Instruments/Measurements

+ Measuring

— Errors, Calibration, Sensitivity, Range, etc
« Temperature

— Aspiration/Shielding

— Thermistors, thermocouples, mercury
« Wind

— Exposure

— Cups, sonic anemometers
+ Radiation

— Quantum vs Energy

— Leaf Area Index
« Trace Gases

— Infrared absorption

10/22/2014 ESPM 129 Biometeorology

Where do our data come from? What instruments do we use? How do they work?
How representative and accurate are these measurements?



Old Fashion, Coop Weather station

Few Sensors, Max/Min Temperature and Rain Gauge,
Data Written by Hand on Paper

Analog to Digital Conversion of Weather Measurements, Historical Data
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Conventional weather station. Stevenson screen to shade and ventilate sensors.

Older and cheaper meteorological sensors tend to be analog



Contemporary Analog to Digital Conversion of Weather Measurements

Lightning rod
Solar radiation sensor

- Wind speed and
oy direction sensor

j —
RF/cellular antenna — | ._Aﬁ— Solar panel

Relative humidity sensor
with radiation shield

}‘?‘
L N ___Enclosure houses datalogger,
power supply, and modem

.-'3-'\-1

¢ — Raingage
4

W |
Grounding rod
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Typical automated weather station




CIMIS Automated Weather Station
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Automated systems have increased the accessibility and usabilityof meteorological
data



Typical Micrometeorological Flux Instrument Station

Our eddy covariance and micrometeorology station at Sherman Island. Flux
instrumentation, meteorological sensors, solar radiation sensors, housing for
computers and dataloggers. High power requirements, dependent on A/C power



New Wetland Site with Methane Sensor
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Flux system with a methane and CO2/H20 sensor. Off the grid, low power, run by
solar panels



Attributes of Measurements

* Precision

« Accuracy
— Random and Systematic Errors

» Sensitivity

« Stability

« Time Response
« Exposure

* Representativeness

— Aspiration

— Sheltering, e.g. Sun, Wind and Rain
« Calibration
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These are the factors we must consider when designing and instrument and when
interpreting its data.



Accuracy and Precision

Statistical:  Small
Systematic: Large Large
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You can be accurate and imprecise, and vice versa (inaccurate and precise).



Calibration, Range, Sensitivity and Linearity

LI 6262
irg3-1079
Reference Temperature 32.04 C

500

V po/p ppm:
Coefficients:

400 b[0] 1.2447899288e-4
b[1] 0.1540627212

b[2] -2.7406708246e-6
b[3] 1.1305374947e-8
300 b[4] -1.0258917696e-12
r#1

200 -

€02 (To/T) ppm

Non Linear

100 -
Linear

[} 500 1000 1500 2000 2500

V Po/P
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Many instruments give readings in terms of volts, counts, amps or resistance. We
need to calibrate the output of the sensor with its corresponding value. We need to
know the range of voltages the sensors responds to and how it relates to output.
This may be either a linear or non linear response. We need to know the intercepts

and slopes.



Digital Voltmeter
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Example of a digital volt meter. Takes analog measurements of voltages and
digitizes them on appropriate scale, works for ac and dc currents. Can also
measure resistance



Programmable DataLogger

» Single-Ended or Differential
Voltage Reading

— Numerous channels
« Adjustable Ranges
— 0-500 mv
— 0-5volt
« Control ports
— Trigger Relays
« Power output
— 50r12v
« Pulse counter

NG,
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Data loggers are the workhorse of meteorological measurements. We need to know
how many single or double ended sensors they can record, what type of signal and
range. It is important to pick the right range to get the finest bit resolution



New Generation of Programmable Data Logger

‘:SJ CAMPEELL

SCiIEATY
NG,

k!
CR1000

W PAneL

Model CR1000 © 2005 Campbell Scientific. Inc.

