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Summary

In the last few decades, the use of molecular tools has greatly improved the efficiency of plant disease diagnosis. However, one of the major
setbacks of most molecular diagnostic approaches is their inability to differentiate between dead and viable pathogens. We propose a new
strategy for the detection of plant pathogens, based on the use of mRNA as a viability marker, on the basis that mRNA degradation in dead cells
is significantly more rapid than that of DNA. A real-time reverse-transcription PCR (RT-PCR) assay targeting the mRNA of the subunit I of the
cytochrome oxidase gene was designed for Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight. In controlled
laboratory tests, the developed RT-PCR assay did not detect the target mRNA a week after the pathogen had been killed by rapid lyophilization,
while DNA of the pathogen could still be detected 3 months after the pathogen had died. The RT-PCR assay was then compared with a
traditional culturing approach using PARP selective medium and two nested real-time PCR techniques on symptomatic California bay laurel
leaves. Samples were either collected in three different sites in July, or in the same site but in three different seasons. Overall, RT-PCR results
showed less positive samples than DNA-based nested PCR techniques (p < 0.0001), but more than culturing (p = 0.017). Nested PCR-positive
but RT-PCR-negative samples may not be viable. On the other hand, RT-PCR-positive but culture-negative samples may be viable but dormant. A
comparative analysis of the results indicated that RT-PCR and culturing provide comparable results when climatic conditions are optimal for
the pathogen, but RT-PCR may be the most accurate approach to determine pathogen viability when climatic conditions are less than optimal
for the pathogen.

1 Introduction

Introductions of exotic pathogens and pests in new areas have significant ecological, economic and evolutionary consequences
and may irreversibly alter the structure and function of ecosystems (Castello et al. 1995; Enserink 1999; Everett 2000).
Phytophthora ramorum (Werres et al. 2001), causal agent of sudden oak death (SOD), is a recent example of an introduction of
a pathogen (Ivors et al. 2006; Mascheretti et al. 2008) that has resulted in a catastrophic epidemic of forest trees in California
(Rizzo et al. 2005).
Phytophthora ramorum is a polyphagous pathogen capable of infecting over 100 plant hosts both in wildlands and in

commercial nurseries; this number is deemed to increase because our understanding of its host range is still imperfect. In
California�s natural ecosystems, tanoaks (Notholithocarpus densiflorus) and several species of red oaks (Quercus spp.) can be
locally decimated by the SOD pathogen, while it is other plant species such as bay laurels (Umbellularia californica) that are
mostly responsible for the spread of the disease (Davidson et al. 2005, Davidson et al. 2008). P. ramorum also infects many
ornamental plants, such as camellia and rhododendron, causing a syndrome named �ramorum blight� characterized by
symptoms, such as leaf spots, twig blight and shoot dieback (Davidson et al. 2003). Other less virulent Phytophthora species,
including P. pseudosyringae and P. nemorosa, are often associated with ramorum blight. These two species have an overlapping
host and geographic range with P. ramorum in California and Oregon (Hansen et al. 2003; Wickland et al. 2008). Given the
wide host range of P. ramorum and its potential for spreading to new areas of the United States through nursery stocks (Goss
et al. 2009), quarantine regulations, at both federal and state level, have been developed by the Animal and Plant Health
Inspection Service of the U.S. Department of Agriculture (USDA) on all known host species for P. ramorum (Rizzo and
Garbelotto 2003; Anonymous, 2007). In addition, Canada, South Korea and the European Union have placed restrictions on
importation of reported P. ramorum host species (Schrader and Unger 2003; Garbelotto and Rizzo 2005; Anonymous 2006,
2007).
The development of accurate and rapid diagnostic methods for P. ramorum is crucial for the implementation of trading

