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Modeling the Impact of Temperature on Peak Electricity Demand in California 
 

Holly Suzara 
 

 

Abstract  This study utilizes historic monthly peak electricity load data of the California 
Independent System Operator service area and corresponding data of select determinants of peak 
electricity load (temperature, electricity price and population) to specify a multiple regression 
model to forecast the impact of temperature on peak electricity demand. The results indicate that 
the mathematical relationship between temperature and peak electricity demand is in the form of 
a third-degree polynomial equation whereby peak electricity load increases exponentially with 
increasing temperature and then approaches constant levels at high (>∼90° F) temperatures 
(signifying that electric systems used for space conditioning are running at maximum capacity). 
This study attempts to improve upon an existing forecasting model indicating a quadratic 
relationship between temperature and peak electricity demand whereby peak electricity load 
increases exponentially with increasing temperature.  
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Introduction 

The issue of global warming, the observed increase in globally averaged temperatures and its 

projected continuation, is perhaps one of the most serious challenges posed to today’s scientific 

and political communities. In 1976, the World Meteorological Organization (WMO) issued the 

first authoritative statement on the accumulation of carbon dioxide in the atmosphere and the 

potential impacts on climate and recognized this phenomenon as one of the most serious 

problems facing global sustainable development (WMO, 2007). The WMO and the United 

Nations Environment Programme (UNEP) established the Intergovernmental Panel on Climate 

Change (IPCC) in 1988 to assess scientific information on climate change, its potential impacts 

and options for adaptation and mitigation (IPCC, 2001). As of June 2007, one hundred seventy-

five countries have ratified the Kyoto Protocol, an agreement made under the United Nations 

Framework Convention on Climate Change, committing to reduce their emissions of carbon 

dioxide and five other greenhouse gasses or engage in emissions trading (Quarles, 2007). 

Additionally, the 2007 Nobel Peace Prize was awarded to the IPCC and Albert Gore for their 

contributions to and efforts in the area of climate change science and advocacy (Nobelprize.org). 

The marked importance of climate change by the scientific community has spurred the need 

for research in areas of mitigation, impacts, and adaptation. Current research on climate change 

denotes two areas of greatest concern: the impacts of climate change on the physical 

environment and the socio-economic impacts of climate change (Baxter & Calandri, 1992). 

Research on how climate change impacts the physical environment include studies on climate-

sensitive ecosystems, changes in glacier melting, sea level rise, sea-surface temperature and 

ocean acidity, impacts on precipitation, aridity and extreme weather events, and impacts on 

biological diversity (Baxter & Calandri, 1992). Research on socio-economic impacts of climate 

change includes studies on changes in water resources, air quality, health and disease vectors, 

shifting agriculture and its implications on food resources and impacts of climate on energy use 

(Baxter & Calandri, 1992). 

Energy use and climate change is perhaps one of the most intriguing areas of emphasis 

because climate change affects both energy demand and supply. Hydroelectric power will most 

likely be the most impacted of all energy sources because it is dependent on both timing and 

quantities of precipitation, snow melt and stream flows, all of which will be impacted by climate 
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change. It is anticipated that hydroelectric power generation will be diminished or destabilized as 

a result of climate change (IPCC, 2001). It is estimated that a slight decrease in precipitation 

could decrease California’s hydroelectric power supply by ten to thirty percent by the end of this 

century (Miller, et al., 2007). Climate change will also impact and potentially diminish other 

energy sources such as solar energy, due to increased cloud cover; wind production, due to 

diminished wind speeds; and production of biomass, due to changes in growing seasons (IPCC, 

2001). On the demand side, climate change and the corresponding increase in global average 

temperatures and significant increases in frequency, intensity and duration of summertime 

extreme heat days will most likely lead to a significant increase in energy demand due to the 

need for indoor air conditioning (Miller & Hayhoe, 2006). The IPCC uses estimates from six 

Special Report on Emissions Scenarios (SRES) to project a very likely (>90% probability) 

increase in warm spells and heat wave frequency over most land areas in the twenty-first century 

(IPCC, 2007). Continuous demand during hot summers can overload existing electric systems, 

damage power lines, transformers, and electrical equipment and result in power outages.  

