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Abstract Mediterranean ecosystems are hotspots of
biodiversity. Because of a coincidence of high species
richness and human presence, Mediterranean biodiver-
sity is particularly threatened by processes such as
habitat degradation, fragmentation and loss, pollution,
climate change and introduction of invasive species.
Invasive tree pathogens are among the problematic
exotic species of California, Chile, the Mediterranean,
South Africa and Australia. In this review, we provide
an update on a selection of non-native tree pathogens
currently posing a threat in Mediterranean ecosystems.
The impact of exotic forest pathogens range from
large-scale tree and shrub mortality in native ecosys-
tems (Phytophthora ramorum on the West Coast of the
USA) to disruption of plantations of exotic (e.g.,
Seiridium cardinale on planted Monterey cypress in
California, Fusarium circinatum on Monterey pine
worldwide) and native trees (introduction of the North
American Heterobasidion irregulare in stone pine
woodland in Italy). Genetic analyses are instrumental

in improving our understanding and management of
these outbreaks. There is a need for more empirical
data on how novel pathosystems are likely to develop
under novel climates, as well as interdisciplinary col-
laborations among forest pathologists, theoretical
modellers and climatologists. The magnitude of the
observed effects of some exotic tree diseases makes
it important to try and minimize the risk of the inad-
vertent movement of plant pathogens when planning
assisted migration activities to enable plant species to
cope with rapid climate change.

Keywords Biodiversity . Forest health . Geographical
genetics . Global change . Host susceptibility .

Landscape epidemiology .Multiple trade-offs . Sudden
Oak Death . Transmission rates . Tree fungal pathogens

Emergent diseases and Mediterranean ecosystems

Emergent diseases are diseases on the rise. Indeed,
there is evidence for an increase in the number of
new reports of plant pathogens in the scientific litera-
ture over the last 20 years (Dehnen-Schmutz et al.
2010). Although such increase is less marked for tree
pathogens (at least in North America: Aukema et al.
2010) and may in part be a consequence of a parallel
rise in the number of observers, there are many plau-
sible non-artefactual explanations for an increasing
number of emerging plant diseases. More numerous
and stronger long-distance trade links, the already
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observed recent climate warming, homogenization of
agricultural and forested landscapes, large-scale plant-
ing of exotic ornamental species in urbanized areas: all
these processes are likely to have contributed to many
recent invasions of exotic plant pathogens (Anderson
et al. 2004; Brasier 2008; Loo 2009; Tubby and Webber
2010; Stenlid et al. 2011).

Mediterranean ecosystems are particularly affected
by exotic forest diseases, given the combination of: (1)
richness in plant hosts, (2) mild and wet winters which
tend to favour pathogen development, and (3) dense
human population/frequent visits by tourists, with plenty
of opportunities for pathogen introduction (Mooney and
Dunn 1970; Blondel and Aronson 1995; Scarascia-
Mugnozza et al. 2000; Garbelotto 2008; Cox and Under-
wood 2011). These ecosystems also have more to lose
from such outbreaks, given the high species richness and
presence of endemics (plant species with a narrow distri-
bution) in Australia, California, Chile, theMediterranean,
and South Africa (Cowling et al. 1996; Médail and
Quézel 1999; Mooney et al. 2001; Araújo 2003). Also
for Mediterranean ecosystems, it is unlikely that a dispro-
portionate presence of plant pathologists in these regions
could explain the number of emerging plant pathosys-
tems. More likely, the outbreaks reviewed in this paper
were enabled by the combination of the favourability
of Mediterranean climate for agriculture, gardening and
tourism and the global connectivity deriving from the
similar climate in these regions (which allows easy
translocation of plants already adapted to very similar
environmental conditions; Lavorel et al. 1998; Sanz-
Elorza et al. 2009; Arianoutsou et al. 2010).

Emerging diseases can be the consequence of the
introduction of:

(i) new pathogens on native hosts,
(ii) new hosts attacked by native pathogens,
(iii) exotic pathogens on exotic hosts, and
(iv) pathogens on off-site native hosts.