ESPM 129 Biometeorology

Newer data logger
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Digital vs Analog Sensors
Digital

Analog

+ Many Modern sensors output  + Many First Principle Sensors
Digital Data. are Analog

+ Distinct values for Os and 1s * Requires Analog to Digital

+ Signal less susceptible to Conversion
Noise « Susceptible to Noise

» Merging Time Stamps from * Multiplexor can interface many
multiple Digital Signals is not different channels from slow
Trivial sensors with common time

« Information can be transferred stamp

over long distances
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Analog to Digital Conversion

Bit Resolution and Range

Bits resolution Range: 10 v
256 (28) 39.06 mv/bit
4096 (2'?) 2.44 mv/bit
65536 (217) 0.152 mv/bit
Bits resolution Range: 1v
256 (28) 3.906 mv/bit
4096 (2'2) 0.244 mv/bit
65536 (21€) 15.2 pv/bit
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Number of A/D bits and the range define bit resolution
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Stair Step with TC from course resolution A/D

TC Amplifier

—— Campbell
G 05000 V|
G 0-500 mv'

2900

5l J: W_0-500 mV|

2550 P/

2500 7z ‘ T T ™ T T

215868 21580 215892 215894 215896 215898 2159 215902 215904 215906 215908
Time

8 Bit A/D on 10 volt range resolves 1 C per bit
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If the bit resolution is too coarse we get a stair step response and can’t resolve
intermediate values.



Sonic Anemometer

Model CSAT3 (c) 1996 Campbell Scientfic, Inc.
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Sonic anemometers can measure wind velocity along three orthogonal axes and
turbulence.

Off-axis, horizontal, sonic anemometer. U,v, and w are not measure directly, but are
resolved by an array of 3 sets of non-orthogonal transducers. What are the pros and
cons of this arrangement?
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Other Configurations

Orthogonal Transduces

Omni-Directional
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It is important to think about distortion of turbulence due to the separation of
transducers, their arrangement and size relative to the path and the position of the
sensor on a tower or boom. Other options help minimize flow distortion. Omni-
directional, but non orthogonal. This can be mounted on top of a tower and measure
winds from all directions. Yet vectors depend on resolving information from 3 axes,
so if one is in error it transmit errors to the others. Horizontal, but orthogonal,
measures w, u and v directly without biases or errors from the other axes.
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Wind Velocity is a function of the time it
takes to transmit Sound a known
distance, d.

More effective to take the reciprocal of
the difference between the sent and
transmitted sound pulses

d 1 1
Vy=—(———

2
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Wind velocity is deduced by knowing the distance between two transducers and the
time it takes for sound to traverse that distance. By taking the difference of transit
times to and fro, between two transducers separated by a known distance, the
speed of sound drops out. So all we need is to measure the transit times between
sound pulses and when they are received at distance d



Sonic Temperature

¢* =403T, (1+0.32%2)
P
d.1 1
2t
2t b,
a1 1

1
T = —+ ) F—F+V
1612(zl zz) 403( <)
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Knowing the speed of sound we can also measure the sonic temperature. This is
powerful for measuring sensible heat flux without a fine wire thermocouple that
breaks or has thermal inertia.



Attributes of Sonic Anemometer

* Measures wind velocity along 3 orthogonal axes
» Small Transducer to path ratio

« Measurement resolution, 1 to 10 mm s
 Accuracy, 1% RMS or 1to 4 cm s

* Frequency Response, ~ 10 to 20 Hz
(oversampled, block averaged)

* Range, 0to 60 m s™
* Robust, works in rain and snow

* Measures Temperature Fluctuations without a
sensor that can break or has thermal inertia
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Sonic anemometers have many positive attributes
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2d Sonic Anemometer Cup Anemometer
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Pulse Counts Number of Revolutions
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Simpler and cheaper anemometers for routine meteorological measurements. A 2d

sonic and cup anemometer
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Net Radiometers Use Thermopiles to measure
Differential heating of Top and Bottom Surfaces

Net Radiometer

V=nN(T,-T,)

Transparent dome

JD. Wilson

University of Alberta
EAS 327 unit7fig5. gif
15 Mar/99
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Principles of net radiometers.
thermopiles

They use an array of thermocouples, called

22



Net Radiometers

Voltage is proportional to the
Energy Absorbed and
Measured with a Thermopile
detecting the Temperature
Difference between the Top
and Bottom

Model CNR1 (c) 2001 Campbell Scientific (Canada) Corp.
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The net radiation balance drives so many energy fluxes of an ecosystem. There are
simple sensors or more complex 4 component sensors. Much development and
evolution has occurred in the development of net radiometers
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Older Net Radiometers

REBS Net Radiometer with
Hard Domes
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These caused biases. Some with thinner domes, needed air streams to inflate.
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Pyranometer, Measures Solar Radiation

Voltage is proportional to the
Energy Absorbed and
Measured with a Thermopile
detecting the Temperature
Difference between Dark and
Bright Elements
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Pyranometer

» Spectral response
waveband:
— 310 to 2800 nm
* Time Response
- 4s
* Maximum irradiance:
2000 W/m?
* Linearity
— <0.6% at 1000 W m-2
» Sensitivity:
— 5to 15 pVIW/m?
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These instruments have small voltage ranges and low sensitivities, so special
dataloggers are needed to record them, In this case we have a range of 15 millivolts
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Quantum Sensor, Measures Photon Flux Density
Photons displace electrons in silicon and create current.

