CHAPTER VIII
Jean Bermoulli and the PFrench Resctions (1727-1729)

The paper submitted by the SWiss mathematician Jean
(John or Johann) Bernoulll, professor at Basil, for the
| 172l contest was disqualified by the French Academy on the
grounds that Bernoulli did not discuss the impact of ™ard"
bodies in the sense meant by the Academy. He had rejected
the existence of hard bodies in the sense of Inflexible,
unbreskable atoms and took hardness to pertain to bodiles
naving perfect elasticlty under infinite internal pressure.
The Academy hed responded to this interpretation by dis-
gualifying Bernoullli gnd announcing another contest dealing -
with the laws of impact for elastic bodies to be held in
1726. For this contest Bernoulll resubmitted hls paper of
172, "Discours éur les loix de la communlcation du mouve-
ment " adding an appendix containing a probable explanation
of the physical cause of elasicity.l

This time although the winner was FPierre Mazisre,

Bernoulli's paper was again awarded honorsble mention and

Jean Bernoulll, "Discours sur les loix de ls commun-
ication du mouvement" in the Recusil des niecea qul a resmporté
les prix de l'academle royale des sciences, 2 (1727), 1-108,
geparate pagination.
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printed in the Academy's collection of prize winning
es3ays.

Following Leibniz,® and basing his srgument on
Leibniz's law of continuity, Bernoulli rejecﬁed in his

3

"Discourse'" the exlstence of hserd bodies in naturs.
Since every act occurs by infinitely small degrees and
"nature does not operate through leaps,” motion cannot

pass suddenly into rest, or reast into motion as would be
necesgary in the collision of two hard bodies.Iu Hard
bodiss being inflexible and unbreakable, they would not
rebound after colliding, their speed dropping to zero
without golng through intermediaté steps. If this were
true there would be no reason why nature would choosge one.
state of motion or rest in preference to another, since
having no liasion between the two states, rest to motion

or motion to rest, no reason would determine the productlon

of one over the other.5

2Through hie correspondance with Leibniz, Bernoulli
had first becoms convigced of Leibniz's views on the con-
gervation of force, mv=, Sege Leibniz, Commercium philos-
ophicum et mathemsticum virorum celebr, Got. Gul. Leibnitii
et John Dernoulli, Lsusanne, L1745, 2 vols.

3For a valusble discussion of the papers of Maclaurin,
Bernoulli and Mazidre from the point of view of hard bodies
see Wilson Scott, The Significance of Hard Bedies in the
Higtory of Seientific Thought, John Hopkins University, 1960,
This Work is, nowever, significant in completely ignoring
the contributions of Leilbniz to the guestion of vig viva
and the heavy dependence of Bernoulll on Leibniz's ideas.

N
5

Bernoulli, op. cit., 5.
Ibid., 5.
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Hardness taken in the common sense of perfectly
solid stoms is rejected, these stoms belng imaginery cor-
puscles exlsting only in the minds of their champions.

Bernoulli asgerted that hsrdness existed only in
the sense that bodies are like heavy "balloons filled
with compressed air.," The greater the preésure the harder
the surface but likewlise the more perfect the body's elasg-
ticity. If the density of the air in the baldoon is in-
creased to an immense degree of resistance such that an
extremely powerful force is necessary to compress it,
the balloon differs in no essential aspect from a hard
body.

I7 one imagines & number of small balloons full
of extremsely condensed air in a comuon envelope, then one
cen give meaning to "herdness" in bodies, The gmall ball~-
oons represent elementary moleculss and the envelopes take
the place of an smblent fluid which by its own sctivity
presses and compresses the entire mass. If an infinitely
‘large degree of elgstilcity is contained in these bsaslloons,
their entire mass csnnot be sensibly compressed by "a fin-
7

ite force ag lerge as can be supposed.'

"g body will conform to our ldea of hardnegs when

its sensible parts change their situation only with dif-

6 rp1d., 6.

T1vid., 9.
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fieulty." "HElasticity is perfect when all the parts
return to thelr original state; it 1s imperfect when
some of the parts do not return."8 This then is the
meaning of "hard body" on which the laws of motion dev-
eloped in the remaindér of the essay are based.

Before discusgsing the measure of forece and again
taking his concepﬁions from Leibniz, Bernoulll describes
what he means by living snd by dead force.

"PForce vive or 1living force is that which resides

in 2 body when it is in uniform motion. TForce morts,

or dead force is that which a body not in motion recelves,

n

when sollicited or pressed toward motion," or which moves

it more or less fast when the body is already in motion.9

For example 1f an obstacle prevents local motion
from occuring in a body, the body has dead force. The
force of gravity is another example: A body plaéed on a
horizontal table makes a continual effort to descend. #Af%
each instant gravity imprints on a body on which 1t acts,
an infinitely gmall degree of velocity which is immedlately
absorbed by the resistance of the obstscle, "These small
degrees of velocity perish on creation and are reborn in
perishing." It is this consﬁant‘reciprocation in the re-
curring production and destruction in which the force of

gravity coneglsts, when acting on an invincible object,

BIbid., g.

%1pid., 19.
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that 1ig called dead force.

The nature of living force 1s totally different.
It is not born and does not perish in an instant as does
desd force. Time is needed to produce living.force and
likewlse to destroy it. Living force is produced suc-
ceggively iIn a body as a pressure applied 5o the body
{mprints little by little, degrees of local motlon.
Motion 1s acquired by infinitely small degreses, becoming
finite and determined and finaily remaining uniform when
thb c auge which produced it ceases to act on the body.
Thus living force is produced in s finite time by a
pregsure and is equivalent fto that part of the cause which

is consumed in producing it.

The living force of a body produced by the dilation
of some elastlic body is capsable of compressing it agéin to
precisely the seme state in which i1t was originally. There
‘is complete equallty between the efficient cause and the
effect. In this equality'cdnsists the conservation of force
of bodies in motion.

dince it hasg besn believed for a long time that
quantity of motion or the prodUct of the mags of a body
by its velocity 1s the measure of the force of this body,
it was'falsely belleved that 1%t was necessary for there

always to be an equal quentlty of motion in the universe.

01p14., 32, 33.
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Following Leibniz's opinion Bernoulll attributes
thlis error to the confusion ofrd@ad forces with living
forces, Seelng that the fundamental principle of statics
lies in the equilibrium of "powers', the moments are om-
posed of absolute forces and thelir virtusl veloclties.
In extending this principle to the forces of bodies which

have actual velocitles, philosophers have gone too far.ll

In this essay Bernoulli defined virtual velocltles
in the following way:

I call virtual velocities /vitesses virtuelles/ those
acquired by two or more forces tsken in egullibrium
when a small moﬁVement ig imprinted upon them; or if
these forces are already in motion, The v1rtual vel-
ncity is the element of veloclty already acquired
that esch body gaing or loges in an infinitely small
time along l1lts direction. 12

11 A
Ibid., 35, For Leibnig's analysis of the confusion
over dead forces see this dissertation, Ch., I1IZI.

l2Ib1d., 19. Bernoulli had first defined fthe prlnciple
of virtusl velocities in a letter to FPierre Varignon in
1717: (See Erwin Hisbert., op. cit., 82)

