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Evaluating the Flux Covariance  
 
The power spectrum (also called the variance or energy spectrum) quantifies the amount 
of variance (or energy) associated with particular frequency or wavelength scales.  The 
power spectrum of a scalar or a wind velocity component is derived through a Fourier 
transformation of a temporal (or spatial) series of a given variable.    The Fourier 
transform converts the time (or space) series into a frequency (or wavelength) domain by 
representing it as an infinite sum of sine and cosine terms.  Integration of spectral energy 
densities across the whole range of significant frequencies (or wavelengths) yields the 
total variance of the velocity component or scalar quantity under scrutiny.  
 

w 'w '  Sww ()d
0



  

 
In a similar manner the real component of the cross-spectrum, the co-spectrum, quantifies 
the amount of ‘flux’ that is associated with a particular scale. 
 

F  w 'c '  Swc ()d
0



  

 
A distinct property of turbulence in the natural environment is a wide spectrum of motion 
scales (eddies) associated with the fluid flow.  The largest scales of turbulence are 
produced by forces driving the mean fluid flow.  Dynamically instable, these large eddies 
break down into progressively smaller and smaller scales, via an inertial cascade.  This 
cascading breakdown of eddy size continues until the eddies are so small that energy is 
consumed by working against viscous forces that convert kinetic energy into heat.  
Hence, in application, the method must acquire both short and long scale contributions to 
the turbulent flux. 
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The dependence of the variance or flux covariance on a spectrum of eddies imposes 
several constraints on instrument design, measurement principles and sensor sampling.  
Reviews and critiques of the eddy covariance method have been produced by numerous 
investigators.  The reader is referred to them for further details [Aubinet et al., 2000; D.D. 
Baldocchi, 2003; D. D. Baldocchi et al., 1988; Businger, 1986; Foken and Wichura, 
1996; Goulden et al., 1996; Loescher et al., 2006; Massman and Lee, 2002; McMillen, 
1988].  With regard to sensor sampling attention and care must be paid towards: 
 
a. sampling duration; 
b. sampling frequency; 
c. averaging method. 
 
With regard to instrumental placement, design and implementation, the accuracy of any 
flux measurement will be influenced by: 
 

1) sensor size 
2) separation of instruments 
3) placement, in terms of height and position in the constant flux layer 
4) mechanical filtering or distortion of turbulence, as when sampling through a tube 

or when a tower or anemometer head interferes with the wind. 
5) Rotation of coordinates to compute fluxes orthogonal to mean streamlines. 
6) Flow interference by towers and booms. 

 
A filtering of covariance signals occurs for several reasons. High frequency contributions 
are attenuated because sensors have a finite response time, their transducer may have a 
significant sampling volume or integral scale length (relative to scales of turbulence) or 
the pumping of air through a tube will distort the structure of eddies.   
 
Filtering can be imposed through data acquisition because data acquisition systems use a 
discrete sampling interval.  As a result they possess a finite cut-off, denoted at the high 
frequency end of the spectrum as the Nyquist frequency.   
 
In practice, a measured covariance is a function of the true cospectrum (Cowc) and a 
spectral transfer function (H), that arises from the issues discussed above: 
 

w 'c 'measured  H ( )Cowc ( )d
0



  
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Figure 1co-spectrum from study over peatland on Sherman Island. Co-

spectra are shown for temperature, water vapor, CO2 and methane. Data of Detto 
and Baldocchi. 
 
 
The transfer function H(w) is determined by the product of numerous filtering effects 
[Massman, 2000; Moore, 1986]: 
 

H ( )  H1( )H2 ( )...Hn ( )  Hn ( )
n1

N

  

 
The most important transfer functions that are applied to eddy covariance measurements 
include: 

1. high pass filtering 
2. low pass filtering 
3. digital sampling at a limited frequency 
4. sensor response time 
5. fluctuation attenuation by sampling through a tube 
6. Line or volume sampling 
7. sensor separation 

 
 
When computing filter and transfer functions one must be careful and not to confuse 
terminology.  Moore [Moore, 1986] reports filtering gain functions (G) and transfer 
functions (T).  When applied to correct a power spectrum the gain filters are squared. 
 