California, one of the world’s largest economies, is a major area of concern regarding energy 

demand. Although California’s per capita electricity demand has remained steady since 1973 due 

to energy efficient programs, the increased growth in population and technology in conjunction 

with the anticipated increase in air conditioning use shows an upward trend in aggregate peak 

electricity demand approaching 67 Gigawatts in 2016, representing a 14% increase in one decade 

(CEC, 2005). California currently experiences electric supply reliability problems as demand 

frequently exceeds the available generating and/or transmitting capacity. This problem has 

contributed to the problem of industries moving out of California as some industries relocate to 

regions where electricity supply is more dependable (CEC, 2005). 

The California power grid is a network of over twenty-seven thousand miles of high-voltage 

power lines connecting 979 power plants, almost fifty private and publicly owned utilities, and 

over thirty million customers (CAISO, 2007). Over 200,000 Giga-watt hours of power are 

delivered annually through this network (CAISO, 2007). To ensure that electricity generation 

supply meets demand and that electricity is adequately delivered, the California Independent 

System Operator (CAISO), an independent third party organization was formed at the direction 

of the Federal Energy Regulatory Commission (FERC) to act as the intermediary between power 
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plants and utilities, and to manage, control and monitor the operations of this vital and complex 

power grid (CAISO, 2007). 

CAISO utilizes various models to forecast two-day-ahead, one-day-ahead, and hourly 

electricity demand to determine what the load (total electricity demand) will be for each hour of 

the day (CAISO, 2007). Perhaps the most critical feature of the load forecast is the peak load. 

The peak load is the maximum requirements of the network at a given time, when the electricity 

need is the greatest. Usually, the peak load occurs between the hours of two and four o’clock in 

the afternoon with even greater peaking in the summer due to air conditioning use. When 

electricity usage nears the peak load, the grid is operating to near capacity, “peaker plants” 

(usually less efficient, more polluting plants) are called into operation, electricity prices are the 

highest, and there is increased risk of system failure and power outages (CAISO, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

 

 

 

 

 

Figure 1:  CAISO Peak Load Graph (shows peak load fluctuations for a 24-hour period) 
                  Emergency Stage 1 (grid operating below 7% reserves) 
                  Emergency Stage 2 (grid operating below 3% reserves) 
                  Emergency Stage 3 (no reserves – blackouts necessary) 
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Many studies have researched electricity demand as a function of temperature. Baxter & 

Calandri (1992) assessed electricity needs in California resulting from temperature change. 

Historical data is observed and superimposed in a highly theoretical operations model to project 

electricity demand for a fixed date in the future. Rosenthal, et al. (1995) quantifies the 

relationship between global warming and U.S. energy expenditures for space heating and cooling 

in residential and commercial buildings. In their analysis, the total increase in energy use is 

derived and an econometric model is developed. However, the study does not address peak 

electricity demand or load. Hor, et al. (2005) developed a multiple regression model to forecast 

monthly electricity demand in the U.K. In this study, a correlation is established between 

electricity demand and weather-related parameters. Although peak load is not addressed in this 

study, the regression model is relevant and statistically significant. 

Perhaps the most intriguing matter and the impetus for my study is the outcome of the 

regression model utilized by CAISO (2007) in their peak load forecasting. The relationship 

between peak load and temperature in the regression model used by the California Independent 

System Operator (CAISO) is in the form of a second-degree polynomial (quadratic equation) 

where peak load approaches infinity at high temperatures (CAISO, 2007) (Fig. 2). The a priori 

expectation of this study is that when all systems requiring electricity are in use (i.e. at high 

temperatures, most people are using air conditioning), if temperatures were to increase, the 

increased electric load would not continue to increase exponentially, but approach constant 

levels when electric systems are already running at maximum capacity (assuming no unusual 

additions to the electric systems, i.e. mass purchase and use of room air conditioning units on 

very hot days). Thus, this study hypothesizes that the relationship between peak load and 

temperature is better represented in the form of a third-degree polynomial rather than a second- 

degree polynomial.  