regulations. Because of the presence of other Phytophthora spp. causing similar symptoms and having comparable morphology,
symptoms alone are not adequate for an accurate diagnosis of this pathogen (Hansen et al. 2003; Martin and Tooley 2003).
Furthermore, successful culturing of P. ramorum seems dependent on aspects, including environmental conditions and host
substrate (Hayden et al. 2004; Vettraino et al. 2009). To improve the efficiency of detection of this pathogen, the USDA has
recently deemed DNA-based diagnosis necessary to determine whether regulated plants or plant parts are indeed free of the
pathogen (Anonymous, 2007).
Real-time PCR technologies offer increasing opportunities to detect and study phytopathogenic fungi. They combine the

sensitivity of conventional PCR with the generation of a specific fluorescent signal providing both real-time analysis of
the reaction kinetics and quantification of specific DNA targets (Schmittgen 2001). Real-time PCR has been used to quantify the
amount of Phytophthora DNA in several studies, and gene probe methods of detection and identification have proved to be
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inherently more specific and sensitive than traditional methods (Martin et al. 2000, 2004, 2009; Winton and Hansen 2001;
Hayden et al. 2004, 2006; Kong et al. 2004; Tomlinson et al. 2005; Hughes et al. 2006, Schena and Cooke 2006a; Schena et al.
2006b; Tooley et al. 2006; Kox et al. 2007). However, one disadvantage of DNA-based methods is that they do not distinguish
between living and dead organisms. Because both traditional and real-time PCR assays detect nucleic acids rather than living
cells, there is a risk that nucleic acids relinquished from dead and unviable cells may lead to positive PCR signals (Scheu et al.
1998). Several studies have shown extended persistence of PCR-detectable DNA in samples after death of target cells
(Josephson et al. 1993; Allmann et al. 1995). Quantitative studies of DNA degradation kinetics determined by real-time PCR
have shown that the rate of degradation of DNA after cell death is variable, according to DNA binding potential of the substrate
(Wolffs et al. 2005). Such variability may be justified in part by the fact that the microenvironment in which DNA is encased has
different levels of accessibility for macromolecules, compared to free nucleic acids (Kloos et al. 1994).

To deal with the risk of false-positive PCR results (i.e. samples containing unviable DNA of a pathogen), many researchers
have investigated the use of mRNA as a viability marker on the basis of its rapid degradation compared to that of DNA (Alifano
et al. 1994; Mendum et al. 1998; Uyttendaele et al. 1999; Vettraino et al. 2010). Detection of mRNA might be a good indicator
of living or of recently dead cells because mRNA is turned over rapidly in living cells, with most species having mRNAwith half-
life of only a few minutes, and degrading rapidly in dead cells. However, studies have shown that detection and quantification
of mRNA are highly dependent both on expression levels of the target gene and on mRNA extraction protocols (Schmittgen
2001). Consequently, assays targeting different loci and ⁄ or involving different mRNA extraction protocols will perform
differently (Sheridan et al. 1998; Norton and Batt 1999).

The main goal of this study was to develop a RT-PCR assay for P. ramorum and to test its sensitivity and specificity both in
laboratory conditions and on a set of naturally infected samples. An assay was designed to detect the expression of the
cytochrome oxidase gene subunit I (COX I), a large mitochondrial transmembrane protein that acts as the terminal enzyme of
the respiratory chain: It catalyses the reduction of O2 and simultaneously pumps protons across the membrane. Our hypothesis
is that mRNA linked to respiration should be an ideal indicator of live target cells.
To examine the relationship between viability and the presence of mRNA, actively growing colonies of P. ramorum in Petri

dishes were subjected to three different stress treatments, including heat exposure, rapid lyophilization and ethanol dipping.
Treated samples were then tested by the new RT-PCR technique and by the well-established culturing and nested PCR
techniques at varying time intervals after treatment. Finally, we compared the results from RT-PCR, culturing and two nested
PCR assays on 100 symptomatic leaves of California bay laurel trees collected in five samplings in three different natural sites
in California.

