century/DayCent

- TEM

— CASA

— Forest/BIOME-BGC

- PnET

Biophysical
- MAESTRA/CANVEG/CUPID
— SIB/BATS
- LSM/CLM
— SIPNET

Examples/Types

+ Biogeographical
- Miami
- DOLY
- MAPSS
- BIOME

+ Dynamic Global
Vegetation Models
— Hybrid
— Lund-Potsdam-Jena
(LPJ)
- IBIS
* Next Generation Land-
Climate Models
- JULES
- ORCHIDEE
- CASA-CLM
- JSBACH

ESPM 111 Ecosystem Ecology
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Simple Coupled Ecosystem Carbon Pool Model
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Williams et al.
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Very simple 4 pool carbon model. Considers the gains and losses of Carbon by
photosynthesisi, GPP, how photosynthesis (A) is partitioned into the foliage, root
and wood fractions, how these pools (C) change as there are respiratory losses.
Then litter either is lost by respiration or turned into soil detritus, which respires, too.
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L i 5 e

Simple Set of Coupled Differential Equations to Solve the problem
dC
a — p—
I/apa dt - Pp.’am + Rplanr + Rsoi:’
dcC
plant _ _
Vp:’am dt - Rp[am Rp[am Eitrer wy [
- L= ]
Ay ok
LG
V dch'rfer =F —-R
litter dt — * litter litter
dC
soil  __ _ _
I/s'oii At - F:'mer Rlif!er Rsoi!
ESPM 111 Ecosystem Ecology

Closure is important. We need the same number of equastions as unknowns. And

we need to define model parameters
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Braswell et al

Photosynthesis

Autotrophic
respiration

E Plant wood
H carbon

creation

Plant leaf
carbon

Wood Litter

Leaf litter

Heterotrophic

Soil carbon

Precipitation Transpiration

T

Soil moisture

;

Drainage

ESPM 111 Ecosystem Ecology
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Model Validation
How Good is Good Enough?

150 150

Loobos (52°N, 6°E) Hesse (49°N, 7°E)

100
50

=50
-100
~150 -
-200 -200
Month Month

NEE (g C m2 month-)
NEE (g C m-2 month-1)

—&— LPJ-DGVM

Fig. 3 Observed vs. simulated monthly fields of Net Ecosystem Exchange (NEE, gCm 2. here and clsewhere positive values represent
a flux to the atmosphere; negative values a flux to the biosphere), at six FUROFLUX sites.

Sitch et al. 2003 GCB
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How good is good enough



Model Data Fusion
Why Data or Models May be Correct, or Incorrect

Figure 1
TData
Model There are imperfections
In model, parameters,
4 i And measurements
A :
j Measurement ; .
A / ! The Black Triangle is the

0.8 Intersection of data, model

And measurements
/ Unknown
//

e

7
-0.2 0.2

Prior l

Current Opinion in Environmental Sustainability

Rayner 2010 Current Opinions in Environment Sustainability
ESPM 111 Ecosystem Ecology
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How Good is Good Enough, part 2

@«
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-
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800
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Model Validation: Who is Right and Wrong, and Why?

1000
T 800
= z
R 600
£ i
O 400 Q E—] - .
o ﬁ g
w20 H M .
Lu i
= 0 - B
-200 -
+OX0200HDOICS =g 3 2 £ >
t O <O pzCWUCHR- 8 853
Qa0 Il s0CkEE3SW® [ = S
Oz 8-S 0mzc E 2 o
mLL!<|_u¢bm Y = w o C:;'c
=3 < z < g @ g =
o) o = = 2 E g F
o 'E =2 S 5 a
= Do §

Hansen et al, 2004 Ecol Monograph
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Test of Models at Walker Branch, a deciduous forest



G03010 SCHAEFER ET AL.: A MODEL-DATA COMPARISON OF GPP

A OBSERVED
B AGROIBIS
C BEPS

D BIOMEBGC
E CAN-IBIS

F CNCLASS
G DLEM

H DNDC

| ECOSYS

J ED2

K ISAM

L ISOLSM

M LOTEC

N LPJ

O MEAN_ALL
P MEAN_DIURN
QMODIS_ALG
R MODIS_5

S MODIS_5.1
T ORCHIDEE
usiB

V SIBCASA
W SIBCROP
X 88IB2

Y TECO

Z TRIPLEX

Standard deviation ratio

Normalized RMSE
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Ways to test groups of models with data from flux networks, using lots of data and
lots of models. Here it looks like most of the ‘best’ models are not doing well when
tested with data.



Role of Time Scale when Validating Models

1200 M. B. SIQUEIRA et al.

1072 T

B
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Fig. 4 Measured and modeled power spectra for the CO; flux Fc [panel (a)] and latent heat flux LE [panel (b)].
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The time scale at which you test a model is important too. Some models may get
short term fluxes wrong, and long integrations right, due to offsetting errors.