The second-degree polynomial (quadratic equation) possesses the general functional form of:  

y = a + bx + x2.  The third-degree polynomial possesses the following general functional form:   

y = a + bx + bx2 + bx3.  The visual difference in these two functional forms is shown in Figure 3 

with the hypothesized model (third-degree polynomial) superimposed on the CAISO model 

(second-degree polynomial). The CAISO model (by applying a quadratic functional form) 

projects peak electricity load approaching infinity as temperature rises. By specifying a third- 
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degree polynomial, the hypothesized model projects a leveling out of peak electricity load as 

temperatures rise above approximately 90° F.  

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

Figure 2:  CAISO Daily Peak Load Forecast generated with Itron’s MetrixND Energy Forecasting Software   
                  (Second Degree Polynomial (Quadratic) Relationship Between Temperature and Peak Load) 
 

Figure 3:  Hypothesized Model of Peak Load and Temperature (third-degree polynomial relationship) 
                  superimposed on CAISO peak load forecast (quadratic relationship) 

 

Hypothesized Form 
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This study aims to improve upon existing methods of forecasting and quantifying future 

electricity needs due to increasing temperature. It is a step towards gaining understanding of 

climate change impacts and adaptation. Improved models, such as this study aims to achieve, can 

aid in future energy resource planning, energy conservation efforts, load-shifting, and other areas 

of energy systems operations management. Improved electricity load forecasting could possibly 

reduce the instances of costly power outages, the need for bringing inefficient, polluting 

“peaker” plants on line, and generally improve the dependability and market efficiency of the 

California power grid. 

 

Methods 

Data of historical peak loads and determinants of electricity demand (population data, 

temperature data and electricity price data) were used to create a regression model of peak load 

as a function of temperature, which fits the hypothesized expectation that peak load and 

temperature have a relationship that fits a third-degree polynomial (Fig. 3) 

Data  Electricity prices were attained via the consumer price index for electricity using 

Bureau of Labor Statistics data. California population data were attained from the U.S. Bureau of 

the Census (U.S. Census Bureau, 2007), California high temperatures were attained for eleven 

weather stations (Ukiah, Sacramento, Fresno, San Jose, San Francisco, Long Beach, Burbank, 

Riverside, Lindbergh Field, Miramar and El Cajon) within the four major planning areas of the 

California Energy Commission (Pacific Gas & Electric, Southern California Edison, San Diego 

Gas & Electric, and Los Angeles Department of Water and Power), (Western Regional Climate 

Center, 2007). Because residential air conditioning is the primary driver of day-to-day changes in 

peak demand (CEC, 2007), weather station data was weighted based on the estimated number of 

residential air conditioning units in each of the utility forecast zones assumed in the California 

Energy Commission’s residential demand forecast model (CEC, 2007). CAISO peak load data 

was attained from CAISO Federal Energy Regulatory Commission form 714 filings (CAISO, 

2007). All data were monthly figures from January 1993 to December 2003. 

Model Development  A statistical model was developed utilizing a priori expected 

relationships between electricity demand and its determinants (population, price of electricity 

and temperature): 

y = βo  + β1x1 + β2 (1/x2) + β3x3  + β4x3
2  + β5x3

3 + ε  
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where y is the total peak electric load in the CAISO service area for the hour and day of the 

month with the highest usage. x1 is the California population; x2 is the price of electricity; and x3 

is the daily maximum representative temperature in California. As can be observed in the 

model’s specification, temperature is expressed as a third-degree polynomial. The third degree 

polynomial is specified because it provides a measure of the relationship between peak load and 

temperature, which is expected to conform to the observed data. βo provides a measurement of 

the impact of variables not included in the equation (determinants of peak load other than 

temperature, population and electricity price). Mathematically, βo is the y-axis intercept of the 

linear function. β1 shows the change in peak load (megawatt hours) per unit change (# people) in 

the California population. β2 shows the change in peak load (megawatt hours) per unit change in 

the inverse of electricity price (1 / consumer price index for electricity use). β3 shows the change 

in peak load (megawatt hours) per unit change in temperature (degrees Farenheight). β4 shows 

the change in peak load (megawatt hours) per unit change in temperature (degrees Farenheight) 

to the second power and β5 shows the change in peak load (megawatt hours) per unit change in 

temperature (degrees Farenheight) to the third power. When specifying the model in this 

structural form, β3, β4 and β5 should be observed as a group (the results of these individual values 

independently do not have meaning). Their group meaning is shown in the line (hypothesized 

model) in Figure 3. Figure 3 shows the combined effect of β3, β4 and β5 while x1 and x2 are held 

constant (at the value of final data point of each variable). 