Time Averaging, Detrending and High Pass Filtering 
 
 
Since fluctuations from the mean are computed as the difference between instantaneous 
and mean values, we must assess the time series mean.  This is not a trivial exercise due 
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to the multiple time scales associated with a time series. The basic rules of Reynolds 
averaging use arithmetic means.  The application of Reynold’s decomposition upon a 
time series, using a finite mean, imposes a band pass filter on the data [Kaimal and 
Finnigan, 1994].   Arithmetic means or digital recursive filters pass high frequency 
fluctuations but attenuate low frequency components in their attempt to assess means for 
mean removal calculations.  Moore [Moore, 1986], Horst [Horst, 1997] and Massman 
[Massman, 2000] have developed schemes for estimating the amount of flux density lost 
by these ‘filtering’ effects. 
 
Since concentrations and velocities experience a diurnal pattern, they are never at steady 
state. Some investigators, therefore, prefer to detrend a time series and using a trend line 
to remove the mean.  The rules of Reynolds averaging, however, say nothing about 
detrending (K.T. Paw U, personal communication). They are based on arithmetic means.  
In my opinion, if there is a trend we should treat this with a modification of the 
Conservation Budget and account for it as a storage term. 
 
 
 

 
Figure 2 Representations of mean removal of turbulence time series 

 
 
One can visualize the effects of removing means from time series by using transforms, 
such as the Fourier Transform, to convert time series from a temporal to frequency basis.  
In this transformed basis, we can examine the frequency at which fluctuations are passed 
or filtered. 
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Filters of interest include low-pass, high-pass and band-pass filters.  There is a simple but 
distinct difference between the high and low pass filters.  A low pass filter allows low 
frequencies to pass, but stops high frequencies. The simplest low pass filter is defined as: 
 
H(f)low =1, f< fc 
H(f)low=0, f > fc 
 
A high pass filter is the opposite of the low pass filter, H(f)high=1-H(f)low. 
 
An example of a high and low pass filter function is given in Figure 2.  Note the low pass 
filter passes all signals with a frequency lower than a critical frequency, fcrit; in contrast 
the high pass filter passes frequencies higher than the critical value. 
 
An additional point of information is that most band pass filters do not have such a 
perfect cut off (see Hamming, Digital Filters).  This reality itself leads to numerical errors 
in the application of such filters.  This point is discussed next. 
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Figure 3 Example of low and high pass filter functions 

 
 
The act of block-averaging a time series and using it to construct a series of fluctuation is 
equivalent to applying a square wave transfer function in temporal space. 
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h(t) 1,
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where T is the averaging period, which typically ranges between 30 and 60 minutes. The 
Fourier transform of a square wave signal produces a transfer function that is a function 
of the sine function of the angular frequency.  So a presumably ‘clean’ square wave 
averaging introduces sinusoidal noise at high frequencies.  The Fourier transform of the 
Reynolds decomposition relations with an arithmetic mean yields a low pass transfer 
function: 
 

F( f )  sin(  f T )

  f T
 

 
 
 

 
Figure 4 Transfer function for one hour average 

 
When the filter function is applied to correct a power spectrum or co-spectrum the filter 
function is squared:  H(f)=F(f)2.  If we want to compute fluctuations from the mean then 
we are subtract a mean value from the instantaneous values. This action imposes a high 
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pass filter upon the data.  The resulting high pass transfer function is [Kaimal and 
Finnigan, 1994]: 
  

Hhigh_ pass ( f )  (1H ( f ))2  

 

w 'c 'measured  [1 sin2 (  f T )

(  f T )2
]H ( )Cowc( )d

0



  

 
 
Applying moving averages of shorter duration produces the following transfer functions. 
 