Specifications

Spectral range 400 -1100 nm
Sensitivity (nominal) 100 pV/\W/m2
Response time less than 1s

Max. irradiance 2000 W/m2

Temperature dependence +0.15 %/°C

(typical)
Operating temperature -30°Cto+70 °C

Directional error 15 % at 80 degrees

Model PARLITE & 2001 Kipp & Zonen
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Quantum sensors measure photon flux density. Photons kick out electrons from a
silicon wafer and create a current. Placing a 604 ohm resistor across the leads,
enable us to convert amps to millivolts
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Diffuse Radiation
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Placing elements between the sensor and the sum enables us to measure diffuse

radiation. We also use a rotating shadowband

28



PAR Diffuse

lone, Ca 2004

1600

1400 -

PAR (umol m-2 s™)
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2500
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Some data
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Temperature/Humidity Sensor

M
"

)

il

I
|
.

3 'b‘:_
>

Model 41003-2 © 2008 Campbell Scientific (Canada) Corp.
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We have to be careful and expose the temperature sensor so it measures the air

not itself. This requires us to have it shielded and aspirated. Improper aspiration can
cause biases



Thermocouple

Thermocouple

Lead wire Gage
v/
t

A A
Tip ~ J J \ Vo
B S

Target

surface Ice bath
(known constant
temperature

,.: for reference)

Reference junctions ~—————= =
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Thermocouples are one way to measure temperature. An emf force is produced if
dissimilar metals are exposed to a temperature different from a reference.



Thermocouples, type T, copper-constantan: ~ 40 uV/C

Type T thermocouple
60

50 A

40 4 o®

30 4

Temperature, C

20 A

T T
500 1000 1500 2000 2500

emf, microvolt
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At 40 microvolts per C what is the range in millivolts over a 40 C range? 1.6
millivolts. So the range is tiny using a TC to measure air temperature. Hard to do
with a simple and cheap digital volt meter.
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Thermistor

+ gnd

h
=

Vuut Vxn R1 + Th1
As thermistor (Thy)
resistance decreases
with increasing
temperature, output
Thy voltage (V,y)increases

f relative to ground
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Thermistor, a resistor sensitive to temperature, is another way to measure
temperature. This is put into a bridge circuit that is excited and voltage due to the
imbalance in the bridge is proportional to temperature



Temperature Sensors

PRT Thermistor | Thermocouple
sensitivity 0.4o0hmC-1 |0.1t0 1.5 0.04 to 0.06
kohm C-1 mv C-1
accuracy +/-0.1C +/-01C +/-0.35C
Linearity Slightly non- | Very non Slightly non
linear linear linear
Response 10s 5s <5s
time
Excitation yes yes No
T reference | no no yes
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Platinum resistance thermometers (PRT) are the most accurate
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Temperature and Humidity Sensors Must be
Shielded from the Sun and Aspirated!—Hence, Power is Required

JiEEan

NN
L.111777774

28
55
24 Coefficients:
b[0] 0.7893057267 2w
24 1 b[1]. 0.8367525171 z
B 7% 0.9931178141 =
e g 45
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< =
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144
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Relative Humidity, unaspirated
Temperature, unaspirated 2 idity, Pl

At 20 C, the T difference is 0.611 C

Experiment in the lab comparing an aspirated and unaspirated sensor
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Biases between Aspirated and Unaspirated Thermometers are too Large,
Compared to Gradients and Treatment Differences One Seeks to Quantify in Nature

28

26 @ Unaspirated
@ Aspirated

Air Temperature

12

0 400 800 1200 1600 2000 2400

Biases seem to be greatest at night as the sensor losses heat to the cold sky
through the windows of the lab.
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Rain Gauge
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Rain gauges need proper resolution, exposure and volume to capture large to small
rain events. This is the type | have at home. | can see events as small at 0.01 inch.
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Rain Gauge with Wind Screen

NOAA'’s Climate Research Network
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Proper exposure to minimize wind losses. https://www.rap.ucar.edu/asr2001/B-

snowfall_freezing_precip_files/image002.jpg
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Rain Gauge

Tipping Bucket

Model TES25M (c) 2000 Campbell Scientific (Canada) Corp.
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Tipping bucket rain gauge. Tipping bucket fills and gives a pulse that is counted.