High disease incidence and severity can be reached
in any of these combinations, as disease expression is
generally favoured by novel host-pathogen combina-
tions (often due to lack of co-evolution, although we
may only see successful interactions, possibly also due
to a file-drawer problem; Parker and Gilbert 2004;
Giraud et al. 2010; Litchman 2010; Wingfield et al.
2010; Philibert et al. 2011). However, there is increas-
ing evidence that higher ecological fitness of an exotic
pathogen may cause an emergent disease (Garbelotto

et al. 2010) as predicted by the general theory of
invasion biology (Parker and Gilbert 2004; Moloney
et al. 2009; Blackburn et al. 2011). Whilst the dispers-
al of successful pathogens is typically efficient, rapid
and largely unstoppable, plant hosts are traditionally
fixed to their place of birth and can only slowly track
climate shifts with seed (or, for some species, cutting)
dispersal. There is a debate in conservation biology
about the future necessity to facilitate plant dispersal
by actively transferring individual plant populations so
as to enable them to cope with rapid climate warming
(Hunter 2007; Ricciardi and Simberloff 2009;
Richardson et al. 2009; Gray et al. 2011). Such debates
do not generally consider that plants can be more at
risk to exotic diseases if planted in new locations. On
the other hand, plant health is also at risk if the climate
shifts outside of the usual physiological limits.

The disease triangle is a classic way to summarize
the contributions of host, pathogen and environment in
producing disease. Whilst climate change can be eas-
ily integrated in the disease triangle, given its environ-
mental nature (Jeger and Pautasso 2008; Garrett et al.
2009; Sturrock et al. 2011), there is also a need to
distinguish situations pertaining to native vs. exotic
hosts and/or pathogens in such representations. Adapt-
ing the classic disease triangle to climate change and
novel host-pathogen combinations is important to im-
prove understanding and prediction of emerging plant
pathosystems. Prediction is generally made difficult
when novel pathogens are generalists, operate in a dif-
ferent climate than in their region of origin and have
alternate hosts and various lifestyles. Other things being
equal, a combination of natural and human spread
makes prediction harder than natural spread alone (even
if the latter is combined with vectors). Complexity in the
genetics of the pathogen and/or host(s) does not gener-
ally help accurate prediction, although the presence of
high genetic variability in the host(s) may facilitate the
emergence of resistance to the exotic pathogen (which
in turn often shows reduced genetic variability due to its
exotic nature).

In the following, we provide four Mediterranean
case studies for:

(i) a group of exotic forest pathogens (Phytophthora
spp., with particular focus on P. ramorum in
California; Rizzo et al. 2005),

(ii) a native pathogen on an exotic host (Seiridium
cardinale on Monterey cypress planted outside

Eur J Plant Pathol



its distributional range in California; Raddi and
Panconesi 1981; Smith 2010),

(iii) an exotic pathogen-native host combination that
has the potential to become an exotic pathogen-
exotic host combination in other parts of the
world (Fusarium circinatum on Pinus radiata
in California; Wingfield et al. 2008), and

(iv) a case of an exotic pathogen (Heterobasidion
irregulare) interacting with a closely related
native pathogen (H. annosum) in Italy (Asiegbu
et al. 2005; Garbelotto et al. 2010).

P. ramorum is an emerging pathogen with a polycy-
clic asexual disease cycle favoured by water availability
both in woodlands and plant nurseries, both in European
countries and the Western USA (no sexual reproduction
has been observed outside of labs yet; Parke and Lucas
2008). S. cardinale has caused substantial cypress mor-
tality across the Mediterranean, Australia, Africa and
California (Graniti 1986). This aggressive pathogen is
favoured by warm and wet conditions, but its incidence
appears to be related also to the frequency of wounds
(caused by frost or other causes). In the Mediterranean,
it may also have exploited the symbiotic relationship
between a non-aggressive fungus (Pestalotiopsis fune-
rea) and a seed bug, which can colonize fungus-infected
cones and contributes to its dispersal (Battisti et al.
1999). F. circinatum is one of the most important patho-
gens of Pinus species. It is active in the South-Eastern
USA, Mexico, Chile, Haiti, Korea, South Africa, Spain,
and, since 1986, California (Watt et al. 2011). Its com-
mon name, pine pitch canker, refers to the resin exuded
from infected hosts, which can be affected at any stage
of development and on various parts, from shoots to
cones, stems and seeds (Dreaden and Smith 2010).
Heterobasidion spp., a causal agent of root- and butt-
rot, is probably the most economically damaging forest
pathogen in the boreal hemisphere (La Porta et al. 2008).
The disease spreads over long distances through basi-
diospores landing on freshly-cut stumps, and over short
distances via mycelium taking advantage of root grafts
of the infected stump with other trees (Korhonen and
Stenlid 1998).

Native hosts and exotic pathogens (Phytophthora spp.)