 
 

 
Figure 5 Transfer function for block averaging. In this case the transfer function 

for a low pass filter is shown.  Plotting 1-H(w) would provide information for the high 
pass filter. 
 
Alternative Approaches to Computing Means 
 
At the advent of eddy flux measurements, storage capacity of computers were quite 
small, or scientists had to use analog computers. One clever means of avoiding the 
storage of raw data, and later processing of means and covariances, was to compute 
means real-time with a digital recursive filter [Dyer and Hicks, 1972; Massman, 2000; 
McMillen, 1988]. 
 
Turbulent fluctuations are decomposed from the mean using as the difference between 

instantaneous (xi) and mean ( ix ) quantities.  An arithmetic mean or a running mean can 

be used to compute fluctuations.  Computing the arithmetic mean, however, requires post 
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processing of the data.  Mean values were determined in real-time, using a digital 
recursive filter: 

xi  xi1  (1)xi        (1 

where   exp(
t


), t is the sampling time increment andis the filter time constant. 

Values of alpha for a range of time constants, assuming a 1/10 th second sampling 
interval (10 Hz) is listed below. 
 
 

50 0.998002 
100 0.999 
200 0.9995 
400 0.99975 
800 0.999875 

1600 0.999938 

 
 
Theoretically, an optimal time constant can be chosen with the aid of a Fourier transform 
of the digital recursive filter.  Massman [Massman, 2000] derived a spectrally dependent 
version of the transfer function as 
 

H ()  [  2 ][1 cos( / fs )]

(1 2  cos( / fs )
2 )

 

 

 
 
Figure 6 High pass transfer function of a digital recursive filter with various time  

constant  The algorithm is from Massman [Massman, 2000]. 
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Spectral cut off is not perfectly clean at low frequencies, but it lets some energy pass. 
 
There remains uncertainty as to what the preferred value of the digital filter time constant 
should be inside a plant canopy.   We can examine this question by comparing eddy 
covariances computed with the various digital times constant against those computed 
with conventional Reynolds’ decomposition and averaged over one-hour.  We observe 
little differences (within 5%) between the two methods of compute flux covariances. 
Extending this analysis one step further, we observed that mass and energy flux 
covariance computations exhibit some sensitivity to the choice of filter time constant.   
Flux covariance computed with a 600s digital time constant is most ideal, while time 
constants between 400 and 800 s yielded covariance values that agreed within 5% of the 
Reynolds’ flux covariance [McMillen, 1988].   Greatest numerical errors are associated 
with filter time constants less than 100s and more than 1000 s.  This analysis was based 
on regressing the independent and dependent variables against one another, rather than 
plotting the ratios, which are numerically unstable when fluxes are small. 
 
 
 

 
Figure 7 One to one plot of sensible heat flux covariance computed with 

conventional Reynolds averaging and with a digital recursive filter with a 400 s time 
constant. 
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Figure 8 Slope of the relation of fluxes computed with a digital recursive filter 

and varying time constant and a 3600 s long time series, to which conventional Reynolds 
averaging was applied 
 
In summary, a 400 to 600 s digital time constant is adequate to mimic the behavior of 
averaging over one hour.  Interestingly, the critical time constant is close to T/2, or 572 
s. 
 
One is not to confuse the concept of digital time constant with the averaging interval.  
Yet, there are many cases cited in the literature where one has used a 1000 s plus time 
constant.  We have observed that exceeding long digital time constants can be 
problematic and error prone, too.  This is a major reason why we have examined the 
Fourier transform of the filter to dispel this delusion. 
 
Evaluating Short Term Fluctuations Digital Sampling at Limited Frequency 
 
Computerized data acquisition systems digitize analog signals at discrete intervals.  
Discrete sampling of a time series, one which may consist of higher frequency 
contributions, limits the spectrum that can be resolved.  The highest frequency is noted as 
the Nyquist frequency.  It is defined as: fNyquist = fsampling/2.   
 