2 Material and methods

2.1 Development of the RT-PCR assay

2.1.1 Primer sequence design and specificity

Sequences of 18 different Phytophthora species were aligned using ClustalW (EMBL, European Bioinformatics Institute) to
design the ACPramF ⁄R primer set for the specific amplification of cDNA matching a 138-bp portion of the sequence of the
mitochondrial cytochrome oxidase subunit I (COX 1) of P. ramorum (Fig. 1). Control 5.8S primer sequence was designed to
amplify the 5.8S of both plants and oomycetes (Table 1). Primers were designed using PRIMER3 (http://www.embnet.sk/cgi-
bin/primer3_www.cgi), and specificity of the primer set was preliminarily assessed by means of a Basic Local Alignment Search
Tool (BLAST) search spanning across the entire NCBI data set.

2.1.2 RNA extraction

All samples used for RNA extraction were kept at )80�C before being extracted. RNA was extracted from approximately 50 mg
mycelium from pure cultures (treated or untreated) or approximately 50 mg of symptomatic bay leaves using RNeasy� Plant
Mini kit (Qiagen Inc., Valencia, CA, USA) for total RNA isolation from plants and filamentous fungi, following the manufacturer�s
protocol. Samples were first grounded in liquid nitrogen and then lysed under highly denaturating conditions. The RNase-free
DNase Set (Qiagen) was used to purify RNA from DNA contamination.

2.1.3 Two-step RT-PCR

The presence of target COX I RNA was analysed by two-step RT-PCR using QuantiTect� Reverse Transcription kit (Qiagen)
following the manufacturer�s procedure. Each purified RNA sample was briefly incubated in gDNA Wipeout Buffer (Qiagen) at
42�C for 2 min to efficiently remove any possible contaminating genomic DNA. After genomic DNA elimination, reverse
transcription was performed using RT Primer Mix (Qiagen), an optimized blend of oligo-dT and random primers that allows
high cDNA yields from all regions of RNA transcript, even from 5¢ regions. The entire reaction took place at 42�C for 15 min
and was than inactivated at 95�C for 3 min. cDNAwas then amplified using ACPramF ⁄ACPramR primer set. PCR was performed
in a total volume of 25 ll containing 6.26 ll of undiluted cDNA combined with 12.5 ll of 2· iQ� SYBR� Green Supermix
(Bio-Rad Laboratories Inc., Hercules, CA, USA) containing 0.5 mM of each primer. Real-time amplification was carried out in an
iCycler IQ Real-Time thermalcycler (Bio-Rad) using the following conditions: one cycle at 50�C for 10 min, one cycle at 95�C for
3 min, 35 cycles at 95�C for 15 s and 63�C for 1 min. Ramp rate was 3.3�C ⁄ s heating and 2.0�C ⁄ s cooling. PCR using 5.8S
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primers was performed using identical parameters. Immediately following amplification, product melt temperatures (Tm) were
determined for each sample with the following conditions: 110 cycles at 62�C for 10 s, adding 0.3�C at each cycle (melt curve,
data collection step). Ramp rates were 3.3�C ⁄ s heating and 2.0�C ⁄ s cooling. Both for the COX I and the 5.8S assays, only PCR
amplification with threshold cycles (Ct) lower than 35 was considered positive. Sensitivity of the assay was tested on the
following mRNA concentrations: 10 fg, 1, 100 pg, 1 and 10 ng.

2.2 Treatments to kill P. ramorum

Before processing the environmental samples, the stability of mRNA through time was determined by performing RT-PCR at
different time intervals on putatively devitalized pure cultures of P. ramorum. At the same time, DNA of P. ramorum was also
targeted (see below for extraction protocol) using both a nested SYBR Green (Hayden et al. 2004) and a nested Taqman
(Hayden et al. 2006) assay. Isolates Pr1 (Quercus agrifolia, Marin County), Pr52 (Rhododendron sp., Santa Cruz County), Pr72
(Rhododendron sp., Santa Cruz County) and Pr102 (Q. agrifolia, Marin County) were employed for these tests. Each treatment
thus included 12 plates.
Before treatment, mycelium of each isolate was grown in 20 ml of liquid pea broth (Cooke et al. 2000) at room temperature