Same Model, but Different Parameters:
Role of Monte Carlo Model parameterization

=== Frequency of model output
mmmm Euroflux measurement

250

200

150 4

Frequency

100

o
=)

=}

0
Ju_[i Ll h_ﬂzm_f

NEE (ton C ha™ year™)

-7 - 0

Figure 2. Distribution of the total net ecosystem exchange (NEE; Mg
Cha™" year™') in 1997 for the Hesse forest in France. The calculation
of this distribution is based on 2000 Monte Carlo simulations. Only
the uncertainty of ten key parameters was taken into account. The
black bar above shows the measured (Euroflux) NEE value and does

Verbeek et al 2006 Tree Physiol
ESPM 111 Ecosystem Ecology

Models have many uncertainties and it is important to quantify this uncertainty



Will Be?

Even Better Coupled Biophysical-Biogeochemical-Ecosystem Dynamics Models
[e.g. LPJ (Prentice et al.); IBIS, (Foley et al.]; ORCHIDEE; CASA/CLM

Predict Functional type, LAl, Structure, phenology, soil moisture + Ecosystem
responses to CO2,T, ppt + N perturbations and disturbance

Improved Coupling of Biogeochemistry to Climate Models
Better Spatial Inputs of Climate and Plant Drivers
— Lidar Mapping of Forests and Vegetation
Better Model Parameterization
Fire Probabilities
Better Phenology
Better Allocation
Better Disturbance Maps

ESPM 111 Ecosystem Ecology
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Big-Leaf Model

Version 2

SI Bz Simple Biosphere Model
0]

i

Ohm's Law Analog for Fluxes

Tl
SR

Wdein

ESPM 111 Ecosystem Ecology
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SVAT MODEL COMPLEXITY
L

Years

Seasons

Days

Hours

Process detail , number of parameters

Landsberg and Gower, 1897
ESPM 111 Ecosystem Ecology
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First Global Ecosystem Model
Miami Model, Helmut Lieth

|
o
1500
1000
500 e ¥=3000(1-¢700006842)
3 500
[ g
-130-100 -50 00 50 100 150 200 250 300 0
Tempergture

o T S W VT WY SR ST S T..7.3 |
500 1000 1500 2000 2500 3000 3500 4000 4500
Precipitation

Lieth, 1973, Human Ecology

ESPM 111 Ecosystem Ecology
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Jabowa/FORET

The Grand-Daddy of Ecosystem Gap
Dynamic Models

Abstraction
— Forest is abstracted as composite patches and gaps

— Patches are horizontally homogeneous
« ~100 m2

— Leaves in a thin disk at top of tree
— No interaction among patches

— Individual Based

Growth

— Competition for Light and Resources (soil moisture, Temperature, N)
Mortality

— Stochastic

Establishment and Recruitment

— Stochastic

— All seeds available

— Ample water for establishment

ESPM 111 Ecosystem Ecology
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Gap Models, JABOWA, etc

Bugmann, Climatic Change, 2001

ESPM 111 Ecosystem Ecology
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Conceptual Forcing Functions by Species

Height-diameter allometry Leat area allometry
40
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30. 8
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Highly Parameterized!

Bugmann, 2001 Climatic Change ESPM 111 Ecosystem Ecology
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Mortality Functions

0.2 4
0.15 +

0.1 4

Mortality probability

0.054 %

0 30 60 90 120 150

Tree age (yr)

Bugmann, 2001 Climatic Change

ESPM 111 Ecosystem Ecology

AM
SM, young
SM, old

total mortality
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Conceptual Forcing Functions, part 2

(a) AVAILABLE LIGHT
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SORTIE

Follows fate of individual trees
Four submodels
— Resource Limitations (light, water, N)
— Growth =f(species, diameter and light
index)
— Mortality=f(species, carbon balance)
— Recruitment (number, size seeds,
germination, survival, root sprouting)
Parameterization
— Field data
— Regression equations
— Maximum Likelihood

Pacala 1996 Ecol Monograph

ESPM 111 Ecosystem Ecology
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Spatial Representation of Trees in SORTIE

Undisturbed, 500 years Disturbed, 500 years

Pacala 1996 Ecol Monograph; Deutschman et al 1997 Science
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http://www.sciencemag.org/feature/data/deutschman/index.htm

Open MPEG HyperLink
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Basal area (m?2/ha)
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Ecosystem Dynamic Model, ED
SORTIE with EcoPhysiology

560 P. R. MOORCROFT ET AL. Ecological Monographs
Vol 71, No. 4

a b A ()