Ideally, we want to know the bandwidth of the turbulence spectra a priori and design the 
sampling strategy so we are able to sample at a frequency that is twice that of the highest 
frequency that significantly contributes to flux or variance.  The following figure shows a 
typical spectrum for variance and flux.  Over a tall forest the cut-off frequency may be as 
low as a few cycles per second. 
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Figure 9 Vertical velocity  power spectrum and w-T cospectrum over a Scots pine 

forest in Sweden. 
 
 
The non-dimensional cutoff frequency is a function of measurement height, wind speed, 
stability and the natural spectral cutoff frequency: fc=nc (z-d)/u).   One can note from the 
figures above that the critical frequency of the co-spectrum occurs at a lower frequency 
than for the variance.  This is because turbulence is isotropic in the inertial subrange of 
the power spectrum.  If eddies have equal length and velocity scales in all direction, no 
material can be transferred at that scale.  It is like a leaf in a whirl pool.  It goes no where 
except round and round. 
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The minimum sampling rate can be adjusted by placing the sensors at a higher level if 
there are sensor time response constraints.  Under neutral conditions the non-dimensional 
spectral cut-off for a power spectrum is on the order of about 5 to 10 Hz.  What are 
typical values of the natural cutoff frequency, the one we must sample at in the field? 
 
U z n 

1 1 5 
2 1 10 
3 1 15 
5 1 25 

10 1 50 
1 2 2.5 
2 2 5 
3 2 7.5 
5 2 12.5 

10 2 25 
1 5 1 
2 5 2 
3 5 3 
5 5 5 

10 5 10 
1 10 0.5 
2 10 1 
3 10 1.5 
5 10 2.5 

10 10 5 

 
With regard to the cospectrum and flux measurements, isotropy associated with the 
inertial subrange (no material is transferred because motions in the x, y and z planes are 
equivalent), pushes significant eddies towards lower frequencies.  Sampling restrictions 
are not as severe. 
 
Sampling too slow leads to aliasing problems.  Aliasing occurs when a high frequency 
signal appears as a lower frequency signal, since the harmonics of the high frequency 
signal are folded back on the lower frequency signals in the band between fs/2 and 0.  
This effect will distort the shape of the measured spectrum.   
 
A common example of aliasing is the appearance of wagon wheels rotating backward on 
Western movies.  Aliasing results in spurious energy or power being attributed to lower 
frequency eddies.  In order to minimize aliasing the sampling rate should be at least 2  
times the highest frequency of interest.  This rule of thumb is derived from Shannon’s 
sampling theorem says that at least 2 samples per cycle are needed to define the 
frequency component of that cycle.    
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We attempt to measure the whole spectrum of turbulence when designing and conducting 
an experiment.  However, field measurements can suffer from the aliasing effects of 60 
Hz AC noise if this information is significant and if it is not pre-filtered by analog means 
before digitization. 
 
 

 
Figure 10 Visualization of aliasing, where high frequency components match and 

add to low frequency components. Shows the importance of high pass filtering before 
digitization of eddy flux data. 
 
Analog pre-filtering using Butterworth, RC or Chebychev filters is helpful for removing 
environmental and electrical (AC 50 or 60 Hz) noise. This filtering was commonly done 
in early systems. Modern systems tend to already be filtered, so banks of analog filter 
systems tend not to be components of many systems today.  But this is a feature to 
consider when designing and fabricating a system. 

 
A filter function can be applied to compensate for the impact of aliasing [Moore, 1986]. 
 

Hdigitization ( f ) 1 (
f

fs  f
)3 

 
This relation is valid for frequencies less than one-half the sampling frequency,  f<= fs/2 
 
Electronic low pass filtering is performed to minimize aliasing.  In action, it minimizes 
the folding of ‘energy’ from frequencies higher than the Nyquist frequency onto lower 
frequencies.  This filter is not to be confused with the digital recursive filter we will use 
to remove running means.  That one is applied at another end of the spectrum: 
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Hlowpass ( f )  [1 (
f

f0

)4 ]1 

 
Massman (2000), among others, argues that it is wrong to filter and correct for aliasing, 
as it is an artifact of digitization.  Aliasing distorts the spectrum, but does not contribute 
to power or covariance; my mentor, Shashi Verma, also firmly stated that aliasing cannot 
be removed once an analog signal has been digitized. 