for 3 weeks. Treatments included (i) dipping mycelium in 70% EtOH for 1 h, (ii) exposure to 60�C for 1 h or (iii) placement of
mycelium at )80�C for 2 h and overnight lyophilization. Treated mycelia and untreated controls were left at room temperature
for 0, 1, 2, 5, 7, 9 and 12 days, and at the end of each time interval, treated and untreated mycelia from each flask were both
plated onto four Petri dishes filled with V8 agar (Erwin and Ribeiro 1996) and placed at )80�C before proceeding with RNA
extraction. Plates were checked 1 and 3 months after plating.

Table 1. Table of primer sets and fluorogenic probes used in this study.

Primer Primer sequence (5¢-3¢) Amplicon size Location Sense

ACPramF CATTACCTGTTTTAGCTGGTGC 138 COXI Forward
ACPramR AAACTTCAGGGTGACCAAAA COXI Reverse
Phyto1 CATGGCGAGCGCTTGA 687 ITS1 Forward
Phyto4 GAAGCCGCCAACACAAG ITS2 Reverse
Phyto2 AAAGCCAAGCCCTGCAC 291 ITS2 Forward
Phyto3 GGTGGATGGGGACGTG ITS2 Reverse
Pram5 TTAGCTTCGGCTGAACAATG 73 ITS2 Forward
Pram6 CAGCTACGGTTCACCAGTCA ITS2 Reverse
Pram7 FAM-ATGCTTTTTCTGCTGTGGCGGTAA-BHQ ITS2 Probe
5.8SUnF CTCGCACATCGATGAAGAAC 180 5.8S Forward
5.8SUnR GGAAGTGCAATATGCGTTCA 5.8S Reverse
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Fig. 1. Multiple sequence alignment of selected primers utilized in COX I PCR of 18 different Phytophthora species. PCR primer sequences are
shown in the first line. Colours underscore the homologous deletion breakpoint region whereas letters show the position of discrepancy

between sequences from GenBank.
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2.3 DNA extraction from pure cultures

Isolates of P. ramorum and other Phytophthora species tested (Table 2) were grown in 20 ml of pea broth (Cooke et al. 2000).
After vacuum filtration, mycelia were freeze-dried for extended storage at )20�C. DNA was extracted from freeze-dried
mycelium using a PureGene DNA Extraction kit (Gentra Systems Inc., Minneapolis, MN, USA) according to the manufacturer�s
instructions. DNA was suspended in high pressure layer chromatography water and stored at )20�C. For routine analysis, DNA
was diluted to 10 lg ⁄ ll and maintained at 4�C.

2.4 Comparing diagnostic assays on field samples

2.4.1 Survey sites

The three sites selected for this study differ in their ecological and climatic parameters, but share as a common feature the
presence of infected California bay laurel (U. californica). Samuel P. Taylor State Park (Long. )122.7361, Lat. 38.0296), a coast
redwood forest mixed with tanoak (Lithocarpus densiflorus), is the most mesic site. Briones Regional Park (Long. )122.8295,
Lat. 37.5641) is a xeric grassland and oak woodland made up of coast live oak (Q. agrifolia) and California black oak (Quercus
kelloggii) mixed with bay laurel. This site is characterized by warm dry summers with limited incidence of fog. Finally, China
Camp State Park (Long. )122.461, Lat. 38.0057) comprises woodlands prevalently composed of Pacific madrone (Arbutus
menziesi), coast live oak, California black oak and bay laurel; it is an intermediate site between the moist (mesic) redwood
forest and the dry (xeric) oak woodland.

