HIGH ROOT CONCENTRATION AND UNEVEN ECTOMYCORRHIZAL DIVERSITY NEAR SARCODES SANGUINEA (ERICACEAE): A CHEATER THAT STIMULATES ITS VICTIMS?1

MARTIN I. BIDARTONDO,2 ANNETTE M. KRETZER,3 ELIZABETH M. PINE, AND THOMAS D. BRUNS

111 Koshland Hall, College of Natural Resources, University of California at Berkeley, Berkeley, California 94720-3102, USA

Sarcodes sanguinea is a nonphotosynthetic mycoheterotrophic plant that obtains all of its fixed carbon from neighboring trees through a shared ectomycorrhizal fungus. We studied the spatial structuring of this tripartite symbiosis in a forest where Sarcodes is abundant, and its only fungal and photosynthetic plant associates are Rhizopogon ellenae and Abies magnifica, respectively. We found disproportionately high concentrations of Abies roots adjacent to Sarcodes roots compared to the surrounding soil. Rhizopogon ellenae colonizes the vast majority of those Abies roots (86±98%), and its abundance tends to decrease with increasing distance from Sarcodes plants. At 500 cm from Sarcodes plants we did not detect R. ellenae, and the ectomycorrhizal community instead was dominated by members of the Russulaceae and Thelephoraceae, which are commonly dominant in other California pinaceous forests. The highly clumped distribution of Abies-R. ellenae ectomycorrhizas indicates that Sarcodes plants either establish within pre-existing clumps, or they stimulate clump formation. Several lines of evidence favor the latter interpretation, suggesting an unexpected mutualistic aspect to the symbiosis. However, the mechanism involved remains unknown.

Key words: Abies magnifica; community structure; mutualism; mycoheterotrophy; parasitism; Rhizopogon ellenae; tripartite symbiosis.

The snow plant, Sarcodes sanguinea Torrey (Ericaceae), is the largest (up to several kilograms fresh mass) member of the nonphotosynthetic subfamily Monotropeae. The genus Sarcodes is monotypic and restricted to the mountains of the Sierra Nevada of California, and the southern ranges of Oregon (Wallace, 1975). Like all other monotropes, the snow plant is a mycoheterotroph: a nonphotosynthetic plant that obtains its fixed carbon from fungi. This is a successful lifestyle as evidenced by over 400 known species in 87 genera, notably in the families Ericaceae and Orchidaceae (Leake, 1994). Many mycoheterotrophs examined to date are linked to surrounding trees via a shared ectomycorrhizal (ECM) fungus (Furman and Trappe, 1971; Vreeland, Kleiner, and Vreeland, 1981; Cullings, Szaro, and Bruns, 1996; Taylor and Bruns, 1997). This interaction is called "epiparasitism" because the mycoheterotroph indirectly parasitizes the trees (Björkman, 1960), thus cheating the ECM mutualism. Furthermore, some ECM photosynthetic angiosperms are now known to engage in facultative epiparasitism. Simard et al. (1997a, b) demonstrated that in nature carbon can be derived from the better competitor tree species by a poorer one if both are colonized by common ECM fungi, thereby providing a novel mechanism for overcoming competitive exclusion. It appears that by permanently reversing carbon flow in their favor, nonphotosynthetic epiparasites have evolved to one extreme along a continuum of plant strategies for carbon acquisition.

Extreme host specialization appears to be a general pattern among nonphotosynthetic epiparasites; this contrasts with photosynthetic plants, which typically form mycorrhizas with phylogenetically diverse fungi. Recent studies have shown that some epiparasitic orchids (Taylor and Bruns, 1997) and monotropes (Cullings, Szaro, and Bruns, 1996; C. K. Lefevre, and R. Molina, personal communication, Oregon State University) specialize on highly restricted sets of closely related ECM fungal hosts. In fact, the only exception to this pattern of specialization was the snow plant, which appeared to be a generalist (Cullings, Szaro, and Bruns, 1996). However, we have recently determined that the snow plant is specialized over a large area of the Sierra Nevada of California on the ECM fungus Rhizopogon ellenae A. H. Smith (Bidartondo, Kretzer, and Bruns, 1998), a member of the suilloid lineage of the Boletales (Bruns et al., 1998). Over its entire range, the snow plant may actually form a "geographic mosaic of specialization" (Thompson, 1994).