 
 

 
Figure 11 Low pass transfer function and spectrum 

 
 
Sensor response  
 
Mechanical instruments, like a cup anemometer, can impose a filtering effect on the 
process it measures.  A cup anemometer will have a stall speed, below which it will not 
respond.  If there is a dynamic pulse, there is a distance or time constant to which the 
instrument will react.  A typical filtering function for a first order response is: 
 
 

Hsensor _ response( f )  (1 (2 f )2 c
2 )1/2  

 
Key factors are the frequency and sensor time constant. 
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Often, biometeorologists use a closed path sensor with a small tube that extends to near 
the volume of the sonic anemometer.  Classic examples pertain to the measurement of 
CO2, methane, ozone, SO2 and water vapor.   Ideas on sampling through a tube 
originated with theoretical studies by Taylor (1920s), Philip (1963).  More modern 
treatments have been produced by Massman [Massman, 1991], Raupach and Lenschow 
[Lenschow and Raupach, 1991]and Leuning and Moncrieff[Leuning and Moncrieff, 
1990]. 
 
The transfer function associated with samping through a tube is dependent on the tube 
radius (r), frequency (f) and diffusivity (D).  If the dimensionless quantity, derived from 
these factors, is less than a critical value:  
 

2 fr2

Dx

10 

 

Htube_ dampening ( f )  exp(x / 6Dxu  

 
else the transfer function is one H(f)=1  (see Leuning and King 1992).   
 
Massman reports a slightly different transfer function for turbulence flow: 
 

Htube_ dampening ( f )  exp(4 2 f 2Lru2 )  

 
 
L is tube length,  
 
For Re > 2300 
 
  0.5 Re | i |1D1 

 
This case is valid for laminar flow, there is no dispersion of density fluctuations and they 
flow together with a velocity, denoted u.  The problem with using laminar flow is that 
tube lengths and residence time in the tube needs to be short.  Otherwise ‘packets’ of 
fluid start to diffuse and lose their coherence. 
 
For laminar flow Re < 2100, Massman uses: 
 
  0.0104 Re D1 
 
The tube attenuation cutoff frequency 
 
fc  (0.008779u2 (Lr)1)1/2  
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Another attribute of sampling with turbulent flow is that a significant pressure drop is 
needed.  In this situation, air is less apt to condense on the walls of the tube (Mike 
Goulden, personal communications). 
 
The tube dampening correction does not correct for potential absorption/desorption of 
moisture by hygroscopic dirt particles in the tube or the diffusional loss of CO2 or water 
vapor through a tube. 
 
The impact of sampling air with a closed or open path sensor has been quantified by 
several investigators [Leuning and King, 1992; Leuning and Judd, 1996; Suyker and 
Verma, 1993].  Sukyer and Verma have conducted extensive tests of open vs closed path 
sensors.  There seems to be extensive line loss of water vapor. The problem is a function 
of tubing type and how dirty a tube is.  Hygroscopic particles on a tube may be a reason.  
Today, no one has performed theoretical calculations about loss of water vapor as it flows 
down a tube due to permeability of the tube or absorption/desorption of hygroscopic 
particles.  Leave this as a challenge for a precocious student. 
 
 
 

 
Figure 12 Suyker and Verma. Spectral characteristics of eddy covariance 

computed with an open and closed path infrared gas analyzer. 
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In 1992, we conducted a study and compared open and closed IRGAs.  In this case the 
agreement was reasonable, but the tube was short and the study was conducted only over 
3 weeks, so the tube was relatively clean.  Leuning et al reports that corrections for the 
effect of T fluctuations are not needed when one samples through a tube if temperature 
fluctuations are attenuated. 