Phytophthoras are oomycete pathogenic organisms
causing a great variety of symptoms on a wide range

of host plants (Brasier and Hansen 1992; Tyler et al.
2006; Beakes et al. 2011). Our knowledge of these
species is still fragmentary, suffice to say that over the
last 15 years the number of known Phytophthora
species has increased by about 40 (Érsek and Ribeiro
2010). Several Phytophthoras pose a substantial threat
to native ecosystems, including P. cinnamomi (Cahill
et al. 2008), P. lateralis (Hansen 2008), P. alni (Érsek
and Nagy 2008), and P. ramorum (the causal agent of
Sudden Oak Death in the West Coast of the USA
(Hüberli and Garbelotto 2012), of Sudden Larch
Death in the British Isles (Brasier and Webber 2010)
and of twig dieback and leaf blight on various orna-
mental plants in both North America and Europe (Xu
et al. 2009). For many of these species, there is a clear
linkage between dispersal through plant trade path-
ways and subsequent impacts in natural ecosystems
(Jules et al. 2002; Jung and Blaschke 2004; Husson et
al. 2010; Goss et al. 2011; Moslonka-Lefebvre et al.
2011; Chadfield and Pautasso 2012).

Since it can be reasonably assumed that the likeli-
hood of entry is proportionate to the traded volume of
susceptible or potentially infected plant host material
(Krcmar 2008; MacLeod et al. 2010; Marini et al.
2011), the increase over the last decades in traded
plants (Dehnen-Schmutz et al. 2010; Lemmetty et al.
2011) cannot but have increased the risk of introduc-
ing Phytophthora species in countries where they were
not yet present. Establishment and spread potentials
are related to the number of introduction events, but
are also limited by the presence of suitable climate and
hosts. The risks of entry, establishment and, to a lim-
ited degree, spread, can be reduced by detection
efforts. Detection is more difficult for those pathogens
for which there is little biological and social (in terms
of past management efforts) knowledge, in case of
asymptomatic infective potential, and for generalist
pathogens which affect many plant species, particular-
ly if these are traded in high volumes and across the
globe (Webber 2010).

As Phytophthora species often fulfill many of these
requirements, they are thus likely troublesome patho-
gens. Symptoms of Phytophthora species are often
generic and affected plants can be asymptomatic
(Denman et al. 2009). Diagnosis is problematic
because some Phytophthoras are hard to culture
(Hayden et al. 2004), taxonomic expertise is lack-
ing and molecular techniques need to be validated.
For P. ramorum, there has been much progress in
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developing molecular tools for rapid and accurate
detection (e.g., Kong et al. 2004; Bilodeau et al. 2009;
Tomlinson et al. 2010; Vettraino et al. 2010). However,
given that it cannot be assumed that the latest techniques
are adopted immediately by all plant phytosanitary con-
trol agents, there is still a question of how reliable real-
world plant passporting schemes for this and similar
pathogens are (EFSA PLH 2011; Tsopelas et al. 2011).

The non-specificity of some diagnostic tools can
have in some cases some beneficial side effects, as
shown by P. ramorum surveys which resulted in the
concurrent detection of other foliar Phytophthora spe-
cies (P. foliorum, P. kernoviae, P. nemorosa, P. pseu-
dosyringae) (e.g. Donahoo et al. 2006; Wickland et al.
2008; Linzer et al. 2009; Moralejo et al. 2009b;
Schlenzig 2011). For some of these species, subse-
quent study revealed low genetic diversity in their
introduced range, as would be expected in case of
exotic organisms, following founder effects at the
introduction stage (Garbelotto 2008; Linzer et al.
2009; Grünwald and Goss 2011). For P. lateralis, the
exotic nature in North America (suggested by its low
genetic variability and high virulence) was confirmed
by the finding of this species in old-growth yellow
cedar (Chamaecyparis obtusa) forests in Taiwan
(Brasier et al. 2010). Along with the other Asiatic
species, this species of Chamaecyparis is considered
more resistant to P. lateralis than the American cedar
species, which are succumbing to the exotic disease
with the exception of wilderness areas untouched by
roads (Hansen 2008).

Studies of invasive Phytophthora species in Medi-
terranean ecosystems provide evidence that the overall
impacts of exotic tree pathogens can be reasonably
described as a function of a limited number of factors:

& the number of introduction events,
& the transmission rate of the pathogen,
& the density of susceptible/sporulating hosts,
& the favourability of climatic conditions,
& the permeability of the landscape (e.g. due to the

presence of corridors linking natural habitats),
& the synchronicity between host susceptibility and

pathogen life cycle, and
& the spatial variation in susceptibility of hosts.

With the exception of spatial variation in suscepti-
bility of hosts, for all these factors there is a positive
association with overall pathogen impacts. Instead,
absent or reduced spatial variation in susceptibility of

hosts is likely to favour these pathogens, because
the presence of resistant individuals will lead to
fragmentation and, potentially, to protection of the
patches of susceptible hosts (a concept which is
known as herd immunity in animal epidemiology).
Some of the factors will tend to interact with each
other at various scales (e.g. increased host density
may result in higher landscape connectivity). How-
ever, an understanding of each of these aspects of a
pathosystem and of their variability across a region
of interest is required for accurate prediction of
potential impacts.