Although we follow Björkman (1960) in referring to the monotropes as epiparasites, a net cost to either the photosynthetic plant or the fungal associate remains to be shown (Leake, 1994). Epiparasitism is consistent with (a) the heterotrophic habit of the monotropes; (b) the fact that extreme specialization is a common characteristic of parasitic systems (Price, 1980; Thompson, 1994); and (c) evidence for flow of 14 C-labeled glucose from trees to Monotropa hypopitys L. (Ericaceae), a close relative of Sarcodes (Björkman, 1960). However, Björkman also found that the growth of a fungus isolated from Monotropa mycorrhizas was greatly stimulated by an extract of the plant. Miller and Allen (1992) speculate that

1 Manuscript received 15 June 1999; revision accepted 7 September 1999. The authors thank Timothy Szaro for computer and laboratory assistance, Remi Cohen and Dirk Redecker for field assistance, and Dan Luoma and Peter Price for comments on the manuscript. A USDA competitive grant from the Forest Biology Program and a cooperative agreement with the Southwest Forest Experiment Station helped support this research, as well as grants from the East Bay Chapter of the California Native Plant Society, the Berkeley Chapter of the Sigma Xi Society, the Mycological Society of San Francisco, and the Mensen Foundation to M. I. B.

2 Author for correspondence (e-mail: martinb@nature.berkeley.edu).

3 Current address: 2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331–2902 USA.

1783
potential ecophysiological benefits for trees of supplying carbon to Monotropa may render the association mutualistic. Research on monotrope symbioses has focused on the mycoheterotrophic plant’s nutrition (Björkman, 1960), mycorrhizal ultrastructure (Dudridge and Read, 1982; Robertson and Robert-son, 1982), germination (Francke, 1934; S. McKendrick, personal communication, University of Sheffield), flowering (D. Luoma, personal communication, Oregon State University), and associated fungi (Cullings, Szaro, and Bruns, 1996). However, little is known about basic ecological traits of mon-tropes, and this is partly responsible for our difficulties in understanding the nature of their interactions.

In this study, we investigated the ECM community of a red fir, Abies magnifica Andr. Murray (Pinaceae), forest where the snow plant flowers abundantly, and we asked what part R. ellenae played in this community. Although one might expect that the specialization of the snow plant on R. ellenae would result in spatially correlated ECM roots, there were two other possibilities: (1) ECM roots could be low in abundance and randomly distributed. Low abundance was suggested for Rhizopogon subca-erulescens A. H. Smith (Boletaceae) ECM roots with respect to rock cleaves of the monotrope Pterospora andromedea Nutt. (Ericaceae) (Cullings, Szaro, and Bruns, 1996). Furthermore, low abundance is predicted for suillum fungi, such as Rhizo-pogon Fr. species, which are known to fruit profusely while making comparatively few connections to trees, and thus are hypothesized to have higher carbon sink strengths than other ECM fungi (Danielson, 1984; Natarajan, Mohan, and Ingleby, 1992; Gardes and Bruns, 1996). To test these hypotheses, we examined the distribution of red fir ECM roots within snow plant rockcleaves at and several distances from snow plant inflorescences.

MATERIALS AND METHODS

Study site—We sampled a location near Shaver Lake at the Sierra National Forest in the southern Sierra Nevada of California (elevation 2530 m, latitude 37°09′06″ N, longitude 119°07′50″ W). The study site is a 350–400 yr old, upper-montane, monospecific red fir (Abies magnifica) forest that was thinned and burned in 1992. The site came to our attention in 1995 when we observed abundant flowering spikes of the snow plant Sarcodes sanguinea). The average density of flowering spikes was 0.41 inflorescences/m² (0.12 SE) in August 1995, and 0.24 inflorescences/m² (0.06 SE) in August 1997, within 14 50-m² permanent circular plots used to monitor population dynamics.

