Lecture 23, Fluxes and the Conservation Budget

+ Fick’s First Law
» Resistors and Conductors
+ Continuity Equation
— Concept
— Derivation
— local and total derivatives
— constant density, incompressible flow
+ Conservation of mass for multicomponent system
— diffusive flux densities on molar and mass bases
— Fick's Second Law
« Conservation of Mass, turbulent flow
— bulk flux density on molar and mass bases
— Reynolds decomposition
— derivation
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Now we discuss Fluxes. To do so we start with their definitions and description of
the conservation budgets



Diffusion is defined as:
process resulting from random motion of molecules by
which there is a net flow of matter from a region
of high concentration to a region of low concentration.

Diffusion
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Solute fransport is from the left o the right;
movement of the solutes is due to the concentration
gradient (dC/dx).
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We will discuss diffusive fluxes separately from turbulent fluxes



Fick’s Law of Diffusion

* achemical species
diffuses in the direction of
decreasing mole fraction.
the flux density is
proportional to a diffusion
coefficient and a gradient
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In turbulence we use an analog to Fick’s law, but it principle it is for diffusion



Computing Flux Density, F

o
F= _Dc & (g m?2s): mass density, p,
ox

oc

F=-D — (mol m2 s1): mole density, ¢
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(g m2 s1): mass fraction, s

oC,
F=.fep T
M ox (mol m2 s-'): mole fraction, C,
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Get your units straight



Molecular Diffusivity, D

D=D%T/T")'(P°/ P)

h2o 02
°C mm2s? | mm2s! | mm2s’

co2

0 21.2 13.9 17.7
10 22.6 14.8 18.8
20 24.0 15.7 20.0
30 254 16.7 212
40 26.9 17.7 22.5
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Molecular diffusivity is a function of the molecular mass, pressure and temperature.
Differences in diffusion among molecules are a reason why stable isotopes, like
13C are important tracers for ecological studies. There is fractionation by diffusion
between 12C and 13C



Resistors, r, and Conductors, g

Serial

Network Parallel

Network

Ohm'’s Law
V
I=—
1 1 R
Current = Voltage/Resistance
+
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Now we will focus on Ohm’s Law as an analog for describing fluxes and defining
networks and their rules. First we want to distinguish between parallel and serial
networks



Parallel Resistance/ Serial Conductances

L_t 1 Networ
R 1, 1
R: rarf:
r,tn
G=g+g
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The resistances of a parallel network are summed in terms of their inverse. But
conductances are additive and are in serial



Serial
Network

R=r +r,
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Serial Resistance/ Parallel Conductance Networks

In serial networks, the resistances are additive



Flux-Resistance

F=p,c

Meteorologists:

R (s/m)
27,

F = g(ms™ )(Ap,(mol -m™))

C -C Ecophysiologists:
F=—2a 0 R (mole' m? s")
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This equation was introduced in lecture 2 and is the basis of biometeorology as the
sum of the resistances have biophysical meanings



Ecophysiological, Alternative, View of Resistance

VPT

l—l_ 2_ 1 = —1_ o' o
r(mol™ -m"-s )=r(m S)—PY:)
VPT
PT

(4]

g(m-s7") = g(mol -m™-s7")

Vo= 0.0224 m?® mol' at STP
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In meteorology and fluid mechanics a resistance is an inverse velocity. Ecologists
prefer to adjust it into flux density units as they work across elevational gradients.
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Conservation Budget

Bath tub analogy, change of height of water in a volume
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The conservation budget is no more complicated that thinking about the flows of
water in and out of your bath tub.
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$$$8 in

Same Principle with Economy
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Money in Bank

$$ out

Or bank account. Material in a controlled volume builds up if the flux in is greater

than the flux out, and vice versa
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P ; ; _ry
AXAJ’AZE How air density, p, of a volume changes with time

Balance of mass fluxes in and out of horizontal and vertical walls

T wec(z+dz)

0 EE e A pu-pul,, ]
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Lets consider the fluxes in and out of a controlled volume and how that changes the
density with time. Density times velocity is a flux density, mole m-2 s-1



Continuity Equation, how air density, p, changes with time

ﬁ_p:_(ﬁup+8vp+5‘wp)
ot ox Oy oz

u, longitudinal velocity
v, lateral velocity
w, vertical velocity
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Add these up and here is what you get.
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Expansion of terms

dp_6p+ op Op op ou oOv ow
g o o oy ez er oy O

u, longitudinal velocity
v, lateral velocity
w, vertical velocity
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We can expand the terms to find those associated with time rate of change,
advection and flux divergence



How advection terms arise, relation between total and partial derivatives

de(t,x,y,z) _

dt
Oc dx dc dyoc dzoc
—t——t———+——=
Ot dtox dtoy dtoz
dc Oc Oc oc

—tUu—+v—+w—
ot ox Oy 0z

dec Oc oc oc oc
—_— =t Uy—+v—-t

= e
dt ot ox 0Oy 0z

Biometeorology ESPM 129

Looking under the hood. Expanding the total derivative gives us another way to
discover the advection term



Incompressible Flow
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For incompressible flows, those we deal with. Think about squeezing a balloon and
watch which way the air moves. This happens in the boundary layer as air moves
around and over objects



Fick's Second Law

2
o _p 2o
ot Ox

Time rate of change in C is related to the
second derivative with respect to space
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For diffusive flows, we can simply the budget equations into a one dimensional
balance between time rate of change and flux divergence, by substituting Fick’s first
law. Hence we see a second derivative in ¢ with respect to space.