& fire

leaf carbon gain

evapotranspiration

Alzx,y0) Wlzx.yt)

morla]ily/

By= By + By + By, WEnED

stem growth

glzxrn

dispersal and recruitment
flzx.r.r)

\(ﬂjai)/

T8 8 :
i water W(y.f)/ E:ﬂl‘ \
Wiy.r) B, N(v.1) ;nilrugcn N(y,0) 22

fcarbon C (%0 y

Bsw

Moorcroft et al 2001, Ecol Monograph
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ED-2

Prediaing regional ecosystem dynamscs D, Medvigy & P. R. Moaorcroft

(@
atmospheric grid cell
patch 1 patch 2 patch 3 patch 4 patch 5
(harvested)
@ radiation: (a) direct and diffuse PAR:
(b) direct 2nd diffuse NIR: (c) diffuse TIR g
- fluses: W, H.C 21

© dasturbance: 4,
L

dispersal and recruitment: f

8Py
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Multi-Pooled Biogeochemical Cycling Models

TEM
Plant litter

f(C:INLT, M)

LINKAGES

Plant litter
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CENTURY

Plant litter

Structural C Metabolic C
(3yn) (05yr)
co,
B9 0.55
co, L 045

Active soil C
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< f (T, M Tex)

Slow soil C
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Passive soil C
(1000 yr)

co,

fT,M)

Chapin et al. ESPM 111 Ecosystem Ecology
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Biogeochemical Cycling Model at Daily and Annual Time Steps

Forest —BGC
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Dynamic Vegetation-Climate Computer Models

-180 -150 -120 -90 -60 -30 1] 30 60 90 120 150 180

ESPM 111 Ecosystem Ecology

deFries Global 1x1 degree land cover map
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Coupled Climate-CASA, Contemporary Global Biogeochemical

Cycling Model
[AvHRRNDVI || soLAR || TEMPERATURE || PRECIPITATION
RADIATION l l
SOIL MOISTURE |
SUBMODEL
NET PRIMARY
Pnopucﬂww SUBMODEL [sowexture |

- LITTERFALL
l fl‘l UPTAKE

SDIL CARBON-
NITR
NET EC YSTEM OGEN SUBMODEL
PRODUCTION

DECDIIPOSmDN

RESPIRATION

Fig. 1. Model integration framework. Global climate data sets are combined with soil texture settings to
compute the monthly water balance, which controls NPP and soil microbial activity.
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Dynamic Global Vegetation Model

VEGETATION PHYSIOLOGY
AND

BIOPHYSICS

‘minutes fo hours

]

DISTURBANCE
GENERATOR

VEGETATION DYNAMICS

months to years

days to weeks

VEGETATION PHENOLOGY

NUTRIENT CYCLING

months to years

Cramer et al 2001, GCB
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LPJ Global Dynamic Vegetation Model
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Annual Net Ecosystem Production

Min = -271 g C/m2-yr (black) Max = 345 g C/m2-yr (green)

http://iwww.pnet.sr.unh.edu/subpages/graphics/bkg8.gif PnET
ESPM 111 Ecosystem Ecology
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Computing Mortality Maps with Optimized ED-2 Model
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Medvigy and Moorcroft, 2012 Phil Trans Royal Soc B
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More on data assimilation
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LPJ Global Dynamic Vegetation Model
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ASPECTS: Coupled Forest Ecosystem Model
Rasse et al, Ecol Modeling
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Ecosystem Models, Examples

Gap Models
— Jabowa
- FORET
— SORTIE
- ED
Biogeochemical
— Century
- TEM
- CASA
—  Forest/BIOME-BGC
- PnET

Biophysical
- 8B
- BATS
- LS™m
— Canveg
- SPA

Biogeographical
—  Miami
- DOLY
- MAPSS
- BIOME

Dynamic Global Vegetation
Models
—  Hybrid
- Lund-Potsdam-Jena (LPJ) ESPM 111 Ecosystem Ecology
- IBIS
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W
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Hierarchy of Models:

August 2004 CARBON AND WATER MODEL EVALUATIONS 415

Space:

Daily Models

BIOME-BGC  BGC++
LINKAGES

Hourly Models

Big-Leaf Vegetation
= Bucket Soil
ecosys EALCO SPA LoTEC

LaR§ i‘c”“o“ i INTRASTAND

MAESTRA Sun/Shade Vegetation

Layered Vegetation and Soil

Monthly Model Time:

PRET-Il Hour
Day

NuCM Month

After Hanson et al Ecol Appl 2004
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Why Non-linearity is Important?

Jensen’s Inequality
pected Value, E[f(x}]
: —

S(x)# f)

nnnnn

1 8*f(x) -
xz

Taylor's Series Expansion E[f(x)]=f (;) + 5 P (;)2
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