Design—We sampled a total of five snow plants on either 16 July or 20 August 1997 from outside of our circular plots. We selected inflorescences for sampling based on the criterion that they had to be separated by at least 5 m from any other flowering snow plant. Each selected inflorescence became the center for a linear transect. We removed two soil cores at each of four distances (10, 50, 100, and 500 cm) away from each selected inflorescence. Cores removed at 5 m were also at least 5 m away from neighboring snow plant inflorescences. The soil cores were 4.6 cm in diameter and they were as deep as the rocky ground allowed, but at least 20 cm and at most 40 cm. Then we excavated the rock cleave of each snow plant. The rock cleave is a con-}

1784 American Journal of Botany [Vol. 87

Ectomycorrhizal identification—We identified ECM fungi using methods described by Gardes and Bruns (1996). Briefly, we extracted DNA from individual ECM roots of each morphotype and we amplified the internal transcribed spacer (ITS) of the nuclear ribosomal repeat by the polymerase chain reaction (PCR) with the fungal-specific primers ITS1F and ITS4B, or ITS1F and ITS4 (White et al., 1990; Gardes and Bruns, 1993). PCR products were then screened by restriction fragment length polymorphisms (RFLP) using first the restriction endonuclease RE (Alu-I, New England Biolabs Inc., Beverly, Massachusetts, USA). When types were redundant within a core by Alu-I RFLP only one of those types was analyzed further. We then screened with the RE Hinf-I. On average, we extracted and amplified each morphotype 2.6 times, with a bias for more abundant types. We estimated the molecular size of the restriction fragments obtained with Alu-I and Hinf-I using the program GelReader v.2.0.5 (National Center for Supercomputing Applications, Champaign, Illinois) and sorted the morphotype fragment sizes in various combinations in Excel 4.0 spreadsheets (Microsoft Co., Redmond, Washington, USA) to identify groups of morphotypes that matched for both restriction endonucleases. We checked that matching morphotypes were compatible according to our descriptions of their gross morphology. From previous studies we knew that ECM roots of closely related Rhizopogon section Amylopogon species are virtually indistinguishable by morphology alone. They are also difficult to differentiate by ITS RFLP with the two restriction enzymes mentioned above. Thus, we digested the ITS PCR products of all Rhizopogon-like types with a third RE, Cfo-I, which differentiates R. ellenae. Lastly, we examined the phylogenetic distribution of the ITS RFLP groups obtained. Because fungal fruiting at our site is rare and sporadic, direct RFLP matching to fungal sporocarps was not an option. Instead, we ranked ITS RFLP types according to their dry biomass pooled over all samples, and we selected those types with highest biomass for PCR amplification and sequencing of a fragment of the fungal mitochondrial large subunit (mtLSU) rDNA (Bruns et al., 1998). In most cases, the primer combination ML5/ML6 was used; in cases where PCR amplification was weak, or if sequencing proved difficult possibly due to the presence of introns, we attempted amplification with the primer combinations MLIN5/RML5, CML5.5/ML6, or MLIN3/ ML5.5 (Bruns et al., 1998). Sequencing of both strands was performed with an ABI model 377 Sequencer (Applied Biosystems Co., Foster City, Califor-nia, USA) using an ABI PRISM™ Dye Terminator Cycle Sequencing Core Kit (Perkin Elmer Co., Foster City, California, USA) or a Thermosequenase™ Dye Terminator Cycle Sequencing Pre-Mix Kit (Amersham Pharmacia Biotech, Piscataway, New Jersey, USA). We used DNA Sequenc-ing Analysis v.2.1.2 and Sequence Navigator v.1.0.1 (Applied Biosystems Co., Foster City, California, USA) for processing raw data. The nearest-re-
December 2000] BIDARTONDO ET AL.—ECTOMYCORRHIZAL DIVERSITY NEAR SARCODES 1785

Fig. 1. Total dry mass (mg) of red fir (Abies magnifica) ectomycorrhizas (y axis) in soil cores removed at four distances (10, 50, 100, and 500 cm) from five inflorescences of the snow plant, Sarcoedos sanguinea, and within four snow plant rootballs (z axis). Each ITS type (designated by a unique letter and number combination) is ranked according to its total dry mass over all distances (x axis). Inferred mtLSU phylogenetic affinity is provided as a basidiomycete family name whenever available. Note that the dry mass axis is truncated.