Imagine several different forces which are acting
along different tendencies or directions te maintain
at equilibrium a point, s line, a surfeme, or a DoAYy}
imagine elso that we impress on the whole system of
forces a small movement either parallel to itself

along any direction, or about any fixed polnt: 1t 1s sasy

to gee that by thie movement each of these forces will
advance or recedse. in its direction, unless some one

or more of the forces have their directions perpen-
dicular to the direction of the gmall movement; in
wnich case the force or the forces will neither advance
nor recede:  for these advancements or receszsions
which I esl1l virtual velocities, are nothing other
than the amounts by which esch line of tendency in-
creases or decreases becauge of the small movement;
and these increments or decrements are found by drawling
a perpendicular from the snd of each line of tendency
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Bernoulli whe congidered himself the foremost
champion of living forces following Leibniz's death, be-
lieved that Leibniz's demonstretion of 1686 was ﬁot con=-
“vincing., In the sucééeding chapter of nis "Discourge”
he presgented proofs of the measure of living forces, such
28 the following which he regarded ass incontestable.
He first developed some preliiminary principles nec-
eggary to hls argument.
1. An elastic body ABC which ig held in a state
of compression by one or more forces ia in
agullibrium with those forces. (Figure 3,
0. 282. )
2. If an elastic body is held in compression by
2 powers, these two powers are equal. (Figure i,

p. 282.)

3, If an elastic body is held in compression by

of each force in the neighboring posltion, to which
it hsg been brought by the small movement, & small
portion of which will be the measure of the virtual
veloclty of thils force.
(Quoted in Fierrs Varlgnon, Nouvelle mécanicgue ou statigue
Paris, 1725, 2, 174, Bernoulli followed this with a
definition of v1rtual work which he callsd energy, that
is the product of‘the dilsplacement and the force producing
that displacement: (See Hiebert, . 83-8L4)

In every equillibrium of forces whateoever, in
whatever way they may be applied, and in whatever
directions they act on one another, either medistely
or immediately, the sum of the posltive energiles
will be equal to the sum of the negative energies
taken positively. (In Varignon., 175-176).
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two powers K and S, end one substitutes in
place of power K, an immovable plane mm, the
power S will make no greaster effort than before.
(Figure L1, p. 282).

L. TIf two powers P, L. hold several sqgual elastic
bands in a state of compressicn they will make
no more effort than if they compresgsed only
one slastic, ACB, (Figure 5, p. 282). This
1s demonstroted by the preceding rules since
the intervening bands press equally agalnst
each other.13

Congider two grovps of elastic sprinre composed in

the retio of 12 units to 3 units (figure 6, p. 282). One
of the extremitlies of esch is held at the fixed poinfs A
and B; the other is fastened to the equal balls L and P,
held in comprsssion by powers K and S. The springs are
equally compressed so thst the "dead forces" (fendencies
towsrd motion) in the balls are equal, When the powers,

R and 8, are removed, the dead forces produce living forces
ag the aprings expand, csusing the balls Lo accelerate away
from A and B. Ball L acquires more velocity than ball P
bscause the forces of the elastics are in the ratio of 12

to 3,

13
Ibiél 2 39, uo&
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To express the results mathematically, consider
two straight lines AC end BD 1n the ratio of 12 to 3,
representing the units or colils of the Two eléstio springs
{figure 7, p. 282).

When the elastics expand the ralls begln to move
from C and D toward the points F and L. The ordinstes
GM, HN of the curves CML and DNX represent the veloclties
acquired at the points G and H. Let BD = a, the distance
DH = sbcissa x, increment EP = dx, the ordinste HN = u
and its increment TQ = du. Tpke BD : AC :: DH : GG 1

DP : CE and suppose AC = na, CG = nx, GE = ndx, ordiaste

GM = z, Iincrement DV = dz.

—

Since AC : CG :: BD : DH, st esch instent each of

the elsstic gorings hee lost an equal part of its force so

that the dead forces and pressures of the balls at G and E

are equal. The increment of velocity H,(du) which is in
sccordance with the measure of "dead forces" or pregsure 1s composed
of this pressurs, p, and the increment of %ime in which

the moving body traverses dx. <+hus du = pdi. 1 Since the

velocity, u, at sny instent i1s expressed as dx, the
gt
increment dt = dx. Thus we have gu = pdx or udu = pdx
u u
of which the integral is 1/2 uu = f péx. DBy the sane

rosgoning dz = p(ndx), end by integration 1/2 27 = jondx.
z

1L’”This definition of "dead force" will be challenged
later by Louville (1729).
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Trom this it follows that uu ¢

na : : BD ¢ AC. But BD is to A

2z I3 {pax : fpndx ::2 :
G

as the living force
acqgiired at H 1s to the living force ecquired at G, or
from the above,as uu ie to zz. Thus Bernoulll has
proved that.the living forces in equal bodies of equal

15

masgses are as the squares of their velocities.

As a corollary to this proof, if bodies are of un-
equal rasses, thelr living forceg are as the products of
the masses by the squares of their veloclitles.

T™hus the acceleration of the bodles 1n this cage
follows the ssme law as that of falling bodies where the
squares of fthe velocities acquired are as the heights tra-
versed in the fall of these bodies. o

Bernoulli's succeeding chapter confirms this measure
of force by exneriments., Here experiments such as those
of 9 Gravesande and Poleni are described, allowlng different
balls to fall into soft clay from varicus heights and
measuring the depth of the impresgssions so formed.l7

A second argumsnt of Bernoulli was thought by him

to be completsly general and capable of convincing even

the most obstinate of partisans of the commonly held opinlon

151b1d., RS
16115a., LS, Lb.
1T1pi4., L8, L9.
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favoring mv as the measure of force.

Suppose, gays Bernoulll, thet s body C moving in
the horizontal plane strikes obliquely an slastic band
placed at L with the velocity CL = 2. (See figure 9, p.
237). The sngle of obliquity CLP is 30° ang the perpen-
dicunlar (T is equal %o £ CL., The resistance of the elastic
vand L is such that in order to bend 1%, body C must have
L unit of velocilty when siriking it perpencicularly. DBody
C etriking L obliguely with velocity 2 has & motlon composed
of a psrpendicular component CP = 1 snd a second component
PL =J§. In striking L it loses Its perpendlculer componsat,
retaining only the comnonent 'L =f§. The body thus continues
to move only in the direction PLY with veloclty 1M = FL :ng
A% point Il there Is a second elagtic band ressembling the
first with angle of obliquity ILMQ such that the perpen-
dicular LG = 1, DBody C will then continue by ths saﬁe argua-
ment as before along direction GMN with velocity [N equal
to g =y2. At point N is a third elastic band equal to

the other two such that the body collides at LMNR = QSO

Component. of motion MR, perpendicular to the line of the
elagtlc hand is equal to 1. The motinn MN composed of
motions MR and RN will lose the component MR in bending

the elastic N. .Body € will thus continue with velocity N0 =
BN = 1, having bent the 3 elsstic bande L, M, N. With this
one desree of velocity 1% bends the Lth band 0, agsinst

which 1t collides perpvendicularly. Body C having 2 degrees
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of velocity, has now bent l elastics, each reqguiriang for
bending, one degree of velocliy. These L bent elastics
repressni the total force with which body C has finally
consumed its motion. But the effects are proporticual %o
the forces which have produced them. Tnus the living
force of body C having 2 degrees of velocity is four tlmes
grester than the living force of the same body having one
degree of velocity.