The CAISO model was not specified in this study. It is generated by a proprietary software 

(Itron MetrixND Energy Forecasting Software) whose programming specification and statistical 

results are not available to the public. The only statistical information revealed in the CAISO 

model is that the relationship between peak load and temperature was specified as a quadratic 

equation. This was shown graphically. The other variables in the CAISO model was simply 

stated as economic and population data (CAISO, 2005). 

Multiple Regression Analysis  Historical data were plotted on a graph with temperature and 

peak load as the x and y-axes respectively (Fig. 4). Multiple regression analyses were run on the 

historical data transforming temperature values to the third degree (hypothesized third-degree 

polynomial relationship), second degree (estimated CAISO quadratic relationship) and lastly 
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using non-transformed temperature values (linear relationship) to determine the βi coefficients 

and the resulting models were determined: 

 
Third-degree polynomial relationship: 

       y = 549,391 + .00170(x1) + 1,030,481(1/x2) – 23,131(x3) + 296.48(x3) 2 – 1.2309(x3) 3 

Estimated CAISO quadratic relationship: 

        y = 30,921 + .00169(x1) + 961,808(1/x2) – 2,159(x3) + 16.9567(x3) 2  

Linear relationship: 

        y = -63,755 + .00165(x1) + 965,070(1/x2) – 409(x3) 

 
Regression statistics were evaluated to determine the statistical significance of the models and 

the accuracy of their respective regression coefficients. 

 

Results 

 
Figure 4.  Historical Monthly Peak Loads of CAISO Service Area (1993 – 2003) and corresponding   
                temperatures. Temperature data from 11 weather stations were weighted to obtain representative   

                               temperatures of the state of California. 
 

 

The hypothesized model (the third-degree polynomial relationship) explains 84% of the 

variation in peak electricity demand (R2= 0.84). Of further statistical importance, the absolute 

value of the t-statistic corresponding to every regression coefficient for the hypothesized model 
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is greater than 3.99 and possesses the correct theoretical sign, indicating statistical significance 

for each regression coefficient. The t and p-values are shown in Table 1. 
 

 

Table 1.  Regression Statistics Comparing 2nd Degree and 3rd Degree Temperature and Peak  
               Load Relationships 
 

 

The third-degree regression statistics are stronger than the regression statistics corresponding 

to the quadratic relationship between temperature and peak load. The R2 (the percentage of 

variation on the peak load usage that is explained by the estimated regression equation) of the 

quadratic is lower - - 82%, as compared to 84% in the third-degree equation. The t statistics in 

the third-degree equation are statistically significant at the 5% level of significance for every 

regression coefficient. In the quadratic, the intercept is not statistically significant; the t statistic 

is 1.89 and the corresponding p-value is .06, which is greater than the critical p-value of .025. 

F-test  To further confirm the hypothesis that the third-degree equation statistically 

outperforms the quadratic equation, an F-test was conducted to ascertain statistically if the 

addition of variable 5 (Temperature3) results in an improved specification of the model: 

 
 

                              Temperature & Peak Load Relationship

3rd Degree (Hypothesized) 2nd Degree (Quadratic) 1st Degree (Linear)