Fig. 2. Estimated concentration (mg/100 mL soil) of red fir (Abies magnifica) ectomycorrhizas in soil cores removed at four distances (10, 50, 100, and 500 cm) from five inflorescences of the snow plant, Sarcoedos sanguinea, and within four snow plant rootballs. All non-Rhizopogon ellenae ectomycorrhizas were displayed as a single bar. Error bars correspond to SE. Note that the concentration axis (y axis) scale is logarithmic.

RESULTS

Among the four Sarcoedos rootballs and 36 soil cores removed across an area of ~1800 m², we found a total of 80 different ectomycorrhizal types defined by unique combinations of characters (gross morphology and ITS RFLP). We found 47 ECM types that occurred in single soil cores (59% of all ECM types, 7% of all ECM biomass sampled). For ease of presentation, we pooled the data for soil cores taken at the same distance from each of the five snow plants sampled. Analysis considering each snow plant and its surrounding soil cores as independent units leads to essentially the same conclusions.

We identified 28 of the 80 ITS RFLP types to family, genus, or species level, corresponding to 36% of all ECM types and 89% of all ECM biomass sampled. The rest of ECM types are labeled “unknowns.” Types labeled “nonamplifying” (2.9% of all ECM biomass sampled) were partially degraded and/or nonturgid types that failed to PCR-amplify after at least three independent DNA extractions and several attempts at PCR of both the ITS and mtLSU regions. The cumulative dry mass of each ITS RFLP type at each distance is shown in Fig. 1. Rhizopogon ellenae is the predominant type in the Sarcoedos rootballs and 10 cm away from the inflorescences.

The average concentration of red fir ECM roots within the snow plant rootballs is significantly greater than at any distance sampled away from the snow plant inflorescences (P =
TABLE 1. GeneBank accession numbers for fungal mtLSU sequences obtained from 26 ITS restriction length polymorphism (RFLP) types of *Abies magnifica* ectomycorrhizae. Inferred phylogenetic group names follow Bruns et al. (1998). Order corresponds to decreasing overall biomass rank (top: highest biomass) with *Rhizopogon ellenae*, *Cenococcum* sp., and unidentified types removed.

<table>
<thead>
<tr>
<th>ITS RFLP type</th>
<th>GeneBank accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russulaceae 1</td>
<td>GBAN-AF177709</td>
</tr>
<tr>
<td>Thelephorales 1</td>
<td>GBAN-AF177725</td>
</tr>
<tr>
<td>Suillus 1</td>
<td>GBAN-AF177721</td>
</tr>
<tr>
<td>Russulaceae 2</td>
<td>GBAN-AF177710</td>
</tr>
<tr>
<td>Tricholomataceae 1</td>
<td>GBAN-AF177717</td>
</tr>
<tr>
<td>Tricholomataceae 2</td>
<td>GBAN-AF177718</td>
</tr>
<tr>
<td>Thelephorales 2</td>
<td>GBAN-AF177726</td>
</tr>
<tr>
<td>Boletoid</td>
<td>GBAN-AF177702</td>
</tr>
<tr>
<td>Tricholomataceae 3</td>
<td>GBAN-AF177719</td>
</tr>
<tr>
<td>Tricholomataceae 4</td>
<td>GBAN-AF177720</td>
</tr>
<tr>
<td>Suillus 2</td>
<td>GBAN-AF177722</td>
</tr>
<tr>
<td>Cortinari-/Entolomataceae</td>
<td>GBAN-AF177705</td>
</tr>
<tr>
<td>Gomphaceae 1</td>
<td>GBAN-AF177706</td>
</tr>
<tr>
<td>Russulaceae 3</td>
<td>GBAN-AF177711</td>
</tr>
<tr>
<td>Suillus 3</td>
<td>GBAN-AF177723</td>
</tr>
<tr>
<td>Gomphaceae 2</td>
<td>GBAN-AF177707</td>
</tr>
<tr>
<td>Gomphaceae 3</td>
<td>GBAN-AF177708</td>
</tr>
<tr>
<td>Russulaceae 4</td>
<td>GBAN-AF177712</td>
</tr>
<tr>
<td>Russulaceae 5</td>
<td>GBAN-AF177713</td>
</tr>
<tr>
<td>Albatrellus sp.</td>
<td>GBAN-AF177704</td>
</tr>
<tr>
<td>Suillus 4</td>
<td>GBAN-AF177724</td>
</tr>
<tr>
<td>Russulaceae 6</td>
<td>GBAN-AF177714</td>
</tr>
<tr>
<td>Russulaceae 7</td>
<td>GBAN-AF177715</td>
</tr>
<tr>
<td>Thelephorales 3</td>
<td>GBAN-AF177727</td>
</tr>
<tr>
<td>Russulaceae 8</td>
<td>GBAN-AF177716</td>
</tr>
<tr>
<td>Amanita sp.</td>
<td>GBAN-AF177703</td>
</tr>
</tbody>
</table>