Ty the gsame manner it is demonstrated that a velocliy
triple, gquadrunle, quintuple etc. gives %o bedy C a force
9, 16, 25 stc. times as great. From this is drawn the
genersl conclusion thsat the living force of a body is pro-
porticnal to the square of 1ts veloelty and not %o its
ginple velocity.lL

Bernoulli recognizes in this "Discourse™ the same
three conservetion laws for fthe collisicn of bodies dev-
eloped by Huygens and placed in their proper significance
by Leibniz. The first ig the conservation ol the same
regpective velocity before end sfter collision, a-b=y-X
where a end b are the velocities of bodies £ and B before
collision snd y and x their velocities sfter collislon,
ond whers the bodies both proceed in the same direction be-
fore and aefter colliding., The respective velocity 1s the

difference of the absolute velocities wnen the bodles move

14, g1-83.
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in the same direction, the sum of the susolute velocitles
when their directions esre contrsry. The sscond law 1s the
congservation of the qusntity of directilon and i3 equal to
the product of the sum of the masses DY the velocity fronm
the common center of gravity of the two bodies, Ag + b =
Ax + By. Bornoulli did not state the fact that this was
conservation of momentum with the sign taken into consid-
eration. Like Lelbniz he thought of the principle as
refuting Descartes' concept of the quantity of motilon.

Fpom this 1% appesrs that the guantity of wotion

is not slways conserved as commonly imaglned.

And in effect this guantity Is conserved only in
two cases, 1) when the body moves from the same
side hefore and asfter colllsion: 2) when the guan-
tity of direction ig null, or the common center of

grovity is without motion, because then the bedles
sach reflect with their original veloclitles.

The third law is the conservation of the cuantity of living
forces snd can be derived from the first two laws Asa + BbD

Axx = Byy. This expresses gomething existing in bodles

which wove that is absolute, independent,and posgitive
which remaing in the body and cannot be annihilated In the

universe. The ‘force vive' of a body diminishes or aug-

ments when it encounters other bodies and the force vive

of this other body is augmented or diminished by the same
quantity. The increase of one is the immediaste effect of
the decrease of the other. This quantity is absolutely

unsiterable by the collision of bodies,

19
Ibid., 29.
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Bernoulli thus followed Leibniz slmost %o the
letter, but did not discuss in this paper the nroblem of

forcs vive in inelastic collisgions. His own contribu-

tion, he believed, wee Ho have egtablisghed the truth of
1iving forees in a manner so evident asg to be incontest-

able.zo

Of the foregoing papers Bernoulli's caused the
greatest sgtir In the French intellectual world. Most of
the subseguent papvers written for the French Acsademy on the
gubject of the force of bodles in motion are in some way
s reaction to Bernoulli's proof of yis viva using elastic
springs, Thus the rhysical problem of the properties of
these springs with respect tc momentum and vis viva be-
came © of groeat importance.

Bernoulli's concept of matter baged on the law of
continuity and hig rejection of hard stoms signifieg the
important role which conservetion of force played in his
gelientific viewpoint. However, the two vis viva procfs
putlined above are only concerned with establishing its
validity as a meassure of force. In these proofs hse does
not c¢laim conservation of force, since the forces of the
bodies are merely compared and the bodles do not interact.

The vealidity of conservation is, however, claimed in his

EOIbid., 53-55,
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description of impact problems (as well as in numerous
oroblems in statliecs). In this eseay Bernoulli did not
discuss the problem ofiinelastic Impact. According to
Krwin Hiebert:

In a treatise of 1735 on the nature of living force,
he treated living force, more fittingly called, le
nouvoir, as gsomething substantial, exlsting by it-
self and by 1fs guantity, end depending on nothing
else, From this he concluded that any living forcs,
vig viva, possedces a definite quentity none of
which cen perish without producing sn effect. This
force, he malntalned ha&s its seat in one or sevsral
bodies before a oreocess, and must of necessity be
found in one or more other bodles after fthe process
For Bernoulli this was the esgeniial measning of ths
law of congervation of 1liviwug force; conservatio
virum vivarum. He therefors maintained as lLeibniz
had done, that wherever vls viva geems to dlsappear,
the power %o do work, -fecultas apsndi, is not lost
but 1s only changed into some other form, 2%

Concsrning the issue of conservation and its rela-
tion to the "hard body controversy in the early 18th cen-
tury Wilson Scott writes:

Defenders of MV wished to explain communication of
force without violating the lews of cause and effect
of whiech the third law of Newton,is the sclientific
expression., The defenders of MV® in turn wishsd to
exnlain communication of force in ferms of conger-
vation of force in nature go zg to account for s
gtable universe.... But the MVZ gchool con ¢ eived
the universe not in material but 1n dynsgmic terms,
and ware therefore holding to & dynamic consservation
even if it meant the denial of hard bodies.

It 13 cleagr from Msclaurin's trestment that force
cannot he conserved in the choe of hard bodies,
Yurthermore in the choc of soft inelastic bodles,

21
Hisbert., op. cit., B84-85, and Johannes Bernoulli,

"We vera notione virium vivarum esrumque usu in dynamics,
ostenso per exemplum," propositum in Comment. Petropolit.
2, 2, 200.
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the conservabtion principle has to be resiricted
to conservsitlon in the same direction only....
This limitation on a basic nrincipie of nature
‘was ennoying to those degiring conservation.
But this annoyance could resdily be dispelled
by the algebraic trick of sqguaring the v, thus
making direction irrelevant. Hence we hsave MV2

D

advanced as the true measure of force... in a
universe of elastic bodies which is obviously
stable.22

Thus John Bermoulli together with 's Gravesande pro-
vided the main support for the Lelbnizisn msasure—of force.
Rernoulli however did not base his discussion on the in-
elagtic case of impact as had 's Gravessnde. Bernoulll

relied heavily on the congervation of vis viva in elastic

impact; we have seen that he agreed with Leibnlz that the
vis vivsa which apparently disarpeared in inelastic impact
was really only changed into another form snd still avell-
able to do work.

Just as 's Gravegande's 1722 paper hsd touched oflf
a series of refutaticns and counter-experiments, so Bern-
oullifs "Discourse" inspired 2z seriss of essays examining
his opinions. They were written mainly in Tresponse to
Bernoulli's elastic-spring demonstrstion. The writers
tneluded Abbd Camus (1728), de Louville (1729), end Jean

Jaques de ¥airan (1728).

22173 1s0n Scett, The Significance of Hard bodies in
the history of Secientific Tnougnt, Thesis, John Lopkins
Tnivercity, 1960, 25-27. See discussion of Meclaurin,
this dissgertasion, Ch. VII.
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In an asrticle "On Accelesrated Motlon due. Ho Sorings
and the Forces Residing in Moving Bodies"! (1728), &bb%
Charles Etlenne Camus23 (1699-1768) established the relation-
ships between the force df rising or falling bodies and
the force of compression or expansion of springs. He
showed that the forces of these accelerated motlions were
proportional to the masgses of ' bodles accelerated by
gravity or pushedlby compressed srrings, and the squares
of their velocitles, This paper ig important in under-
gtanding the many examples involving compressed gprings
used by other suthors.