2.4.2 Sampling and isolation

Samplings were carried out between October 2005 and July 2006. China Camp State Park was surveyed in October 2005, April
and July 2006, whereas Samuel P. Taylor State Park and Briones Regional Park were surveyed only in July 2006. Each site was
inspected for the presence of SOD, and symptomatic leaves from 20 California bay laurel trees, randomly chosen, were
collected and taken to the laboratory.

A leaf from each tree was superficially wiped with 70% EtOH and then divided into three homogeneous parts containing
approximately the same amount of lesions and healthy tissues. Each piece was used for isolation by direct plating on PARP
selective medium (Erwin and Ribeiro 1996), DNA and RNA extraction, respectively, to compare different diagnostic methods.
Asymptomatic California bay laurel leaves, collected from the U.C. Berkeley campus, were used as negative control.

2.4.3 DNA extraction from plant tissues and nested PCR

DNA was extracted from approximately 50 mg lyophilized bay leave tissue pulverized with two 6.35-mm glass beads (Biospec
Products, Bartesville, OK, USA) in a FastPrep instrument (Bio 101, Carlsbed, CA, USA) for 5–30 s at 1800 oscillations per
minute. Pulverized tissue was subjected to two repetitions of freezing (on dry ice for 2 min) and thawing (at 75�C for 2 min) in
a 350 ll of CTAB buffer. DNA was extracted in phenol ⁄ chloroform ⁄ isoamyl alcohol (25 : 24 : 1) and cleaned with the
Geneclean� Turbo Nucleic Acid Purification kit (Qiagen Inc.) according to the manufacturer�s protocol. DNAwas eluted in 30 ll

Table 2. Phytophthora species used to determine specificity of reaction of the Phytophthora ramorum primers.

Species Local isolate no. Host Origin Amplification

P. cambivora1 MP14 Quercus agrifolia California Not cross-amplified
P. cambivora1 MP22 Prunus California Not cross-amplified
P. cambivora1 NY217 Malus New York Not cross-amplified
P. cambivora1 NY249 Malus Oregon Not cross-amplified
P. citricola1 MP18 na California Not cross-amplified
P. cryptogea1 MP11 Lycopersicon esculentum na Not cross-amplified
P. drechsleri1 na na na Not cross-amplified
P. hibernalis1 1895 Aquilegia vulgaris New Zealand Not cross-amplified
P. nemorosa2 P16 Umbellularia californica California Amplified >1 pg
P. lateralis2 PL27 Chamaecyparis lawsoniana California Not cross-amplified
P. megasperma1 MP20 Glycine max Wisconsin Amplified >1 pg
P. palmivora1 MP8 Theobroma cacao na Amplified >1 pg
P. pseudosyringae1 P40 Q. agrifolia California Amplified >1 pg
P. syringae1 MP15 Rhododendron spp. California Not cross-amplified
P. ramorum2 Pr1 Q. agrifolia California Amplified >10 fg
P. ramorum2 Pr52 Rhododendron sp. California Amplified >10 fg
P. ramorum2 Pr72 Rhododendron sp. California Amplified >10 fg
P. ramorum1 Pr102 Q. agrifolia California Amplified >10 fg

na, data not available.
1Isolates used by Hayden et al. (2004).
2Isolates used by Hayden et al. (2006).
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of Geneclean Elution Solution, and then, 3 ll of 1x TE buffer was added to preserve the extracts for long-term storage. DNAwas
diluted 1 ⁄100 before amplification. Nested PCR protocols for the SYBR green and Taqman assays were those described by
Hayden et al. (2004, 2006).

2.5 Statistical analyses

All analyses were performed using the program JMP (SAS Institute Inc., Cary, NC, USA). Chi-square analyses were run to
compare number of positive samples detected by different techniques both cumulatively and by individual sampling. Because
not all symptomatic collected leaves were infected by P. ramorum, data were adjusted by excluding all samples negative by
nested PCR, as it was assumed that these samples were not infected by the pathogen. When comparisons were made among
three techniques, chi-square tests were performed using Pearson�s tests. When ad hoc comparisons were made between
results provided by two techniques, one-tailed Fisher�s exact tests were employed instead.

