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1. Introduction:

3. The observation scale problem:

5. Solution:

Satellite Earth Observations (EO) can extend site specific ecosystem 

knowledge to wider regions. However, the use of coarse scale 

observations is complicated by the spatial heterogeneity and non-linearity 

of natural ecosystems [1]. Unaccounted for, these characteristics bias 

predictions. The “disaggregation” approach that we describe allows the 

unbiased combination of multi-resolution EO [2]. 
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We demonstrate the data 

assimilation 

disaggregation method by 

repeating the earlier 

analysis. The approach is 

robust and clearly out 
performs standard 

approaches that do not 

use disaggregation (Fig. 

4). Using the 

disaggregation approach 

results in a 1% 

overestimate of carbon 

uptake, compared to the 

58% underestimate using 

the standard assimilation 

of coarse observations. 

Assimilating 1x1, 4x4, 16x16 and 

64x64 pixel observations shows 

that with coarse resolution 

observations leaf area index (LAI) 

and carbon flux estimates are 

severely biased (Fig 1). This 

results from the underestimate in 

LAI and the collapse in the 

variability of LAI. Fig. 2 shows how 

the estimated Gross Primary 

Production (GPP) will be biased if 

based on an averaged LAI.

4. The “disaggregation” solution:

6. Additional benefits:

2. Analysis:
We use observations from Abisko, Sweden. A 512 by 512 m (128 by 128 pixels), 4 m resolution NDVI 

image, gathered by the NERC ARSF aircraft, was combined with a time series of NDVI from a tower. 

From this ‘true’ dataset we drew daily observations of NDVI at various spatial resolutions. These 

observations were fed into a ‘Particle filter’ data assimilation scheme [3] to model the LAI [4] and then 

carbon uptake of the system [5]. The approach assesses the prediction accuracy obtained using a 

particular NDVI resolution. The analysis is repeated with the ‘disaggregation’ approach.

Figure 1: The top row shows ‘truth’; the mean LAI and cumulative NEE time series, and the final LAI histogram and map. The mean (µ), 

standard deviation (�) and skew (γ) for the final LAI distribution are shown. 1x1 pixel, 4x4 pixel, 16x 16 pixel and 64x64 pixel analyses are 
shown in the lower panels. The data assimilation analyses did not use the ‘disaggregation’ approach.

To avoid biases the sub observation variability needs to be preserved. In our solution, 

we “disaggregate” coarse observations to the fine spatial resolution of the model. The 

disaggregated observation possesses the mean of the coarse observation, the spatial 

information from the model state and the variability from a prescribed PDF. The 

variability is estimated from (infrequent) fine resolution satellite/airborne observations, 

detailed field studies or ‘expert knowledge’. 

Step-by-step Example (Fig. 3):

Step 1: Extract current model state and coarse observation of the system state, X. Index the location of 
each element in the model state i.e.  n = 1 to 9.

Step 2: Assign a PDF to coarse observation of X. 

Step 3: Randomly draw n samples from the observation PDF. 

Step 4: Sort the n model states according to their values of X.

Figure 3: Schematic of the 

disaggregation approach to 

calculate the new observation. 

The performance of the disaggregation assimilations is further improved with the addition 

of infrequent high resolution NDVI imagery (Fig. 5, panels b2 and b3). The high resolution 

imagery imprinted the model state with finer resolution spatial information. This 

performance increase will be of benefit for field studies where infrequent (e.g. airborne, 

IKONOS) imagery is available, but at an insufficient frequency to capture the temporal 

dynamics of the ecosystem. 

Figure 4: The top row shows ‘truth’; the 

mean LAI and cumulative NEE time 

series, and the final LAI histogram and 

map. The mean (µ), standard deviation 

(�) and skew (γ) for the final LAI 
distribution are shown. 1x1 pixel, 4x4 

pixel, 16x 16 pixel and 64x64 pixel 

analyses are shown in the lower panels. 

The data assimilation analyses all used 

the ‘disaggregation’ approach.

Figure 5: The top row (panels b1, b2 and b3) shows the 16x16 pixel (with additional high resolution NDVI “snap shot”) data assimilation 

analysis. The bottom row (panels c1, c2 and c3) shows the 16x16 data assimilation analysis where successive NDVI observations shift in 

location rather than being collocated between observation times.

7. Conclusions
In our data assimilation disaggregation method, frequent, coarse resolution 

observations are combined with an estimate of their sub-pixel variability and the fine 

resolution model state. The sub-pixel variability can be derived from (infrequent) fine 
resolution Earth observation, detailed field studies or expert knowledge. The 

methodology is robust and out performs standard approaches that do not make use of 

the disaggregation method. The approach is easily implemented in most data 

assimilation schemes and benefits from combining multiple observations at differing 

spatial and temporal resolutions. 

Step 5: Assign the 

locations of the model 

states to the n

observation samples 

according to the order of 
the sorted model and 

observation values. 

Step 6: Reassemble the 

observation. This 

disaggregated 
observation can now be 

used as a normal 

measurement in the data 

assimilation scheme.
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Using shifting observations, 

which are located on a grid 

that moves between 

observation times, allowed the 

assimilation to improve the 

spatial information in the 

analysis (Fig. 5, panel c3). The 

shifting observations improved 

the spatial resolution of the 

assimilation. This result makes 

it attractive to consider non-

collocated observations from 
multiple satellites, even if they 

are of a similar resolution, 

provided that their geo-

location is accurately known. 
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the issues of averages and 

non-linear systems