Camus defined an elastic spring as "a body which
after having been distorted Jor compressed/ re-established
itgself nearly or exactly in the stste In which 1t wss be-
fore compression." A spring is perfectly elastic if Tin
re-pgtablishing its state before compression, 1t gives back
to the body distorting it all the degrees of velocltiy iost
by thet bOdY—"Eu A spring is imperfectly elastic if 1%
does not return all the velocity to the compressing body.

Springs with similar elasticity (ressorts semblablos) ars

those whose resistances or forces (roideur) are always sim-

ilsr with respect to thelr aperatures. If for example

2 n 5
3Abbe/ Charles Etienne Cgmus, "Du Mouvement accélérs
par des ressorts, et les forces qul résident dans les

corps en mouvement," Histoire de 1'TAcsdemis royale deg
sciences, (1728), M. 159-196.

2hrpia., 159.



290
two springsrg and_B are such that the resistence or initial
foree (roideur) of spring A when it 1s compressed is %o
the resistance or initial force of spring B when it is
compressed, as the resistance or force of spring A when 1t
ig open or held at an apersturs of 15° (gee disgrams, p. 295)
ig to the resistance or force of spring B when 1% is also
open or retained at an aperature of 150, then springs A

25

and § are similar.

éamUS then derilves the 1aws of motion pertaining to
the compression and expansion of these gimilar springs when
hit by other bodies.

TLet there be taken a curvse AE (gee figurss 1, 2) of
the same length as the set of elastic springs RS which must
bs completely compresssble and suppose the regigtance or
force of the spring RS when closed equsl to the resistance
that ascending body m finds due to ites gravity at_the surgmlt
A of curve AB. One conceives the curve AB such that the
resistances that body m will find at different polnts of
1tg sgscent will be equal to the resistances which 1t will
find at the corresgponding points of gpace necessary to trav-
erse in compressing spring R3. Since the curve AB = RS, wnd
the reslstances are distributed in the same manner along
the curve AB and the space RS, 1t 1s clear thaet body m which

rises along curve AB will be able with the same veloclity

251pid., 159.
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Camus,“]_._’rea 7

| Mem.de [dcad. 1725 . Pl g. pug. 156, [
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and in the same time to close spring LS.

If a second elastic spring IV is taken simlilar to
RS (see figures 3,l.) one can compare the varistion in
reslstances that a body/g-will find in compresgsing 21 to the
variation in resistance one finds iIn agscending curve FG =
TV, B3ince the curve FG = IV, if bod%}& ascends curve LG,
it can with the same velocity close the spring TV. But
the resistances that body m will find in compressing the
spring RS will always be in the same rstio as the resis-
tances that bodjﬁé findé in compressing spring TV, in |
gimilar aperatures becausé these two gprings are similar.

It is thus necesgary thaet the resistances that body
m finds in mounting curve BA ‘be iﬁ the same ratio as the
registances of body/g.mounﬁing curve GF.

Consequently the masses m, Y= will acquire in des-
cending the curves AB, FG, velocities squal to those they
will receive in the expansion of curves &3, IV. And the
times that these bodles will employ in descending the e
curves will be equal to the times that elastices R3S, TV
will use fTo push masses ﬁ,)& in expanding. Iyrther one
supposes that the masses m, u will recelve at the points
A and P of these curves, forces f, @ equal %o thosge they
will receive from spfings B3, TV when they are compressed
and begin to exéand. The lsws of sccelerated motlon along

curves A¥, FG will then slso be the laws of accelserated
v, 26

motion of the similar springs ES,

261bidt, 160"'162-
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Esgigning the following notation:

m, M, the masses accelerated by the similar springs RS,1V.

f, @, the initial forces of gprings RS, TV when they ars
compressed,

u, v, the velocities that g,/ﬁ_vauire in the expansion

of RS,IV and hence the velocites they should have

to compregs these springs.

8, € , the lengths of the spsces R3, TV.
t, 8, the times that springs RI, TV use torexpand.

"One obtainsg four formulas A, B, U, D of accelsrated motion
of elastic springe or sets of similar springs, /demonstrating/

that the produets of their absolute size (grandeur absolue}

and the sum of the obstacles that the bodies in moticn can
surmount are always as the masses of thesge bodies multiplied
by the squares of their velocitisg,™

A, T HEt ME = Qeeme

B, fepuvve genuu

Co ftpuv= gO&mnmu
D, e€ut = eV & 2t
From these fundamental relations Camus proves many theorems.
One important example 1s:

g ¢t € T T muu; /u-v v

That i1g, the length of the spmces K3, TV, or the number of

27
Ibid., 169.
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alagtic bands composing the sgpring are in a ratlo composged
of the masses m,/M_and the squarses of their veloclties.
This, says Camus, was also proved by Bernoulli in number 2

of his first hypothesgls and in his corollaries.28

Another example directly involving conservation is
as follows: "Let there be two perfectly elastlc bodies
mﬁﬁﬁ. Let/U-= Im -« 2 m 975 and be at rest. If ths body
m has a velocity sufficlent to compress s set of two gorings,
I say that the body m, in hitting directly the bodY%% that
I havs suppoged at rest will communicate to it a veloclty
with which it can compress one of the springs of the set
and that this body m will conserve agaln snough veloclty

to ¢ ompress hhe gecond spring."gg

AbbS Cgmus then defined the limits of the meaning

1

of "Forces vives." He distingulshed three different methods
of estimating the "force of bodies in motien.” He first
discussed dead force. One cancongsider a body in motion

at a gingle indivigible instant, estimated by the pressure

or seffort thet it makes agalnst an invincible resistance.
The resistance destroys this effort in that instant by
opposing to i1t a resistance equal tc the effort macde agalnst
it.

Hard bodies in motion which have velocities reciprocal

281v1d., 173, and 177.

29 Tpig., 18L.
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to their masgses such that their equal gquantities of
motion cause squilibrium between them, reciproeally
make invincible resistances for each other during s
single instant. Thus thege forces residing in these
bodies in motlon at each instant sre equal when the
bodiesg have equal guantities of motion.

But the force of a body so considered is not pro-
perly the force of a body in motion since this force acts
at an instant during which there is no traveﬁsal of space,
and there 1is nevasr motion unless space 1is traﬁersed. This‘
force which tends %o produce moition but does not effect
traversal of apace conforms to the definition of dead forcs,

or force morte., Dead force then is that by wnich a body

ig pregsed and solicited to move ltselfl, wlthout actually
moving., Camusg gives the familiar example of the pressurs
of a body on a horizontal table as dead force because the
body tends to traverse a space without actually moving,
owing to the registance opposged by the table. The mesasure
of the déad force of a body at each instant of time is
proportional to the product of 1ts masgs and its viriual

velocity.30

Secondly one can congider the force of a body in
motion as the sum of all the forces which have been present

in the metinn of & body i.e. asg the gum of all the desad or

0
3 Ibid., 190-192.