The prefix GBAN– has been added to link the online version of American Journal of Botany to GeneBank but is not part of the actual accession number.

That members of the Russulaceae and Thelephorales dominate at distances farthest away from *Sarcodes* at our study site. These fungal families are also dominant in other pineaceous Californian forests (Gardes and Bruns, 1996; Horton and Bruns, 1998; Stendell, Horton, and Bruns, 1999). The high diversity and patchiness of the ECM community at our site (Fig. 1) resemble that found in a *Pinus ponderosa* Lawes. (Pinaceae) forest located also in the Sierra National Forest (Stendell, Horton, and Bruns, 1999) as well as in old-growth forests (Dahlberg, Jonsson, and Nylund, 1997; Jonsson et al., 1999). In contrast, the ECM community of *Pinus muricata* (Pinaceae) forests in coastal California appears generally less diverse (Gardes and Bruns, 1996).

The distribution of red fir root tips colonized by *R. ellenae* at our site was greatest directly on the snow plant rootballs and decreased sharply away from them. This finding suggests that most physiological transfer between snow plant roots and *R. ellenae*–*Abies* ECM occurs over short distances (i.e., <10 cm) despite the presence of *R. ellenae* rhizomorphs, which can exceed that length. It is interesting that another suillid fungus (Suilloid 1; Fig. 1), which appears more uniformly distributed and ranks fourth overall, does not associate with the snow plant. *Rhizopogon ellenae* was not detected in any of the nine soil cores we removed 500 cm away from snow plants. Thus, the snow plants sampled appear to occupy dense islands of *R. ellenae* ECM roots. Despite the unevenness observed, ECM type richness within the snow plant rootballs was not significantly different than that in the surrounding soil when we take into account differences in sampled volume between rootballs and soil cores.

If a fungus is necessary for seed germination (Leake, 1994), our results are consistent with data indicating that most seeds of the obligate mycoheterotrophs *Monotropa hypopitys* L. (Ericaceae) and *Neottia nidus-avis* L. (Rich) (Orchidaceae) germinate close to prerecorded positions of adult plants (S. McKendrick, personal communication, University of Sheffield). Snow plant seeds germinate in the laboratory when grown axenically within *R. ellenae* cultures, and field germination trials have recently been successful (T. D. Bruns, unpublished data).

Unexpectedly, the snow plant rootballs sampled were sites of disproportionately high concentrations of red fir roots compared to any soil core, and *R. ellenae* colonized the vast majority of those roots (86–98%; Fig. 2). For the related monotrope, *Pterospora andromedea*, Cullings, Szaro, and Bruns (1996) documented the scarcity of ECM roots of its symbiont, *Rhizopogon subcaerulescens*, in one rootball and in soil cores removed at 0.5 m from three inflorescences. Because the *P. andromedea* rootball data disagree with our results for *Sarcodes* rootballs, we examined two additional *P. andromedea* rootballs. These were densely covered with ECM roots with a morphology consistent with *Rhizopogon-Pinus* mycorrhizas, similar to what we have observed for *Sarcodes*.