 
Figure 13 Comparision of an open and closed path IRGA to measure CO2 flux 

densities. (Baldocchi and Guenther, unpublished). 
 
More recent and extensive measurements comparing open and closed path IRGAs by our 
group shows clear attenuation of  <w’q’> and <w’c’> at a windy site and over an actively 
photosynthesizing and evaporating rice paddy.  Here in this wet environment we see 20% 
reduction in water fluxes measured with closed path sensors, due to line attenuation.  This 
hygroscopic filtering is hard to fix.  My colleagues in France, so gradual degradation after 
a few days of using a new tube.  The new LI7200 places the sensor on the tower and so it 
uses a very short tube. This may be a good solution to this otherwise nagging problem. 
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Comparison of the attenuation of sampling methane co-spectrum through a closed and 
open sensors is seen below. 
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On annual time scales, Haslwanter et al report [Haslwanter et al., 2009] that the closed 
path system yielded more positive net ecosystem exchange (25 gC m-2 y-1) than an open 
path system (0 gC m-2 y-1), and lower evaporation totals (465 mm yr-1) compared with 
the open path system (549 mm y-1).  In practice more data from open path systems will 
be excluded over a year due to rain, dew, fog etc. and the closed path system can be 
calibrated regularly. 
 
 
Sensor Line Averaging 
 
Sonic anemometers and infrared gas analyzers have finite sensor paths. These path 
lengths smear smaller eddies. One cannot detect frequencies smaller than the pathlength, 
which is why small hot wire anemometers are used to measure finer scale turbulence.  
One proposed transfer function for sensor line averaging was proposed by Van den Hurk 
(1995): 
 

H pathave( f )  1

2 f
(3 exp(2 f ) 4

1 exp(2 f )

2 f
)  

 
here f is a normalized frequency, nd/u, where d is the path length. 
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Sensor Separation 
 
The velocity and scalar sensors should be co-located to minimize a decorrelation as an 
eddy of a given size passes through the sensor array.  Yet care must be made to minimize 
the scalar sensor from distorting the flow sensed by the anemometer. 
Kristensen [Kristensen et al., 1997] recommends that the separation distance d < (z-d)/5 
Kaimal recommends a more conservative metric, d=(z-d)/6.  More recently, Lee and 
Black report that error is less than 3% if the ratio between separation distance and z-d is 
less than 5%.    
 
If one is interested in computing the transfer function for sensor separation, one can 
simulate it with the following algorithm: 
 

H (x)sensor _ separation  exp(9.9x1.5 ) 

 
x is a normalized frequency (fs/u) 
 
 
There are new questions about where to place an open path irga relative to a sonic 
anemometer. Kristensen et al [Kristensen et al., 1997] recommends placing it below the 
anemometer, but in the same vertical access. If it is displaced horizontally, there will be a 
time lag (d/u) based on the wind speed and the spatial separation. They state that the loss 
of flux will be less than 1% if the displacement at 10 m is 0.2 m, but it can be 13% if the 
instrument is at 1 m.  In the vertical, the loss is 18% if the scalar sensor is displaced 
above the sonic, but only 2% if the scalar sensor is 0.2 m below the sonic anemometer. 
They conclude that when sampling near the ground vertical separation is preferred with 
the scalar sensor below the anemometer. This keeps a symmetric configuration. 
 
The Total Transfer Function 
 
Moore reports net transfer functions as 
 

Tdata _ acquisition  Haliasin gHhigh _ passHlow _ pass  

 

Tmeasurement  Hsensor _ separationHinstrument _ response H path _ ave_ chem _ sensorH path _ ave _ wHtube_ dampening  

 
So the total transfer function for CO2 flux would be 
 
 

 
 

 
A basic version of the Moore code is provided on the course web page for use and 
implementation, 

Ttotal ( ) Tdata _ acquisition ( )Tmeasurement ( )
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Figure 14 Examples of integrated transfer function for heat, water vapor and  

 

Improper spectral response can be compensated two ways. One is to correct the flux 
covariance by the ratios of the observed spectrum and some ‘perfect’ measure, such as 
the acoustic temperature co-spectrum.  This method is used by the group at Harvard 
Forest, for example.  Two down sides with this approach. It does not account for line 
averaging, which occurs because of the fit distance of the anemometer path, and fails 
with sensible heat flux density is near zero. 
 