(41
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instantaneous forceg which have accompanied a body during
its motion, Since each of the instantaneous forces was
a8 the preduct of the mags and the Avirtual7 veloclity of
a beody, the sum of gl1ll the sgmall instentaneocus forcss
preéent in the motion of a body will be as the product
of ite mass and the sum of all the velocities accompanyling
ites motion. But the sum of these velocltles is as the
space traversed., Thus this estimste of force is as the
mass of the body multiplied by the spsce traversed, I1f
p, T are”the sums of the dead forces accompanyling m,is one
has: P: W 32 me $ M€ Subgtituting p, ™ for me: ue in

formulas 4, . B, C, D we have:

ftt: Joo
Qmmuu:@%»vv

par i3 fetvide own
mutauve
These desd Forces, (p,T ) however, considered as

the zum of all the forces accompanying masses In motion

are not the force vives of a body in the sense of Bernoulll.

These forcog do not exist at the same time in s body which

moves but exist successivly. Bernoulli did not take the

31

ingtantaneous forces accomppaying a body for force vive.

Finglly one can consider the forces of bodies in

motion such that they are capable ¢f producing effects

1
3 Ibid., 192-195.
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and surmounting obstacles. Yhese are as their masszes
multiplied by the saquares of their velocities. Vhen s
hody In motion gurmounts for example a spring by com-
prasging ih,'it.finds ag obgbtacles to its motion the
number of elastic parts of the spring and their force,.

If the number of coils of the springs are represented by
8, € or the spaces they occupy, and their forces (roideurs)
by £, @ , the obstacies to the bodies in motion of masses
Dy jes BTE fe g&i. One always has fo:@f::muuiilvy =0 the
obstacles which can overcome bodies in motion ére ag the

products of their masses and the sgquaresg of thelr veloc-
ities. That is why in estimating the forces of bodies in
motion with respect to the obstacles they can overcoms,
one will.have'these forces as the products of their masées
and the squares of their velocities., It 1s only force

taken in thisg sense which should be taken as iforce vivae.

32

Thig then 1s the meaning of Bernoulli's force vive.

Jacques HBugdne de Louville's (1671~1732) essay On

the Theory of Verving Motions, which sre Continuglly Accel-

erated or Reterded, Wsth the Method of Hsfimating the Force

of Bodies in Motion?Battempted to apply the Cartesisn esti-

2
3 Thid., 195, 196,

3BM. 1e Chevalisr Jacques Bugéne &e Louville, "Sur
la thBoris des mouvements variésg, clest & dire, qul sont
continuelleoment’ accBlérés ou continuellement retardés;
avec la mannifdre 4! estimer la force deg corps en mouve=-
ment," Histolrs de l'academie royale des scienge (1729)
Mo l[;)——!«":]-_BLl»l .
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mate of force %o Bernoulll's problem of the vieg viva
acquired by todies under the action of expanding sorings,
He whowsd that other concepts of force which he termed
instantaneous, actual, and virtual force could be used to
explain this actlion. However, in so doing he consgidersd
himgelf to have refuted the valldity of the vis viva con-
caent.

Because a body at rest cannot move another, nor
rnove iteelf, it is necessary for something to happen that

changes rest into motion. That something 1s moving force

{forece motrice) or simply force. [Four things are necessary

to produce motirn - force, (f) a body, (E) space, (e) and
time (). These four produce a Ffifth, velociéy (u). This
has s certain relaetion to force and mase, and agsasin %o
gspace and t:'Lme.B’LL

The relotionship of the veloelty to the force and
mase ls expressged as U = £ which gives £ = mu., This is
disputed by clever geometgfs but, says Louville, he hopes
in this memoir to establish it in so firm a manner that

no doubt will remain.

The velocity is pwoporticonal to the space divided

by the time or u = g. Thus if f=pu and u in turn 1 So
t
equal ¢/t, then £ = me and not f = me as gome geometers
. ' T

g, 15-156.

[uEERETRREI



: | 303
have put forth. This latter is true 5nly when tho time
during which the spaces are traversed 1s the same. Then
the gpace is as the velocity and represents 1t. Hence =
me for this single case.35
The equation f = mu shows that when the velocities
of two bodies ere in a ratioc reciprocal to their masses,
these bodies have equal forces. Also when the forces of
two bodies sre equal, thelir velocitises are in a ratio
reciprocal to thelr masses.

Following the hypothesis of Galileo, a body under

the gction of gravity whether it rises or falls recelves
in equal times sn equal number of impulsions of veloclty
which pusgh ‘it downward imprinting on 1t accelerations,
The sum of %these accelesrations ig as fthe time, so the sun
of the impulegions increases as the number of acceleratiocns
and consequently ag the time. The space in fres fall in-
creaces twice in the rstio of the time while the velocity
increases only once., Hence the gpsce increases In the

double ratin /square/ of the time [e = % t27 end the vel-

ocity increases only in the simple ratlo of the time,
Lo =_g57.3°

Expressing this mathematically, when the veloclty of

a moving body increases or diminishes continually in the

351p1a., 156.
361514, , 19.

e e
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ratio of the time, one has u = t. TFutting the expression
e/t in plsce of u, /in u=gt/ one hes 8/t = & or & = tb.

/Acutally e=gtt/. Honce the gpaces traversed are as the
Sl 2paces

37

gquares of the times,

As to the force that the falling body acquires by
the sction of gravity 1% is evident that thils increases,
as does the velocity, only by the number of Impulsions of
the fliuild ﬁhich 15 the csuse of gravity. It is clear that
2 body which receiveg an impulsion which imprints a certsin
degree of force at the same time that it imprints & degree
of velocity, never increases the force or the velocity of
g body during the intervals of time between the impulsions.
Tt ig only the space traversed which incresses during these
intervsls. Tpus the force is never increased in the double
ratio /square/ of the time ss is the epace, but in the
simple ratio of the time or ag the velocity.38 /Thig is te

Cartesian definition of force, my./

Touville defines "instantsneous force or velocity"

. . e »
(Vitesse instantanfe) and "actual force or velocity"

{vitesse actuelle) to be the ssme things designated by

Leibniz as dead force and living force. (Actually ag will

be seen Louville's and Leibniz's "forces" here are entirely

3 ' - . .
%bid., 158, 159, uouvillg‘s reasoning is the basils
. for the relationship: mv=5mgt“, See this digsertation
introcduction, p. 9.

5.
391p14., 158, 159.
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different concepts). The latter has not been sufficiently
woll clarifisd, he gays, and will te in the essay. The
force of each Impulaion #Fi7 communicated only in an instant
is "inétantaneoug force", WActual force! 1s the product
of the force of each impulsion /F;7 by the number /sum/

: t
of impulsions the moving body raceives in equal times,[ty z—3,_?31(3457‘
- '

The genersl rule for all hypotheses of acceleration or reglg-
tance is that the effect of the accelsration or resistance
iz slwavs in a ratio composed of the gize of the impulsions

by their number, or as the product of these two quantities.

In this sssay Louville 1s sirugemling to define the Impulse

of a force, that is, an impulsive force which varies with
time.- He does this mainly with respect to exranding sorings.
These forces are not consgtant; for s comprsssed spring the |
force starts at e maximum and Gecreases as the accelerstion
of the body sterts at zero and increases to a meximum. The
total number or sum of the elements of the instantaneous

"~ forces in ecual units of time i1s the integral of the im-

Dulses,t§t2 Fdt, using modern notation., The total "force'
wnich an expanding épring communicates to a body 1s kou-
ville's "actual force". Louville considers this to be the
correct meagure of what Peibniz called living force. Actually
he is defining a different concept: the 1lmpulse of the

force which is equal to the momentum.