Two possible explanations exist for the association of *Sarcodes* with dense clumps of *R. ellenae*. Either *Sarcodes* plants preferentially establish in pre-existing clumps, or they create them. We favor the second explanation for two reasons. First, the *Sarcodes* rootball itself has relatively few ECM roots in it; instead most roots are found on the outside surface. This distribution suggests that *Abies*–*R. ellenae* ECM roots form as the *Sarcodes* rootball develops. If instead *Sarcodes* roots were finding such clumps and establishing around them, one would expect the *Abies*–*R. ellenae* ECM clumps to be predominantly
internal to the rootballs. Second, these clumps are much larger than any we have observed for related *Rhizopogon* species in a variety of pinaceous forests. Most, perhaps all, *Rhizopogon* species have the ability to form coralloid ectomycorrhiza, which are essentially small compact areas of dense root proliferation that are colonized by the fungus (Molina and Trappe, 1994). But the scale of the *Abies-R. ellenae* clumps associated with *Sarcodes* is far beyond any aggregations that we have observed. In fact, the *Sarcodes* rootball itself could be viewed as a giant mycorrhiza, one that can be 1000 cm3 or more rather than the typical size of <1 cm3.

If, for the moment, we assume that *Abies-R. ellenae* clumps develop in response to *Sarcodes* plants, this creates an apparent mechanistic conundrum. How can a plant that lacks its own carbon source stimulate both its mycorrhizal associate and the roots of the photosynthetic plant to which the fungus is attached? This problem is not as great as it may seem. Growth stimulation of host tissues is a common pattern in parasitic interactions. Generally, abnormally cell enlargement and/or division are mediated by hormonal imbalance associated with infection (Agrios, 1997). Examples include branch swelling caused by mistletoes, tumors by *Agrobacterium*, cankers by some rust fungi, and a variety of galls by flies, aphids, and wasps.

Yet these examples differ in at least two ways from the *Sarcodes* system. First, both *R. ellenae*, which is directly connected to *Sarcodes*, and *Abies* roots, which are not directly connected to *Sarcodes*, have proliferated. If *Sarcodes* seeds germinate near pre-existing clumps of *R. ellenae* ECM, the snow plant could subsequently alter: (a) a *R. ellenae* mycorrhization pathway that stimulates *Abies* roots indirectly or (b) an *Abies* root proliferation pathway that stimulates *R. ellenae* indirectly. A mechanism for the former process is suggested by indole-3-acetic acid (IAA)-overproducing mutant strains of the ECM fungus *Hebeloma cylindrosporum* Romagnesi, which can form three to six times more ECM roots with pine hosts than wild-type strains (Durand et al., 1992; Gay et al., 1994). A second, and more important difference of the *Sarcodes* system, is that growth stimulation is likely to benefit *R. ellenae*. Instead, parasite-induced growth reduces host fitness (e.g., “parasitic castration” of mollusks by trematodes; Sorensen and Minchella, 1998). In this study, it seems that *R. ellenae* benefits; it colonizes a vastly larger proportion of *Abies* roots relative to its competitors in a diverse ECM community. This must in turn benefit the specialized *Sarcodes*. In this aspect the relationship between *Sarcodes* and *R. ellenae* appears mutualistic rather than parasitic.

In summary, we found both fungal and photosynthetic hosts in disproportionate concentrations in rootballs of *Sarcodes* compared to the adjacent soil. Thus, the ectomycorrhizal community differs significantly where *Sarcodes* roots are present in a manner that appears beneficial, at least over the short term, to the fungal symbiont. However, we do not know whether there is any trade-off incurred by *R. ellenae* as a result of its association with *Sarcodes*. This will be a critical piece of information to acquire if we are to understand the nature of this tripartite symbiosis.

LITERATURE CITED

Simard, S. W., R. Molina, J. E. Smith, D. A. Perry, and M. D. Jones. 1997a. Shared compatibility of ectomycorrhizae on *Pseudotsuga menziesii* and *Betula papyrifera* seedlings grown in mixture in soils from...