For P. ramorum on the West Coast of the USA, the
magnitude of the observed impacts is likely to have
been at least in part a consequence of the several
independent introductions into California woodlands
from nurseries (Mascheretti et al. 2009). The density
of susceptible and sporulating hosts is generally high
across much of coastal California, and is becoming
higher due to the main sporulating host, bay laurel
(Umbellularia californica), not being lethally affected
by the pathogen (DiLeo et al. 2009). Bay laurel is instead
favoured by the epidemic in tanoak (Notholithocarpus
densiflorus) woodlands, as tanoak density is strongly
reduced by the disease. The removal of a moderately
sporulating and lethally affected host from the ecosystem
(tanoak), and the increase in density of the host on which
P. ramorum survives dry summers and abundantly spor-
ulates in rainy winters and springs (bay laurel), will lead
to an increased production of inoculum over time (Cobb
et al. 2010). This provides an interesting counterfactual
instance against the classic SIR (Susceptible-Infected-
Removed) epidemiological model where disease pro-
gressively dies out by itself as susceptible hosts become
infected, then die or become immune and are thus
removed from the infectious compartment (Harwood et
al. 2009). The presence in the P. ramorum woodland
life-cycle (Parke and Lucas 2008) of a dead-end host is
reminiscent of the life cycle ofWest-Nile virus and other
zoonotic diseases only affecting human beings (or other
mammals) as an aside (although P. ramorum does not
infect people, it can be carried over long distances under
their muddy shoes).

Current Californian climate appears to be sufficiently
suitable for P. ramorum. This implies that the other
regions blessed by Mediterranean climate (from Spain
to Greece, from Chile to South Africa and Western
Australia) are also at risk, particularly in the presence
of susceptible and sporulating hosts - there are indeed

Eur J Plant Pathol



many such host species in the Mediterranean (Vettraino
et al. 2009) and in Australia (Hüberli et al. 2009; Ireland
et al. 2012). The next question is whether and how
climate change is likely to affect this suitability. Whilst
increased summer drought appears to be a common
forecast for the future Mediterranean climate (Resco de
Dios et al. 2007; Giannakopoulos et al. 2009; Johnstone
and Dawson 2010), there is more uncertainty about
how California’s precipitations will turn out to be
at the middle and end of the century (Miller et al.
2003; Maurer 2007; Battles et al. 2008). This is a
key uncertainty to assess how climate change is
likely to affect the P. ramorum epidemic, given the
important role of the synchronicity between host
phenology and pathogen activity in spring (Dodd et al.
2008). One aspect in predictive models that has been
often overlooked (except for those pathosystems where
hosts have major genes for resistance and pathogens are
characterized by avirulence genes; reviewed in Parker
and Gilbert 2004) is the contribution of intraspecific
variation in susceptibility. A recent study (Hüberli et
al. 2012) shows that the presence of highly susceptible
bay laurel populations allows for dramatic SOD out-
breaks even in areas that climatically are less favourable
to pathogen sporulation and/or infection. This aspect
will need to be considered carefully to refine predictive
models (Harwood et al. 2009; Meentemeyer et al. 2011;
Václavík et al. 2012).

Even if the long-term development of the landscape
in terms of connectivity from the point of view of P.
ramorum may be just as uncertain as the amount,
timing and duration of spring precipitations over the
course of the 21st century, it is already clear that the
pathogen is able to jump from patch to patch of sus-
ceptible vegetation over distances of up to a few kilo-
meters, probably a combination of natural and human
dispersal (Mascheretti et al. 2008). Thus, it makes
sense to decrease the risk posed by dispersal pathways
associated with hiking, plant nurseries and other human
activities. In the long-term, identifying resistant
oaks is also an important strategy. But are there
any P. ramorum-resistant oak individuals (Hayden
et al. 2011)? Up to complete plot-level mortality of
tanoak stems was observed in the Big Sur region
(Davis et al. 2010). In Marin County, the vast
majority of asymptomatic tanoaks in 2000 have
been infected by P. ramorum in the subsequent
eight years (McPherson et al. 2010). If resistance
to P. ramorum can be found, a targeted breeding

and planting scenario may lead to a change in the
P. ramorum-permeability of the landscape which
could slow down pathogen dispersal and overall
impacts. Similar programs have been advocated
and are being attempted for other pathosystems
such as P. cinnamomi on Eucalyptus marginata in
Australia (Stukely and Crane 1994), Cryphonectria
parasitica on Castanea dentata in New England
(Dalgleish and Swihart 2011), and Dutch Elm Disease
in Mediterranean ecosystems (Santini et al. 2008).
There is a question of where funding for such
large-scale activities may be found, given the dwin-
dling resources available for basic epidemiological
research on this pathogen due to the widespread
budget cuts.