Louville then goes on to discusgs the force of slastic
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bodies In motion or of elastic springs, which can be
impressed on other bodies, csusing their acceleration.

A body has force only when 1t 1s in motlion. An
invisible material, for example & fluid in motion must
therefore be the causge of the force of elasticity since
when an elsstic body resists compression no vieslble cauge
of this forceris nearby. This material acts in the manner
of fluids which do not act with their total mass on ob-
gtacles but hit these obstacles with repeated and suc-
cessive impulsions. The obstacles yield to the effort
of thesge impulses sccelersting with velocities propor-
tional to the velocity of the fluid and the number of im-
puilges imprinted in egual times. That is, the effect of
this acceleration is in a ratlo composed of the veloclty
or the gize of each impulsion and of the number of impul-
sions,

The seme ides 1s applicable to a welght placed on
e horizontal plsne. Lf the plane is solid enough to resist
the welght of the body, the body étayé st rest not having
enough force to communicate to the plane supporting 1it.
Properly spesking it 1s not this body at rest which presses
the plane but an invisible fluid which continually hits 1t
sand of which the impulsions are all equal in force and of

which their number is as the time.

9
3 Ibigd,, 167.
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When the obstacle which resists the effort of a
compregged elastic body or the weight of a body is Insur-
mounteble, then regerd must be pald only to the force of
gach impulsion. This is what is called "instantaneous

forece" (force instantanfe) and Louville claims it to be

whet Leibniz and Bernoulli have called dead force. "Bvery-
one agreeg" that this force 1s asg the quantity of motion
or as the product of the mass by the "velocity" of esach
impulse. Here Louville should say the "virtual velocity';

dead force = mdv = mdv, Tor atatic forces; Bernoulli's

at
measure of dv wes given as Pcx .  These impulses do not
accumulate ag they do in the cage of a body whiech ylelds,
sc each 1s extinguished in the instant it acts. They
perish on being born as Bernoulll says, and thelr effort
never survives their action. If the obstacle has enough
force to resist the firgt impulse it will resist the
gecond snd third ete. LIf, however, the obstscle ylelds
to the first impulse, then all the impulses sccumulaste to-
gether, the first imprinting a small degree of veloclty,
the second adding s second degree, the third adding a
third etc., The fluid thus acts on the body so as to accel-
erste it so that "the tetal effect of these accolerations
in a given time t11l be as the product of the force of
each impulsion ZFi7 by the number of impulsions Imprinted

in the Gurstion of its action” 1t§t2p16t7.”0

Lo
“Ibid., 169-171.
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Louville secems to be saying that his concept of instante
aneous force /[F:7, or the force of each impulsion, is the
same &s Bernoulli's pressura;ﬂ, of the compressed soring.

A&taa1lYy thess. sre-not-identical. Hernoulli's concept
¥z
leads to a gpace-dependent functlon: pdx = Egz
_. | %4 T,
Louville's leads to a time-dependent function J‘th = A mv.
' i
Thuse far Louville agress, he savs, with Leibniz

.
y

and Bernoulli and alsoc agrees that three kinds of force
must be distinguished as willl be discussed subsequently.
However, he does not agree with what they have called

living force (force vive) becauge they have called by

the game name two different kinds of force. One cannot
say that all living force 1s as the product of the mass

of & body by the square of its‘velocity.ul

Going on, Louville distinguishes two kinds of force,
actual and virtual, in the acceleration caused by the expan-
sion of elastic bodles, or gprings.

Wnile the impulses of the fluid which causes elast-
icity eot confinually they do not sct continuously, that
lsg, without intermission. One has no "clesr and distincs
idea® of s continuousg impulse. An impulse acts only by
repeated and successive shocks, with gmell intervals of
time between them. To determine the effect of an sccal-
eration in a given time it 1s necessary to know begides

the force of ¢ ach impulse, /Fi/ the freguency or number

Ll
Ibid., 171.



309
Zi.e. the gum of the impulses/ that the fluid can imprint
in the given time. The pfoduct of these two quantities

i celled the actual force (force actuslle) of the fluid

ZFidt7. "Thus to produce a certain accalerationm, this
force Lfor elastic bodles/ depends not only on the gize
of each impulse but aiso on their frequency. Knowing
what force will be produced in aﬁ infinitely small amount
of time Ldj?, one can find the force over aﬁ extended time
Zt7-"u2 Louville means that the instantaneous forces of
elastlic bodies sre not constant, bubt vary with time.
Finally there 1s a third kind of force which must

be congidsred, "virtual force"" (force virtuelle). This

pertainsg chiefly to the accelerations caused by groups
of gimilar elastic sorings but composed of a different
number of rarts. Bach of these groups can produce an
acceleration during its totel expansion., Those springs
composed of a great number of parts egually compressed,
will follow the moving body which it accelerates over a
longer time and path than a spring of a lesgser number of
parts, But since the frequency of the impulsions will be
less for the spring with the lerger number than for the sim-
ilar one with the gmall number, the bodies accelerated will

receive the sama velocity.

The virtual force or virtusl velocity of each group

b21p14., 172, 172,
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of sprinrs is equal in sll groups composged of egual sim-
ilar sorings equally compressed, differing only in the
number of elastic rarts of which they are composed. The
acceleration which they produce lasts only as long as the
body 1s in contact with the spring and ceases when 1%
leaves the spring, It is not clear by Louville refers %o
the forces of these gimiler soringe as "virtual,"

Thege two kinds of force,forma actuslle and force

virtuslle, says Louville, have been confuged by Leibniz

and others by cslling botn living force.LL3 Apain Louville

1g referring to a different concept (impulse) snd not Leib-

niz's living forcs, mvz
P

. Thug here the problem is again =2
misundergtending over words.
Louville applies the distinction among the three

kinds of force to Barnoulli's srgument for llving force
drawn from the ewxpansion of similar sr;n":lrlg:s.mL What
Bernoulli has called dead force or pressure in this proof
and‘what he, Louville, bad defined as instantaensous force,
or impulsinn ig not the guantity which produces an effect
proportional to the time of its action. It 1s not suf=~
ficisnt to know the size of this force to deterwmine the
accalerstion in 2 given time. It ig necessary alsoc to

know the freqguency of the impulsiong.

Wipia., 172, 173, 177
Ll

‘See Bernoulli, op. cit., Chapter VII.
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It i Louville's force actuelle which 1s indeed composed

of the ratio of the magnitude of the lorce of each impulse
and of the number of impresslons in egual times.us But
again behind Bernoulli's asrgument is the relationship

2 : £
FVE = Feds; Louville is developing the equivalency ty dthz
i

v
V,S 2 mdv = Amv.

Secondly, the force lost by the spring in accelerating

the mnving body, ig equal to the force gasined by the body

after leaving 1l%ts conitzct with the soring. The force of
the goring is entirely exhausted and is transferred to

the body in which it is tsken up by the accumulation of
the small successively produced degrses of force, This
force which 1¢ transferred is what Louville has called the

virtual force of the spring.ué

In Bernoulli's exawmple ssch of the two springs have
lost the same amount of force in traversing thelr spaces
and the two moving bodies have gained as much force in
traverging the game gpaces. Egeh have the same smount of
force when they abandon their sprin;s.' Since the masses
sre equal, it follows that their velocities will also be

equal. <Lhus the velocities of bodies in wmotion are as

L51p3a., 176.

hélbid., 178.
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thelr forces.u7 Here Louville relates the impulse of
the force to the momentﬁm gained by the accalersiting
body, mv.