Adjusted R2 0.838205 0.819100 0.767451

Standard Error 2207 2334 2646

t Statistics

  Intercept 4.20811 1.889962 -10.452966

  Variable 1 (Population) 14.55728 13.644964 11.815372

  Variable 2 (Electricity Price) 4.18958 3.707191 3.280782

  Variable 3 (Temperature) -4.398616 -5.143539 16.922773

  Variable 4 (Temperature2) 4.239098 6.127502

  Variable 5 (Temperature3) -3.999454

P-Values

  Intercept 4.85353 E-05 0.061042299 7.22063 E-19

  Variable 1 (Population) 9.09389 E-29 1.16954 E-26 3.07459 E-22

  Variable 2 (Electricity Price) 5.21442 E-05 0.000311747 0.001334037

  Variable 3 (Temperature) 2.29375 E-05 9.94439 E-07 1.8799 E-34

  Variable 4 (Temperature2) 4.30289 E-05 1.03885 E-08

  Variable 5 (Temperature3) 0.000107524
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F =  (R2
with variable 5 – R2

without variable 5) / k with variable 5   
              (1-R2

 with variable 5) / n - k with variable 5 

  
Ho: Addition of variable 5 (Temperature3) does not improve model 

HA: Addition of variable 5 (Temperature3) improves the model 

If  F > Fcritical table value, reject null hypothesis 

 
F = 8.4151  

Fcritical table value = 3.92 at the 5% level of significance 

 
F > Fcritical table value, therefore, the null hypothesis can be rejected and specifying temperature to 

the third-degree is an improvement to the existing CAISO model which specifies that 

temperature has a second-degree relationship with peak load.  

The results of the F test are robust. For sample sizes greater than 30, the Central Limit 

Theorem will hold (Research & Education Association, 2000). The sample size in this study 

equals 132 observations. Even if the distribution of yi is unknown, a Central Limit Theorem 

permits us to state that the least squares estimator will be approximately normally distributed for 

sample sizes usually employed in practice (Griffiths, et al., 1993). But even without assuming the 

yi are normal, as sample size increases, the distribution of β will usually approach normality; this 

can be justified by a generalized form of the Central Limit Theorem (Wonnacott & Wonnacott, 

1970). Griffith asserts that the normality assumption permitted us to use the t- and F-statistics for 

testing linear hypotheses about the coefficient vector β (Griffiths, et al., 1993). 

t-test of Statistical Significance  Additional evidence that the third-degree coefficient 

improves the model comes from the fact that the t-statistic associated with temperature3 is 3.99 

and the associated p-value is .0001, which establishes that a statistically significant relationship 

exists between peak load and temperature3. 

Graphing Functional Form  To isolate the effect of temperature on peak load, population 

and electricity price were held constant. Population and electricity price data from the last year of 

the data set were substituted for variables x1 and x2 respectively to graph the functional form of 

the temperature/peak load relationship (Fig. 5) resulting in the following equation: 

 

y = 622,086 – 23,131 * (Temperature) + 296.48 * (Temperature2) -1.2309 * (Temperature3). 
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              Figure 5.  Peak Load Model. Model-derived relationship of Peak Load and  
                              Temperature. Population and electricity price held constant to isolate effect of        
                              temperature on peak load. 

 

 
Figure 6.  Historical Peak Load & Modeled Peak Load. Model-derived relationship of peak  
                load and temperature superimposed over historical peak load data 

 

 

 

 



Holly Suzara                               Modeling Electricity Demand                             May 8, 2008 

 p. 13 

Application  Population and electricity price data from the last year of the data set were 

substituted for variables x1 and x2 respectively to calculate peak load at various temperature 

scenarios and compare resulting peak load values from the CAISO quadratic equation and the 

third-degree polynomial equation (Table 2): 

 
quadratic equation: 

y = 30,921 + .00169(x1) + 961,808(1/x2) – 2,159(x3) + 16.9567(x3) 2  

third-degree polynomial equation: 

y = 622,086 – 23,131 * (Temperature) + 296.48 * (Temperature2) -1.2309 * (Temperature3) 

 
The model-derived values for the points on Figure 5 are shown in Table 2. The actual 

(historic) values are shown in Figure 4. As can be observed in Table 2, for temperatures between 

temperatures of 75 and 89 degrees Farenheight, there is not much difference in peak load figures 

generated by the quadratic and third-degree models. However, as temperatures exceed 

approximately 90 degrees Farenheight, the peak loads generated by the two models differ 

significantly. At very high temperatures, the difference in peak load is dramatic and would imply 

a very different implementation of resources and level of operations for the grid. 
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Table 2.  Peak Load Values at Various Temperatures. Comparison of Quadratic  
 and 3rd Degree Models 
 