Exotic host, native pathogen (Seiridium cardinale)

Seiridium cardinale is a fungal pathogen of cypress
species. It was first described in California on the
native Cupressus macrocarpa in the 1920s and now
causes a potentially lethal bark canker disease on a
range of cypress species worldwide (Graniti 1998). S.
cardinale is believed to be native in California, but the
question then arises of why it suddenly started to be
such a serious problem there. Using an approach sim-
ilar to human forensics, and assuming that the patho-
gen will be more genetically diverse in its native range
than in its introduced range (due to founder effects;
Andrivon 1996; Garbelotto 2008; Stukenbrock and
McDonald 2008), it has been possible to shed light
on the origin of the pathogen. California populations
are indeed much more genetically diverse than Euro-
pean ones, and a minimum spanning network confirms
that California populations are very likely to be ances-
tral to those found in North Africa and Europe (Della
Rocca et al. 2011b). It should be noted that higher
genetic variability does not necessarily translate in
higher variability in adaptation: it is well known that
neutral markers are suitable to reconstructing the
origin of organisms, but tell us little about adaptation
(Holderegger et al. 2006; Pautasso 2009; Sork and
Waits 2010).

The incidence of disease caused by S. cardinale in
California depends on cypress species, location and
abundance of planted cypresses:

& Leyland cypress (an artificial ornamental tree) is
heavily infected in any location,
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& Monterey cypress (C. macrocarpa) is occasionally
infected, but only in inland locations where it does
not grow naturally and is always planted, and

& Italian cypress (Cupressus sempervirens) is occa-
sionally infected when planted at high densities,
otherwise sporadically (Della Rocca et al. 2011a).

The latter pattern is likely to be a case of density
dependence: disease is only able to sustain itself when
host density is above a certain threshold (Burdon and
Chilvers 1982). In the case of Monterey cypress, the
non-adaptation of the species to frost may make it
more susceptible to the pathogen, which needs wounds
in order to infect the tree (La Porta et al. 2008). Further
research is needed to shed light on these issues. A
similar situation is found in Trentino, a region in
North-Eastern Italy where C. sempervirens is at its
northern limit for growth (Notaro and De Salvo 2010)
and where isolated trees are temporarily escaping from
the disease (Zocca et al. 2008).

Exotic host and pathogen (Fusarium circinatum)

Pine pitch canker, caused by the fungus Fusarium
circinatum, is one of the most important pine diseases
worldwide. The geographical origin of the pathogen is
thought to be Mexico and/or Southern Florida (Gordon
1996). In fact, Pinus oocarpa, a Mesoamerican pine
species which occurs from Southern Sonora to Northern
Nicaragua, is resistant against pitch canker, so that it is
thought to have coevolved with the pathogen. Inciden-
tally, this pine species shows above-average levels of
genetic diversity relative to other conifers (Dvorak et al.
2009), confirming the rule that high genetic diversity
tends to confer resistance to diseases, not just at the level
of populations within a species, but also interspecifically
(Peakall et al. 2003; Gil et al. 2004; Parker and Gilbert
2004). The pathogen was first reported in California in
1986 and has since spread both in natural ecosystems
and pine plantations, causing brown-flagging of twigs,
branch dieback and resin-soaked cankers (Correll et al.
1991; Garbelotto et al. 2008).

The main host in California (as well as in other
regions) is Monterey pine, Pinus radiata, which is a
key exotic tree in plantations worldwide, due to its
rapid growth (Ganley et al. 2009). Although Pinus
radiata is native in some parts of California, it is
now only present in just a handful of the original

locations. The species has been planted in some other
parts of California where it was not originally present,
hence the use of this case study for a combination of
exotic host and exotic pathogen. F. circinatum too is
favoured by wounds created by insects, weather, or
mechanical damage. The spread of pitch canker in
California is thought to be dependent on insects, more
as wounding factors than vectors – the pathogen is
generally not able to invade intact plant tissue (Gordon
et al. 2001). However, insects are not the only relevant
factor for disease spread: a spore trapping study over a
12-month period showed high variability in spore
densities among sampling points (Garbelotto et al.
2008). Together with the documented association of
trapping frequency with temperature (negative) and
rainfall (positive), this finding underlines: (i) the im-
portance of replication with multiple trapping points in
such studies, and (ii) the variability at the landscape
level in pathogen propagules, which in turn can affect
the regional pattern of disease severity (Holdenrieder
et al. 2004).