Thus slthough Louville has succeeded in showing
that ths moving bodles have acquired momentum (Ei) from
the expansion.of the compressed springs, he has not suc-
cegsfully demonstrated that they do not also acquire
kinetic energy. This is because he has confused Meibnlz

and DBernoulli's living force, mxz’ with the concept he

hag defined, impulse, which is eguivalent to the change
in a body's momentium.

The final paper to be discussed in this series of
articles anpearing in the journals of the French Academy
in the 1720's is that of Jean Jacgueg de Malran, secretary
of the Acsdemy. His "Dissertation on the Estimation and
Mgagure of the MYoving Forces of Bodies?ua is primarily an
unsuccessful attempt to reduce cases of accelerated and
retarded motion where the vig vive principle appears to
hold,'to cagses of uniform motion where momentum, mv, is
valid.

Mairarls paper wss later halled by the Academy as

naving settled the issue perhaps bscause he was the Academy's

BT1p14., 178, 179.

8

b Jean Jacques de Malran, "Disgertation sur l‘eﬂtl-
mation et la mesure des forcesg motrices dss corps,

Histoire de l'academie royale des scisnces (1?28) T. 1-49.
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secretary, It was this parser, however, which touched off
a renewed debate in the 17LO's wher it was atiacked by
Madame du Chftelet snd as a consequence reprinted.

Mairan presupposed that nasture behaved as in most
of her phenomena, in a perfectly uniform manner with re-
gard to the forces of moving bodies,

He argues for the imporbtance of using uniform
motion in messuring force., If a force is applied to a
body its effect is movement. If the force does noi impeds
movement it will produce it. Movement can be uniform or
non-uniform which in turn can be accelerated or retsrded.
In uniform motion the effect is thst of squal spaces trav-
erged in equal times. Uniform motion or velocity itfeelfl
ig the sgpace divided by the time. Quantity of motion is
measured by the masgs times ite velocity 1.e. by uniform
motion, If two bodies A and E.of the game mass move uni-
formly with the same force and with the same velocity but
one moves for one hour and the othser for two hours they
have two different guantities of motion, in the ratio of
1 %o 2. Those bodies whose movement 1s not uniform do
not represent nature asg she 1s.

In the collision of infinitely hard and inflexible
bodies the evaluation of force as producing uniform wmotion
is unchanged beéause the collision and communication of
motion are instantanseous and do not suspend the uniformity

of the:mobtion. Only the velocity after collision 1s changed,
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the same force being scattered sfterwards on the other
bodies encountersd and with which a boedy continues %o
move unifofmly but with a lesgser veleoclity in the irverse
ratio of the masses,

In most bodies there is an "elastic virtue" which
acts by compression and restitution of the parts of the
body displaced in collision,

The only difference between elastlc and hard bodies
is that in the former the communication of force besiween
them is successive and in the latter it is instentaneous,

In summerizing beibniz's argument, Msirsn shows
that dead force guch as that in a body placed on a table
malting & continual effort to descend 1s measured by mv.
Fere apgain the confusion between actual velocity vy, and

virtuael velocity, dv, sppesrs. Living force, measured by

_EX? is csleculated from its effect or the heighﬁ to which
& bodﬁ of a certain velocity and mass can rige 1f thrown
upward. |

‘But, says Mairsn, the great oprinciple must not be
forgotten which says that proportion imnlies = common
measure. Thst common measure ig the time. The time or
'equal times must be taken in determining the common measure
of the forces to be compared. 4 body hsving two times
more velscity than snother has a double and not a guadruple
effect, a double treversed gpace and a double displacement

in equal timss. Thus a moving force has only double and
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not quadruple effect, it 1g as the simple veloclity and

not asg the sguare of the velocity.LLg

| In demonstrating the meassure of force as mv
mairan uges egual times as the common measure for com-
paring forcesg and employs a bechnique of Louville for
reducing accelereted or retarded motion to uniform
motion.sq This means that force wlll be meagured not

by the spaces traversed in non-uniform motion, nor by
the obgtacles ovarcome, nor by the parts of matter dise-
placed, nor by the distortion of elastic bodies, but by
the spaces not traversed whlch would be traversed if the
motion were uniform, by the obstacles not overcome, the
parts of matter not displaced, the elasgticlty égg dis~
torted.sl

Accelerated motion is reduced %o uniform by the

following technique.52 Two equal bodies A and B, A

——

having a velocity of 2 and B a velocity of 1 ascend along

two paths, (ses accompanying figure, Mairan (1728) p. 30)

uglbid., gece., 1=-1G5.

SOSee.Annon., "Sur la force des corns en MYouvement"
Histoire de l'hcademie royale des sciences, (1721) H 81-85.

SlMairan, on. cit., 38, 40, Ll.

521n14., sec. 39.
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First Imapgine the assgscent to be possible with uniform
motion. Let B travel 2 tolses in the first instant; 4,
heving double the velocity, will then travel L in the
first instant. However, under motion retarded by gravity,
B having s veloclity of 1 will rise only 1 tolse since, as
Galileoc showed, in esqual times fthe spaces traversed by a
body traveling uniformly is fwice fthat traversed by a
uniformly accelerated body starting from rest and reaching
a final veloclty squal to the average velocity of the first.
Since 1ts velocity ig only 1, it will travel only one unit
of space in its motion retarded by the force of gravity.
Thus the distance not traveled, which would be if fhe motion
were unifofm, is 2 -1 =1, Body A having a velocity of 2
will rise in retarded motion to a totel height of I, 3 unilts
of which will be traversed in the first Insftant and one in
the gecond instant, Therefore, for body A the distance noit
trevelod- in the firet instant ls the uniform motion of 4
minus its retarded moticn or b - 3 = 1. In the second
instant of retarded mofion, A rises 1 unit, but 1t would
have traveled 2 undsr uniform motion. The disténce not
traveled in the second Iingstant is apgsin 1.53 Thus the
gpaces not btraversed by A, having a double velocity, equal

2. These are double those not traversed by B, i.e. 1. The

53De Mairan, "Dissertation," 1723, 539. See also Dugas,
A Higtory of Mecheanics, op, cit., p. 237.
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gspaceg not traversed in each 1lnstant represent the force
lost or consumed in each instant, or the effort of the
contrery force which destroys or consumes it. But the
gum of all the loat forces or cf the contrary forces is
equal to the total forée of the body.(§ L3J.

The edvocates of living force would gay that of
these two equal bodies, & and B, the force of 4 (v = 2)

19 L since it rises a distance of L while thst of B (v = 1)
ig 1. Mairan can now retort that the force of A iz 2 and
that of B is 1, In gplte of its ingenully, the weakness

of his hypothesis ig apparent, as Macdame du Chltelet was
later to point out.” Fop the actusl situstion is that

of retarded motion, not the hypothetical one of uniform
moticn.