Fick’s Second Law

Conservation Equation, Laminar Flow

FA—(F+8—Fdx)A = @Adx
Ox ot
oc oF oc
= __5F F=_D =
ot Ox < Ox
2
% _p o
ot ox
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A simple derivation of the previous relation
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Conservation Budget, Turbulent Flow

c=c+c

oere) , A+ )e+e) | 3 ) dere)
ot ox, o, ° Ox

J J J

]
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Next we introduce turbulent flow, substitute ¢ with the sum of the mean and
fluctuation components and do the math. A new term arises associated with the flux
divergence of the turbulenc flux covariance



2D Simplification

6c —-0c owc o0 .. éc
+u—+ =

=—[D,—]
ot ox 0z 0z Oz
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2 d simplification. We assume mean vertical velocity is zero, so the w dc/dz term

drops out.
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Constant Flux Layer, Internal Boundary Layer

dc
==0
ot
Ideal, steady-state, infinite fetch, no advection a—
— C
uji—=>0
Ox,
—ow'c! OoF
O = — pa =
174 0z

Integral of dF/dZ equals a CONSTANT
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This equation is the basis of use of the eddy covariance method. Under steady
state conditions and no advection, large fetch, the flux divergence is zero, so the
flux is constant with height!!!



Constant Flux Layer, Internal Boundary Layer

Integrate from Ground up and Define Flux as
Sum of flux at the ground and the sum of the
Diffusive source-sink from the vegeation

p.we'(h)y=p,wc(0)+ j S(z)d=
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In practice the eddy flux measured above a canopy is the sum of the sources and
sinks of the leaves and soil, underneath. This is for passive scalars. If you are
looking at reactive chemical species there could be a flux divergence due to

chemical reactions.



Static vs Dynamic Chamber Systems

Static Chamber System Flow Through System
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Now we apply these theories to understand how ecologists and biometeorologists
measure soil or leaf gas exchange with chambers. We have two options, a closed
static chamber and an open steady-state chamber
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Case 1, No Advection, Dynamic Response

de__oF
ot oz
oc
u—-==0
o Ac_ F()-0
At h—0
Ac  F()
‘e At h
F(t)=—h Ac(?)

Evaluate Flux at t=0!!
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Case 1. Take budget equation, assume advection is zero and there is no flux out of
the top of the chamber. All we need to measure is the time rate of change in C and
height of the chamber h. Notice that the time rate of change in C is non linear, so
there are negative feedbacks on fluxes. If you keep the chamber on the soil too long
it will inhibit the flux. So we want to evaluate the flux in terms of dc/dt at time O.
Important points
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Case 2, Steady-State, Advection

ﬁ_o oc oF
— g e
ot Ox Oz
Ac F-0 Ac F
U =— U— = ——
Ax h—0 Ax h
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Case two, steady state, so dc/dt is zero. Air flows in and out of the chamber so
there is now a balance between advection and flux divergence. This method is a
function of the volume of flow, height of the chamber and cross section x. In
practice u must be slow as if too large it will induce pressure differences that can
inhibit efflux from the soil. Pressure differences of only a few pascals are large
enough to cause biases.
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Homework

Use a unit-correct form of the conservation equation to evaluate the
change of CO, concentration with time (up to 1000 s) in a closed
chamber that has horizontal cross section of 0.1 (x) and 0.1 m (y).

Perform the calculations for cases where the chamberis 0.1, 0.3, and
0.5 m tall.

Start with a CO2 concentration of 350 pmol mol-.

The initial flux density is 2 umol m2 s, the exchange conductance, g,
is 4.30 10 mol m2 s' and the reference deep soil CO, concentration is
5000 pmol mol-.

In performing these calculations consider feedback between the flux
density () and build up of CO, in the head space. Assume the
concentration in the chamber is well mixed.

F=g(c(t)—c,)
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Use the advection form of the conservation equation to evaluate the flux
density of CO2 into an open chamber.

The chamber is 0.5 (x) by 0.5 (y) by 0.1 (z). The incoming and outgoing
CO2 concentrations are 350 and 355 umol mol-!, respectively. Perform
calculations for cases where the flow velocity is 1, 3 and 6 m s (the units of
flux density should be umol m2 s

What is the flux of CO, into an open chamber, where the volumetric flow
rate is 1, 3 and 6 liters per minute? Use the same chamber.
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