The other approach involves quantifying the appropriate transfer functions and using 
them to correct the eddy covariance method.  This approach was developed by Moore in 
1986 and has recently been modified by Massman [Massman, 2000].  It is based on 
certain assumptions about the co-spectral shape of turbulent transfer.  Most recently, 
Massman (2000) derived an analytical version of the numerical transfer functions 
originally posited by Moore (1986).  The general equation is: 
 

w 'c 'm
w 'c '

 ab
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where a  2 f
x
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h
and is a function of the time constant for the trend removal 
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b  2 f
x


b
 and is a function of the time constant for the block average removal 

 
p  2 f

x


e
and is a function of the first order time constant 

 

f
x


n
x
u

z
 

 
For z/L < 0 nx = 0.085 
 
Massman’s relation does not account for aliasing or vertical displacement of sensors.   

 

The transfer functions are then used estimate and correct the relative error in an eddy 
covariance measurement.  With this approach one computes:  
 

Fc

Fc

1
Hwc ()Swc ()d

0





Swc()d
0




 

 
 
For engineering purposes, Kaimal et al. derived equations for predicting spectral shapes 
under near neutral conditions 
 

nSw (n)

u*
2

 2.1n

1 5.3n5/3
 

 
 

nSu(n)

u*
2

 102n

(133n)5/3
 

 
 

nSv (n)

u*
2

 17n

(1 9.5n)5/3
 

 
The spectrum of turbulence also scales with stability.  The spectral peak shifts toward 
larger wavelengths with convective conditions.  Thermals scale with the depth of the pbl, 
hence the shift towards longer wavelengths. 
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Figure 15 Computations of Spectra as a function of stability, using the Kaimal 

functions 

 
Numerous functions exist in the literature for co-spectra, too, starting with the famous 
Kansas experiment. 
 

nSwx (n)  f

ABf 2.1
 

 
The coefficients A and B very with stability.   We also assume co-spectral similarity, in 
that the spectra for heat, water and CO2 are identical.  
 
Accumulating data taken over tall forests also show evidence of a spectral shift, as 
compared to idea conditions simulated by the Kaimal spectra. 
 
A few new comments should be raised about the classical Kaimal spectra. First they were 
developed over very flat, ideal landscape. Secondly they were developed on the basis of 
about 45 hours of data. More recently, Kai Morgenstern has used data from the Fluxnet 
project to examine turbulence spectra over 100,000s+ hours of data and from about 20 
field sites.  Detto et al. [Detto et al., 2010] provide the newest set of algorithms for 
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spectra under stable, near neutral and unstable thermal stratification from thousands of 
hours of measurements and for u, T, q, CO2 and CH4. 
 
I terms of wavenumber the spectral equation is 
 

0( ) ( )(1 )mS S        

 
For shorthand we provide the matices of coefficients for u, T, H2O, CO2, CH4, 
indexed j=1,2,3,4,5, and for stable, near neutral, unstable 
thermal stratification, indexed i = 1,2,3....  
 
% S0 power spectra 
S0(1, :) = [4,2.5,3.1,1.6,0.4];  % stable 
S0(2,:) = [8,5.3,3.8,2.9,0.2];   % near neutral 
S0(3,:) =[8.9,6.8,5.2,3.9,2.3];  % unstable 
 
% km power spectra (m^-1) 
km(1,:)= [4,3.1,4.3,3.1,2.1];    % stable 
km(2,:)=[11.1,12.3,9.3,10.5,1.4]; % near neutral 
km(3,:)=[14.2,16.8,12.2,14.8,15.2]; % unstable 
 
