

Last lecture we spoke of how one aspect of light in canopies is complimentary radiation, due to transmission and reflectance. We cover this aspect here. This topic is especially important for interpreting remote sensing from sensors on satellites or aircraft. The interpret reflectance signals from vegetation to interpret information about its structure, photosynthetic capacity, temperature, evaporation, health etc.

Interactions with foliage filters the amount and quality of sunlight in a canopy

Ross, J. 1980. The Radiation Regime and Architecture of Plant Stands. Dr. W Junk, The Hague.

Here is the full short wave radiation spectrum of leaf reflectance. Note absorption by chlorophyll and pigments. Reflectance by water, by proteins, lignin and cellulose

Absorption by Chlorophyll is strong near 450 nm and 650 nm

Typical optical properties for green leaves

	PAR, Visible	NIR	Solar shortwave
reflectance	0.09	0.51	
transmittance	0.06	0.34	
scattering	0.15	0.85	
absorptance	0.85	0.15	

ESPM 129 Biometeorology

6

Scattering of light has a phase angle distribution

Simple one dimensional transfer of diffuse light

Kublelka Munk equation is a simple but salient model to define the main streams of photons in a turbid medium

The flux density of upward directed radiation is *diminished* by the amount of diffuse and beam radiation that is scattered and is **augmented** by the amount of upward directed diffuse radiation that is transmitted through the layer.

$$\frac{dI\uparrow(\tau)}{d\tau} = -a I\uparrow(\tau) + b I\downarrow(\tau) + c I_{beam}(\tau)$$

ESPM 129 Biometeorology

11

You can see visually the development of complimentary NIR radiation in the upper reaches of the canopy.

As noted we are dealing with a hierarchy of space scales. Different remote sensing sensors can view the ground at different spatial resolution, to build a spatial mosaic of the land surface.

Remote sensing can give us lots of different types of information that is of interest to ecosystem ecologist. GPP, leaf area index, evaporation, fire, disturbance, land use, change in land use, fraction of land cover, etc, etc

Remote sensing has a bunch of attendant pros and cons. The most glaring con is clouds. Most passive sensors can't see through clouds. Other issues are overpass times and view frequency.

One of the longest sensor systems in orbit. It is important for detecting changes in land use over time. Few spectral bands and coarse spectral resolution. Fairly good spatial, pixel resolution, 1 km. Frequent overpasses, 14 times per day.

Fairly high resolution image of earth, at 30 m resolution. The series goes back to 1972 and recently LANDSAT 8 was launched. With high spatial resolution comes less frequent overpasses, every 16 days. Has a fair number of bands in visible, near infrared and thermal bands.

		MODIS				
MODIS		resolution		repeat	duration	
Merent Resource Merent	MODIS	250 m (bands 1-2) 500 m (bands 3-7) 1000 m (bands 8- 36)	36 bands	1030 hrs Terra 1330 hrs Aqua (8 day composites are produced)	1999 Terra; 2002 Aqua	
	DIRECT SOLAR IRRADIAS AIRMASS #1.7 WATER WARCH #2. CZONE #0. Terrotol Softme #0. Å supportent = 0.	0 cm 14 cm 126				
		ESPM 129 Biom	eteorology			22

MODIS has become a workhorse for many land-atmosphere studies over the last decade. Daily overpass, 36 bands and moderate spatial resolution, 1 km.

Sensors like IKONOS, SPOT and Quick Bird are commercial and tasked. Yet they can give you super high spatial resolution, down to 1 m.

AVIRIS is flown on U2 for scheduled tasks. It provides a hypercube of data with 224 contiguous spectral changes. The areal domain is limited. Here is an image over our Delta field sites this summer

Hard to Beat Google Earth in terms of details and high resolution images of a scene or landscape. But the images are not refreshed often, so hard to do science with them.

Take Home Points	
Trade-Offs between Duration and Longevity and Fewer Bands (AVHRR, LANDSAT)	
Higher Number of Channels (MODIS) and Regular Overpass	
Lower Frequency of Overflights and Higher spatial resolution (IKONOS, QUICK BIRD, AVIRIS)	
ESPM 129 Biometeorology	29

	resolution		repeat	duration
MODIS	250 m (bands 1-2) 500 m (bands 3-7) 1000 m (bands 8-36)	36 bands	1030 hrs Terra 1330 hrs Aqua (8 day composites are produceds)	1999 Terra 2002 Aqua
AVIRIS	20 m pixel, 11 km swath	224 contiguous spectral channels (bands) with wavelengths from 400 to 2500 nanometers, 10 nm.	Airborne on U2	On request
IKONOS	1m Panchromatic 4m multispectral (MS)	MS 4 bands (450- 520, 520-600, 630-690, 760- 900nm) Pan (525.8- 928.5nm)	1-3 days	
SPOT-5	2.5 & 5m Pan 10m MS 20m SWIR band	MS 4 bands (500- 590, 610-680, 790-890, 1580- 1750nm) Pan 510-730nm	3 to 26 days ±31° inclination	
AVHRR	1 km pixel	4-5 broadbands (visible, NIR and thermal)	2399 km swath 14 times day, polar orbit	1978 to present
Landsat TM	15m Pan 30m MS 60m TIR I	Pan 520-900nm 5 Bands VNIR 2 Bands SWIR 1 Band TIR	16 days	1999 landsat 7

Some of the highlights on the Sensors