Soil Heat Flux Plate
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We also want to measure heat conduction through the soil. Exposure, placement

and depth are important
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Non-Dispersive Infrared Spectrometer

MEASURING CARBON DIOXIDE IN THE ATMOSPHERE

A) Single-Path, Flow-Switching

Refeene Samgle

@\Fl =

B) Daal-Puth. Single-Wavelength

Refeanca

| » —T,
@E}E#__ij'

Sample 1

C) Siagle-Path, Dyal-Wavelength

| -
Lfl =

Welles and McDermitt 2005 Micromet in Ag
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Trace gases like CO2 and water vapor are measured with non dispersive infrared
spectrometers. These instruments measure the absorption of IR light across a
broad absorption band, e.g. near 4.26 microns for CO2, relative to a non absorbing
band. We have to be careful and make sure the reference band and absorption
bands are not sensitive to water vapor. We want to avoid cross sensitivity.
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Vaisala soil CO2 concentration Probe
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Smaller probes can be put into the soil or water column to measure CO2. These are

new systems with an NDIR on a chip.
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Tunable Diode Laser Spectrometer

Gas Qutiet
Gas Inlet (t0 vacyum pump)

a\ 5 Windaw
[o%) 1 %

rrreey

Signal
{ Photodiode
2 ER

A
- HR Mirmors (R~0.9999) ———

) 1
Laser Control | Data Collection and

Electronics Analysis System

" Lang Tunable
Diode Laser
e - ,‘\‘l Detector | toser
—J = Ql
— f Reference ¢ 5
| g
Y Photodiode =
4

Data Acquisition System

"W

 Methane

« 180
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Laser spectrometers can focus on the absorption of a narrow line using lasers
instead of lamps as light sources. Better, more precise and accurate and better
detection limits. More expensive, but costs are dropping for many applications. Can
also be used to measure concentrations of stable isotopes real time and

continuous, an upgrade from batch sampling of mass spectrometers.
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Soil Moisture

+ Time Domain Reflectometry

*  Frequency Domain
Reflectometery

— Sensitive to Salt
» Capacitance
— Sensitive to Salt

Soil Moisture is a function of
the dielectric constant
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There are a number of direct and indirect ways to measure soil moisture. But new

sensors give us the ability to have continuous measurements
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f

VoV, TV RC

Capacitance (C) is a function of the dielectric
permittivity
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Soil Moisture:
Time Domain Reflectometry

*Time domain reflectometry (TDR) determines
the dielectric permittivity of a medium by
measuring the time it takes for an
electromagnetic wave to propagate along a
transmission line that is surrounded by the
medium.

*The presence of water in the medium affects the
speed of the electromagnetic wave

*The transit time (f) for an electromagnetic pulse
to travel the length of a transmission line (L) and
return is related to the dielectric permittivity of the 2 /K‘

medium, k =
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Cable testers are the idea behind time domain reflectometers



Trenton Franz and COSMOS
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Cosmos, cosmic ray soil moisture system, measures fast and slow neutrons
associated with the collisions with cosmic rays. Soil moisture is associated with the
relation between hydrogen and intensity of low energy neutrons



Pressure ‘bomb’ for leaf water potential
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Another way to measure soil moisture is to let the plant and root system do the work
and sampling. Pre dawn water potential assumes the water potential in the leaf and
soil are in near equilibrium as transpiration is thought to be nil (though night
transpiration can occur through leaky stomata).



LI 6400 Photosynthesis System

Controls:
-Light

«CO2
*Temperature
*Humidity
*Flow
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Infrared gas systems can be coupled with cuvettes to measure photosynthesis. This
system controls light, temperature, humidity and CO2
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Soil Respiration Chamber attachment

ESPM 129 Biometeorology

50

Extra head lets us measure soil CO2 efflux, or respiration
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