Although pitch canker is currently mainly confined
to regions with Mediterranean or subtropical climate,
climate change may substantially expand the area at
risk, particularly in Europe (Watt et al. 2011). In the
Basque region of Spain (currently showing sub-oceanic,
rather than a typical Mediterranean climate), the patho-
gen has been recently introduced, and is posing a serious
threat to Pinus radiata plantations and native pine
woodlands. In this region, F. circinatum was shown to
have low genetic diversity, which suggests the existence
of a newly arrived, clonally propagating pathogen pop-
ulation (Iturritxa et al. 2011).

The combination of exotic host and exotic path-
ogen is particularly troublesome, as exotic trees
may be outside of their ideal growing conditions,
and exotic pathogens may have escaped controlling
factors operating within their native range. Howev-
er, there is no simple link between host stress and
vulnerability to biotic agents. Likewise, unless re-
cent climate change has made conditions more suit-
able for the exotic pathogen, it is not just the host,
but also the pathogen that may be under stress
given the novel situation. In summary, the case
study of pine pitch canker in Pinus radiata planta-
tions of California and other regions provides a good
example of the enhanced susceptibility to introduced
diseases of forests lacking species, functional and ge-
netic diversity (Pautasso et al. 2005). This of course
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does not rule out that introduced pathogens may be a
major agent of disturbance even if forests are diverse
and made up of native species, in particular in the
presence of climatic changes that may enhance the
transmission potential of such pathogens.

Exotic and native pathogen (Heterobasidion
irregulare vs. H. annosum)

Pinus pinea (stone pine) in the Mediterranean is a
further example of a genetically impoverished but
widespread species (Vendramin et al. 2008). P. pinea,
whose human dispersal throughout the Mediterranean
probably goes as back as the one of Cupressus sem-
pervirens, Castanea sativa and Juglans regia, is not a
recent child of globalization, as P. radiata, but a char-
ismatic species typical of the coastal Mediterranean
landscape. What is not typical in Central Italian stone
pine woodlands at the present time, is the tree mortality
due to a legacy of the U.S. armyWorld War II liberation
campaign, i.e. the introduced North American fun-
gal pathogen Heterobasidion irregulare (Gonthier
et al. 2004, 2007). The known natural range of H.
irregulare includes Canada (Quebec and Ontario),
most of the USA and Mexico where pine hosts are
present, Cuba, and the Dominican Republic (Otrosina
and Garbelotto 2010).

The inadvertent introduction of H. irregulare at
Castelporziano, Italy, probably happened via move-
ment of infected wood (e.g. crates or latrines brought
by the American troops). As a result, two phylogenet-
ically distinct fungi, which evolved separately in
North America and in Eurasia, are now in contact
(Linzer et al. 2008; Otrosina and Garbelotto 2010).
This sudden co-occurrence is leading to genetic
exchanges between the two taxa, although the Euro-
pean H. annosum is only sporadically present in the
habitat colonized by the more assertive American spe-
cies (Gonthier and Garbelotto 2011). H. irregulare has
been suggested to be ecologically more adapted to the
Mediterranean climate than the European native spe-
cies (D’Amico et al. 2007; Scirè et al. 2011), but
pathogenicity on Pinus sylvestris and Pinus pinea
appears not to differ between North American, Euro-
pean and introduced North American Heterobasidion
isolates (Garbelotto et al. 2010). What really differs is
the sporulation potential, much higher for the North
American species during dry summers (Garbelotto et

al. 2010). This examples highlights that outbreaks of
exotic pathogens can be explained by ecological/bio-
logical factors rather than by increased pathogenicity
due to lack of co-evolution. Plant pathologists need to
follow more closely the general theory of biological
invasion in order to explain some emergent diseases,
rather than uncritically relying on the concept of lack
of resistance due to absence of co-evolution of patho-
gen and host (Parker and Gilbert 2004).

Synthesis of the four case studies

It is well known that a pathogen will invade if its
transmission rate is higher than its mortality rate. In
turn, the transmission rate depends on several intrinsic
and extrinsic factors:

& the reproductive potential of the pathogen (including
the ability to withstand disturbances, competition
and/or predation),

& the dispersal ability of the pathogen,
& the density of susceptible/sporulating hosts,
& environmental and climatic factors, and
& the permeability of the landscape.

Although it is easy to conceptually understand each
of these factors, it has proven difficult to properly
estimate the actual transmission rate of an invasive
organism, because of the varying magnitude of the
trade-offs among the factors above.