For the case of g body traveling with uniform motion
in a horizontal plane meeting & series of obstacles, Malran
argues as follows. Imagine 100 squal elastic balls A, B,
C, D etc. ranging along the horizontal line HL, moving one
. after another by virtue of a single force and imagine a
aingle moticn imprinted on the first bsll A in the direction
HL. It is not possible to measure the force applied to
ball A by the product of 1ts veloclty and the 100 masses
sharing in the motion because they share succegsively only

and a sinzle ball moves in each instant under conglderation.

5LLSees this dissertstion, Ch. IX, p. 339.
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The sum does not express the measure of the primitive
cause, but rathsr the simple repetition or index of its
duration in regard to the contrary causes which zre zble

to destroy or arrest ite action.55

De Mairan gsets up the following argument:

For example let there be impulgions, obstacles, or
any resistances whatever reoeated and placed on
the path AF of moving body A. /These cen be/, for
example particles of matter 1,2,3,L, etec., or
elastic strips {(lames de ressort) to be diasplaced,
knocksd down, lifted, or bent.o

These elastlc bands which represent the impulsions
of gravity and which were later represented as elastic
gprinps by Madsme du ChBtelet, are disgramed by Mairen in
the preceding diagram (see diagram- p. 316 ). These little
sprinFs or flexible strips are utllized by most of the
later authors in their arguments. Their use in this con-
troversy seems to stem from Bernoulli's spring demon-
gtration, From the above mentioned diagram, Mairan
arguas:

If a body with one degree of velocity and of force
can 1ift 2 elastlc strips in one instant by a uniform
motion, it will by a motion reftarded in collision with
the Tirst strip, consume all its force and veloeity in

1ifting it, The body A however having 2 degrees of force
L e — o g

55Ibid., gsec, 3..
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and velocity cen 1ift or bend 4 of the elastic strips in
one instent by a uniform motion. But if in this firat
instant in bending the first bsnd it loses one degres of
its feorce or velocity, 1t will bend a total of only thres
bands in this first instant. It will not hit strip L, or
srace 0D, which it would have, had it lost no velocity.
If it then continues to move for a second instant now having
only 1 degres of velocity it will 1ift gbrips L and 5 in
traversing path CDE 1f 1Ys motion 1s considered uniform.
But becausge its moﬁion is retarded by hitting strip L it
willl stop there having lost all its motion. Therse will be
g total of L elastlc bands lifted, snd 2 not 1lifted or 2
derreesg of force resulting from 2 degreesg of velocity
acting over g time of 2 instants.

If instead of supposing 2 degrees of velocity and
2 Iinstanis,one supposes the velocity %o be 3 or L the body
will traverse 6 or 8 spaces, displacing 6 or 8 strips by
uniform metion, But by retarded motion it displaces 6-1,
or 8-1 in the firet instant etc. The total space traversed
is 3 or L and the=total not traversed is also 3 or L. There-
fore the nortions of matter not displaced, the elastics
net lifted, or bent, the objects not flattensd, and in
genersl the obhstacles not surmounted which would be under
tniform motion ére oroportional to the forees or gimple

57

veloclities.

57
Ihid., gec. L1,

The spsces not traversed in each instant
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represent the force lost and consumed in each instant,
or in other words they represent'the effect of a contrsry
fores exsercising itgelf against the original force. But
the sum of all the lost forces or of all the contrary efforis
ig equal to the total force of the bhody.

Thues Mairan by changing fetarded motion to a case
of uniform motion, changed a vis viva problem intc a mom-
entum problem. This technique insplred Madame du Chitelet
in 17L0 to write a long criticism of Mairan in defense of

the Leibnigian posiftion in dynamics.58

Conclusion.;

In this chapter 1t wés seen that another important
mechanical problem provided the stimulus for coutlaused
debate over the messure of force, the problem of the accel-
eration of bodies due to expanding slastic springs. The
problem originated with Bernoulli’s "Digcourse on the Laws

of the Communication of Motion'™ (1727), twice submitted

58

Thres pa-ers submitted for the first volume of the
Academy of Petersbourg which discuse living force lhiave not
been analyzed in this dissertation. One srgument from ons
of thesge papers, that of Hermann, 13 mentionsd by Macdame &
Chf®telet, However, arguments from theso papers are perifsral
to Tthe problsms under debate by most suthors discussed in
thig dissertation. The pspers are: '

Georg Bernhsrd Bulfinger, "Demongtratilioness mechenicae
de viribus corpori wmoto insitis st illsrum mensurs," Comment
tarii Acesdemiase Scientiarum Imperialis Petropolitanass, 1
TI728) [[5-120. Jacob Hermann, '"De Mensura virum corporum,'
Ibid., 1=lj2. Christian Wolrf, "Frincipie Oyramica," Llbid.,217-238.
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for contests sponsored by the Ffrench Academy. Bernoulli

hoad defended %the Legibnizian msasure of force mv2 its con-
—— 3

gservation in elastic impsct, and the Leibnizian philosophy
which denied the sxistence of hard bodles. His argument
wag based on a comparison of the forces (mgz) received by
two bodies under the action of two similar expanding
springs,

Three papers resulted in reaction to Bernoculli's
"Digcourge™t Camus (1728), Louville (1729), and isiran
(1728). Camus related the force of compressed springs to
the vis viva acquired by bodies as the spfings gxpanded.
He compared the resistance of a compregsed spring to the |
reglstance due to gravity which an ascending body finds st
its gummit. The velocity with which a body can ascend a
cartain curve will be the velocity with which it can com-
pregs a spring of the same resistance. The laws of accel-
erated motion under the action of gravity will then also
be the lsws of gccelersied motion of elassgstic springe, i.s.
as the square of the body's veloclty.

Louville (1729) on the other hand, demonstrated that
a body accelerated by an exwpanding soring would acguire a
momentum, mv, He reached this conclusion by describingthe
impulse of the force of an expanding spring. He implied
thet the totsl number, or sum of the elemsnis of the
instantaneous forces in eqgusl units of time 1s the integral

of the impulses, expressed by the modern equation: thth.
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Louville then said that the force losgst by the spring in

accelerating the moving body was equal to the force gained
by the body asg 1t left the spring. He showsd that the body
would acquire a veloclty which depended on the impulse.
Msiran attempted to refute Leibniz by reducing
cages of geccelersted or retsrded wmobtlon to cases of uni-
form motion. He argued that force should be measured nct
by the spaces traversed iﬁ non-uniform motion; nor by thse
distortion of elastic bodiss, but by the spaces not trav-
ersed which would be 1f the moticn were uniform or by the
olastic parts of a body which were nct distorted. This
technique rssulted in mv as a measure of force but depsnded
upon the subgtitution of a hypothetical situation for the
real one., He applled his method to problems in which
moving bodies collided with a series of vertically situated

elastic strips (lames de ressort) which were 1ifted as the

body moved past them. The number of elastic bsnds not

raised as the body moves under uniform motion compsred to
those raised under retsrded motion is as the gimple velo-
city. Again Mairan concluded from this that mv 1= the

measure of forece, Thisg technlique was challenged by lMadame
du Ch¥Btelet in 1740 and as result the controversy was re-
opened. The re-examination culminated in the insights of
Bogcovich anc d;Alembert that both messures had their own

velidity. These argumente will be examined in Chapter IX.



