these options is consistent with the possibility that HE0107 – 5240 has ‘locked up’ the elemental clues required for understanding the nature of population III stars. Astronomers have long debated the form of the so-called ‘initial mass function’ of these objects, although recent theory has favoured the notion that it was dominated by stars of between several hundred and one thousand times the mass of the Sun. Such massive stars have extremely short lifetimes, so the elements they created provide one of the few lingering pieces of evidence that can be used to infer their properties.

Detailed observations of HE0107 – 5240, now under way, should help to discriminate between the three options. On page 834, for instance, Bonifacio et al. propose that measurement of the element O may hold one key. They argue that this element should be detectable in the near-ultraviolet region of the spectrum of HE0107 – 5240. If it turns out to show a ratio, with respect to Fe, of 1, then it might be explained by pre-explosion nucleosynthesis in the progenitor, were ejected into the interstellar medium. Umeda and Nomoto also note that similar conditions might arise from aspherical supernova explosions, where jets of explosive nucleosynthesis might have produced by a rapidly rotating progenitor star. These ideas are supported by the existence of other C-, N- (and O-) rich, extremely metal-poor stars, which have abundance patterns that are in some ways like that of HE0107 – 5240 and could be explained by a similar mechanism. Furthermore, the sort of low-luminosity supernova explosions envisaged by Umeda and Nomoto have already been observed — examples include SN1997D and SN1999br.

Both Umeda and Nomoto and Schneider et al. (page 869) point out that the great abundance of C, N (and presumably O) in HE0107 – 5240 indicates that the gas cloud from which it formed was already quite metal-rich (even though the Fe abundance is low, the total abundance of metals is dominated by the lighter elements). That would allow efficient formation of low-mass stars from the ‘cooling channels’ supplied by the lighter elements. But these authors also note that, even if the abundances of C, N and O in the cloud from which HE0107 – 5240 formed were quite low, and were boosted only later from internal mixing processes, gas with metal abundance as low as that inferred from the Fe alone could still fractionate to form low-mass stars due to cooling from dust grains — if indeed such grains could have formed at sufficiently early times.

Schneider et al. also argue that if the first population III stars had masses of 200–220 times the solar mass, their explosions might account for the abundances of the heavier elements in HE0107 – 5240, though not the lighter ones. Schneider et al. agree with Umeda and Nomoto that another possibility is the explosion of progenitors with masses 20–25 times that of the Sun, and point out that improved upper limits on the abundance of Zn, or the presence (or lack) of elements created in the rapid neutron-capture process in HE0107 – 5240, may be able to discriminate between the appropriate mass range of the progenitor object. From the data already in hand, however, Christlieb et al. have argued that if the neutron-capture elements were indeed greatly enhanced, Ba and Sr might be expected to be detected in this star. But they aren’t.

Although we are left with a frustrating variety of possibilities, study of HE0107 – 5240 should allow us to address many questions about the formation and evolution of the first generations of stars in the Universe. One line of attack, not explicitly mentioned in these three papers, is analysis of the metallicity distribution function of stars with the lowest abundances of heavy elements. If they apply in general, several of these explanations offered for the formation of a star with the observed properties of HE0107 – 5240 will produce stars with characteristic metallicities — which, given a large enough sample, might be detected as deviations from a continuous distribution of stellar metallicities. Hence, numerous additional stars with extremely low Fe abundances will need to be discovered to fully ‘tell the tale’ of early star formation and the creation of the first metals in the Universe.

Tim Lincoln

MARTIN I. BIDARTONDO

Aliverwort cheat

Ghostsweet — Cryptothallus mirabilis — is an aptly named: it is a liverwort that lives beneath the surface layers in woodland, and rarely comes to human attention. Martin I. Bidartondo and colleagues tell how they have delved into the tangled details of its relationships with other organisms, and brought to light its cheating way of life (Proc. R. Soc. Lond. B 270, 835–842; 2003).

Cryptothallus cannot carry out photosynthesis, and so must have a different energy source. It has long been known that it is associated with certain fungi. In a chain of experiment and inference, in part involving growth of the various players in microcosms, Bidartondo et al. now find that the fungi concerned belong to the Tulasnella group which, in turn, form mycorrhiza — close and mutually beneficial connections (pictured) — with the roots of trees such as birch and pine.

So far, so cozy. But from work with carbon isotopes it turns out that Cryptothallus is a cheat: it gets its carbon supply not from the soil, as once thought, but from the tree via Tulasnella. Instances of such complex relationships are known from other plants and other fungi, but this example greatly widens the field of organisms that can be involved.

Tim Lincoln

826