In the case studies mentioned in this paper, different
strategies appear to be equally advantageous to increase
the invasiveness of causal agents. For example, P. ramo-
rum is limited by its dispersal ability (normally 1–10 m)
and by the fairly narrow conditions leading to infection
(requiring at least several hours of wetness and temper-
atures between 15 and 22°C), but these limits are coun-
terbalanced by the very high susceptibility of naïve
hosts and by an enormous reproductive potential that
allows the pathogen to achieve huge inoculum popula-
tions in a very short period of time (by repeated infection
of foliar hosts within a cycle as short as 48 h). These
factors make P. ramorum a classic r-strategy pathogen:
the ability to concentrate its infection in a short period of
time is a clear advantage for establishment in Mediter-
ranean ecosystems, where rainfall is often concentrated
in short spells.

On the contrary, the pine pitch canker pathogen
appears to be able to sporulate and infect in less
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constraining conditions, although two studies from
California (Schweigkofler et al. 2004; Garbelotto et
al. 2008) indicate clearly that wet and cool condi-
tions increase sporulation levels. In many respects,
F. circinatum is close to a K-strategy organism,
with a much longer infection period. In California,
a longer infection period has been counterbalanced
by varying susceptibility of hosts. Hosts in their
natural environment appear to be rather resistant,
and it has been shown that infected trees may
display signs of systemic induced resistance (Bonello
et al. 2006), thus lowering the overall negative effect of
the organism on tree populations. However, it is likely
that an epidemic caused by the exotic F. circinatum on a
planted exotic host (e.g., P. radiata in Europe or the
Southern hemisphere) may be more problematic than
what has been reported in California.

The case of Seiridium cardinale is particularly
interesting. A recent study based on a genetic analysis of
California and Mediterranean populations of the patho-
gen has shown that S. cardinale is likely to be native to
California (Della Rocca et al. 2011b). The presence of
many resistant tree species in California supports
this finding, but it may appear puzzling that the
first epidemic caused by S. cardinale was actually
reported in California. A closer observation makes
it clear that the California epidemic was originally
reported on C. macrocarpa (Monterey cypress) planted
in inland areas well outside of its native coastal range. In
a recent survey, Garbelotto and Della Rocca (unpub-
lished data) found that C. macrocarpa in its native
natural range is basically unscathed by the pathogen,
while it is infected when it is planted off-site in inland
locations. The ornamental artificial hybrid Leyland
cypress (obviously not a native plant being the result of
ornamental breeding crosses) is completely susceptible
to the disease, independent of site conditions. The wide-
spread planting of Leyland cypress, desirable as an
ornamental and a windbreak because of its fast growth
rate, has greatly enhanced the spread of S. cardinale in
California, and has led to an almost complete demise of
this species from the market. However, Leyland cypress
is still used in other parts of the world where S. cardinale
has just been introduced (Della Rocca et al. 2011a). An
immediate stop of sales of this tree species may be
required in order to slow down the progression of this
pathogen in such areas. An additional species that was
shown to be highly susceptible to S. cardinale in
California is C. sempervirens (Italian cypress): again,

this represents an exotic host in California and in the
course of the survey mentioned above, a clear density-
dependence factor was shown with areas characterized
by high density ofC. sempervirens also characterized by
high disease incidence. In summary, it appears that of
the various factors determining transmission, cypress
canker takes advantage of the increased susceptibility
of the host due to off-site plantings. The evidence
presented here suggests that assisted migration of tree
populations needs to be fine-tuned to avoid these
kinds of outbreaks.

Finally, the introduction of the North American H.
irregulare in Italy, presumably by American troops
during World War II, highlights a completely different
and often underestimated mechanism of invasiveness.
H. irregulare has proven to cause substantial mortality
of the widespread Mediterranean species Pinus pinea.
This was surprising because the closely related conge-
ner H. annosum is already present in the area where H.
irregulare was introduced. However, comparative
studies focusing on pathogenicity and sporulation poten-
tial have indicated that the exotic species is not more
virulent than the native one, but simply better adap-
ted to sporulate in the dry Mediterranean climate.
This ability has allowed the exotic pathogen to
establish itself in areas only marginally occupied
by its sister taxon. This last case suggests that
emergent diseases are not always explained by an
increased susceptibility of hosts naïve to exotic
introduced organisms, but can also be due to an
increased ecological fitness of exotic pathogens. In
the case of the North American H. irregulare, increased
transmission seems to be a consequence of increased
sporulation and increased adaptation to dry environ-
ments, without any increased pathogenicity. This exam-
ple shows that our ability to predict the behaviour of
invasive plant pathogens will be improved by
broadening our analysis to include both host suscepti-
bility and general ecological fitness of introduced
pathogens.