% gamma, v, power spectra 
 
v(1,:)=[1.7,1.5,1.6,1.3,1]; % stable 
v(2,:)=[1.6,1.2,1.4,1.2,1]; % near neutral 
v(3,:)=[1.6,1.3,1.4,1.2,1.3]; % unstable 
 
% S0 c spectra 
Co.S0(1,:) = [4,2.5,3.1,1.6,0.4]; % stable 
Co.S0(2,:) = [8,5.3,3.8,2.9,0.2]; % near neutral 
Co.S0(3,:) =[8.9,6.8,5.2,3.9,2.3]; % unstable 
 
% km power co spectra 
Co.km(1,:)= [4,3.1,4.3,3.1,2.1]; % stable 
Co.km(2,:)=[11.1,12.3,9.3,10.5,1.4]; % near neutral 
Co.km(3,:)=[14.2,16.8,12.2,14.8,15.2]; % unstable 
 
% gamma, v, co spectra 
 
Co.v(1,:)=[1.7,1.5,1.6,1.3,1]; 
Co.v(2,:)=[1.6,1.2,1.4,1.2,1]; 
Co.v(3,:)=[1.6,1.3,1.4,1.2,1.3]; 
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Figure 16 Su et al 2004 BLM 

 
Appendix 

The Fourier transform (Sxx()) at a particular angular frequency (=2fradians 

per second; f is natural frequency; cycles per second)  of a stochastic time series (x(t)) is 

defined as: 

Sxx ( )  x(t)exp(i t)dt


   (1 

In Equation 1, i is the imaginary number, i .  One attribute of examining Fourier 

transforms is that, according to Parseval’s theorem, the variance (x
2) is related to the 

integral of the power spectrum with respect to angular frequency: 

 x
2  | Sxx ( ) |2 d





    (2 

It thereby allows us to examine the amount of variance associated with specific 

frequencies. 

Remember 

exp(ix)  cos x  isin x  

exp(ix)  cos x  isin x  

| exp ix |1 

cos x  1

2
[exp(ix) exp(ix)] 

sin x  1

2
[exp(ix) exp(ix)] 

So the Fourier expansion series: 
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f ( )  A0

2
 Ak cosk 

k1

N

 Bk sink 
k1

N

  

 The spectral relation between two independent, but simultaneous, time series was 

quantified with a co-spectral analysis.  The co-spectra derived from the cross spectrum 

(Sxy()) between two time series, x(t) and y(t).  The cross spectrum is a function of the 

cross-correlation function, Rxy: 

Sxy( )  1


Rxy( )exp(i )d



   (3 

The cross-correlation between x(t) and y(t+) is computed as: 

Rxy  (T lim  )
1

2T
x(t)y(t  )dt

T

T

    (4 

The cross-spectrum has an even and odd component:  

Sxy( )Coxy ( ) iQxy ( )   (5 

The even component of the cross spectrum yields the co-spectrum, Coxy()):  

Coxy ( )  1


Rxy ( )cos( )d



    (6 

and the odd component yields the quadrature, Qxy()), spectrum:   

Qxy ( )  1


Rxy ( )sin( )d



  

 
Fundamentally, these calculations are performed on discrete and evenly-spaced, time 

series.  The specific frequencies that can be decomposed from such a time series are 

defined from fn  n / (Nt) , where the time step between samples is t , the total number 

of samples is denoted as N and the index n varies from –N/2 to +N/2.   The discrete 

Fourier transform (Fx) for for a time series (f(n)) at a time index number k is: 
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Fx (k)  f (n)exp(i2 nk N )
n0

N1

   (9 

The power spectrum is a function of the Fourier transform and its complex conjugate 

Sx (k)  t

N
Fx (k)Fx

*(k).  The co-spectrum and quadrature spectrum between two variables, 

x and y, are computed in a related manner, with respect to the real (

Coxy (k)  Re(
t

N
Fx (k)Fy

*(k))) and imaginary (Qxy (k)  Im(
t

N
Fx (k)Fy

*(k))) components.   
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