Temperature  Peak Load (MW)  Peak Load (MW)  Difference in 

(F)  
Quadratic 

Relationship  
3rd Degree 
Relationship  

Peak Load 
(MW) 

   (a)  (b)  (a-b) 
75  35,928   35,657   271  
76  36,330   36,245   85  
77  36,765   36,864   (99) 
78  37,235   37,508   (274) 
79  37,738   38,169   (431) 
80  38,275   38,839   (564) 
81  38,846   39,512   (666) 
82  39,451   40,179   (728) 
83  40,090   40,833   (743) 
84  40,762   41,468   (705) 
85  41,469   42,075   (605) 
86  42,210   42,647   (437) 
87  42,984   43,177   (193) 
88  43,793   43,657   135  
89  44,635   44,081   554  
90  45,511   44,440   1,071  
91  46,421   44,727   1,694  
92  47,366   44,936   2,430  
93  48,343   45,057   3,286  
94  49,355   45,085   4,270  
95  50,401   45,012   5,389  
96  51,481   44,830   6,651  
97  52,595   44,532   8,062  
98  53,742   44,111   9,631  
99  54,924   43,558   11,365  

100  56,139   42,868   13,271  
101  57,388   42,032   15,356  
102  58,672   41,043   17,629  
103  59,989   39,894   20,095  
104  61,340   38,577   22,763  
105  62,725   37,084   25,640  

 

Discussion 

This study identified that peak electricity usage due to increasing temperatures is in line with 

a third-degree polynomial function, thus, at very high temperatures, peak electricity usage will 

not increase exponentially but will level out as all air conditioning systems are theoretically on 

and are running at peak capacity. As seen in Table 2, for temperatures below 90°F, use of either 

the quadratic model or the third-degree model does not show a significant impact on calculating 

peak load. However, at high temperatures, there is a significant difference in peak load. For 

example, at 100°F there is a 13,271 difference in peak load values. This difference in forecast 

could translate into money, resource and pollution saving potential as foreknowledge of reduced 

peak load can plan for better operation of the electrical grid by utilizing cleaner, more energy 
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efficient plants. Furthermore, accurate peak load forecasting is important in climate impact 

research to ensure there is sufficient infrastructure and capacity to meet the load requirements of 

the California grid. 

This study did not address changes in technological development. It is possible that global 

warming may create a move toward reengineering or retrofitting electrical systems (particularly 

air conditioning systems and insulation systems) to make them more energy efficient. A 

significant change in technology may diminish the high temperature peak electricity use or 

diminish peak electricity use at all temperature points. On the other hand, in the short term, an 

abrupt change in climate (sudden warming scenario) without significant technological 

development may affect immediate appliance purchase decisions. People who previously did not 

need space cooling equipment are likely to adapt to warming by purchasing such equipment, thus 

significantly adding to the electrical load (Baxter & Calandri, 1992). 

This study examined the impact of increasing temperatures on peak demand electricity usage 

for California. This state should be of particular interest to climate impact researchers due to the 

region’s topographic, climatic and economic diversity. Within it lie the highest and lowest 

geographical points in the continental United States. (Baxter & Calandri, 1992). The varied 

regional climates include coastal areas, desert regions, wet northern regions, hot interior valleys 

and cooler mountain areas. California’s economy is immense and diversified as it includes major 

manufacturing services, is one of the largest areas of agricultural production, and is rapidly 

growing in service and technology sectors. 

This study aimed to improve upon existing methods of forecasting and quantifying future 

electricity needs due to increasing temperature. It is a step towards gaining understanding of 

climate change impacts and adaptation. Improved models, such as the one developed for this 

study, can aid in future energy resource planning, energy conservation efforts, load-shifting, and 

other areas of energy systems operations management. Improved electricity load forecasting 

could possibly reduce the instances of costly power outages, the need for bringing inefficient, 

polluting “peaker” plants on line, and generally improve the dependability and market efficiency 

of the California power grid. 
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