More empirical studies are needed to understand
how the factors listed above will interact and result
in increased (or decreased) transmission ability of
potential invasive pathogens. As long as this infor-
mation is not available, our predictive ability is
seriously hampered. Prediction is further complicated
by the forecasted rapid climate shifts. It is nonetheless
clear that these and other pathogens have the potential of
becoming much more damaging under novel climatic
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conditions, not just in Mediterranean ecosystems (Fabre
et al. 2011; Ganley et al. 2011; Raison and Khanna
2011; Rohr et al. 2011). Declining forest health, in turn,
is likely to lead to diminishing ecosystem services,
including the provision of water, carbon sequestra-
tion and clean air (Adams et al. 2011; Lamsal et al.
2011; Olofsson et al. 2011; Hicke et al. 2012). In
the Mediterranean more than elsewhere, these pro-
cesses are likely to operate through changes in forest
fire regimes. There is thus a need to incorporate cli-
mate change considerations in the modelling of inva-
sions of exotic tree pathogens, and to encourage
interdisciplinary collaborations on the issue (Carnicer
et al. 2011; Lemons 2011; Matías et al. 2011; Wilkinson
et al. 2011).

Emerging pathosystems vs. assisted migration

The case studies presented in this overview are merely
the tip of the iceberg of the emerging plant health
issues in Mediterranean ecosystems (Ocasio-Morales
et al. 2007; Moralejo et al. 2008, 2009a; Vacher et al.
2008; Scott et al. 2009; Greslebin and Hansen 2010;
Lushaj et al. 2010). Tree health is reported to be
declining from many regions of the world, including
those with Mediterranean climate (Allen et al. 2010;
Fischer et al. 2010), and pathogens may play a role in
many of these cases. Studies of regional outbreaks of
tree pathogens have focused:

& on the genetic structure of pathogen populations
(e.g., Ophiostoma ulmi and O. novo-ulmi in Spain,
Solla et al. 2008; Gremmeniella abietina in Spain,
Botella et al. 2010; Cryphonectria parasitica in
France and Switzerland, Dutech et al. 2010; Pros-
pero and Rigling 2011; Phytophthora pinifolia in
Chile, Durán et al. 2010),

& and on spatial patterns of host health decline and on
environmental features associated with disease ex-
pression or tree mortality (e.g., cork oak (Quercus
suber) mortality in Portugal, Costa et al. 2010; Phy-
tophthora cambivora on chestnut in Italy; Vannini et
al. 2010; Abies pinsapo decline in relic stands in
Spain; Linares et al. 2010).

These approaches can provide insights as to the
potential pathways of introduction and dispersal of the
pathogens involved, the likely time since introduction
and further impacts to be expected, as well as the

management options available to mitigate disease
impacts once exotic pathogens have become established.

The case studies reviewed in this contribution com-
bined with the many other arising plant health issues in
Mediterranean ecosystems demonstrate that there is an
inherent risk in the plant trade pathways across the globe
as inadvertent sources of unexpected, unknown and
unwanted pathogens. There is also a potential plant
health issue in the making when people consciously
expand plant host ranges to regions either not climati-
cally matching the requirements of a species, or in
conditions of reduced genetic diversity (due to mono-
cultures, plantations, founder effects). Obviously, when
the two patterns co-occur (introduction of exotic patho-
gens and of exotic hosts), then we have to “expect the
unexpected” (Webber 2010), or predict unpredictability.
The problem is further complicated by the recent reali-
zation that artificial expansion of the range of many
plant species could well be a necessary mid-term strat-
egy to make it possible for plant species with low
dispersal potential to track the predicted rapid climate
shifts (McLachlan et al. 2007; Hoegh-Guldberg et al.
2008; Pautasso et al. 2010; Seddon 2010; Loss et al.
2011; McLane and Aitken 2011; Weeks et al. 2011).

The threat posed by emergent forest pathogens may
be reduced: (i) by lowering the likelihood of introduc-
tion, (ii) by limiting the probability that people will
contribute to pathogen dispersal, (iii) by decreasing
the vulnerability of ecosystems (e.g., by maintaining
high levels of biodiversity at the regional, interspecific
and genetic level), and (iv) by mitigating impacts once
pathogens are established (e.g., by focusing on inocu-
lum reduction strategies at particularly important
sites). We argue here that these considerations need
to be taken into account when devising assisted mi-
gration programmes, otherwise we risk to end up in
replicating throughout the planet the Sudden Oak/
Larch Death experience whilst trying to save biodiver-
sity from climate change.
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