3 Results

3.1 Specificity and sensitivity of RT-PCR primers

When sensitivity and specificity of the newly designed RT-PCR primers were tested on 18 isolates belonging to 12
Phytophthora species, the assay could detect 10 fg of mRNA from each of four P. ramorum isolates tested, while no
amplification was obtained for seven other Phytophthora species at any of the tested DNA concentrations (Table 2). Although
cross-reactivity was obtained at times with four other Phytophthora species, namely P. nemorosa, P. palmivora, P. pseudosy-
ringae and P. megasperma, this occurred only when DNA was at concentrations higher than 1 pg ⁄ ll. Control 5.8S mRNA could
be detected from plant tissue in all samples tested. PCR amplifications were performed using SYBR green, which allows for a
real-time detection of amplified double-stranded DNA and for verification of the nature of the amplicon by determination of its
melting temperature. Melt temperatures for 5.8S and COX I amplifications products were 78.6�C (SD = 0.29), and 82.2�C
(SD = 0.23), respectively (Fig. 2).

3.2 Detection of mRNA from dead cells

Exposure of P. ramorum colonies to 60�C for 1 h only reduced the growth rate of the pathogen, but did not kill the mycelium,
and all plates displayed active growth a week after treatment. Dipping the mycelium in ethanol 70% for 1 h caused a
temporary complete stasis of the mycelial growth for 3 weeks after treatment; however, 50% of colonies of isolate Pr52
restarted growing actively 1 month after treatment. RT-PCR results were always positive for all heat-treated and ethanol-
dipped cultures, confirming that such treatments had not effectively killed the pathogen. Rapid lyophilization, however, did
effectively kill all mycelia of P. ramorum; thus, this treatment was selected for a comparative analysis of decay time of mRNA
and DNA targeted by diagnostic assays. While nested PCR using the protocols of Hayden et al. (2004, 2006) could detect DNA
3 months after lyophilization, mRNAwas only detected only up to 1 week after the treatment. Control 5.8S mRNAwas detected
in all samples, with the exclusion of water negative controls.

Fig. 2. Melting curve analysis was performed on RT-PCR products achieved using COXI primers and template from Phytophthora ramorum
pure cultures and from naturally infected bay laurel leaves. Analysis confirmed the specificity of the PCR and the absence of primer dimers. The

78.6 and 82.2�C peaks represent positive mRNA detection of the 5.8S and COXI genes, respectively.
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3.3 Comparison of methods for the study of viability in the field

Results from all samples combined indicated that there were significant differences among the four diagnostic methods
(p < 0.0001; Table 3). The two nested PCR protocols were the most sensitive assays and were statistically indistinguishable
from one another; hence, all comparisons were made with the nested SYBR green protocol of Hayden et al. (2004). Overall, the
isolation approach was the least sensitive of the methods and detected P. ramorum only in 49% of leaves positive by nested
PCR. The RT-PCR assay detected a number of positive P. ramorum samples that was intermediate between the two other
approaches (69% of nested PCR positives) and differed significantly from both isolation (p = 0.017) and nested PCR
(p < 0.0001) assays. Furthermore, all samples that were positive by isolation on PARP resulted positive with all three
molecular methods, and all RT-PCR-positive samples were positive with DNA-based diagnostic methods.
While all assays tested were equivalent in the April sampling of China Camp, in all other samplings, performed during dry

months, nested PCR detected P. ramorum in a significantly larger number of samples than the other assays (p range: 0.02–
<0.0001). The number of P. ramorum-positive leaves by RT-PCR was significantly higher than that by culturing in the xeric
Briones site sampled in July (p = 0.0008). Analyses from Samuel P. Taylor were not statistically significant because of the small
number of leaves positively identified as infected by P. ramorum, but the trend was similar to that recorded at the other sites
sampled in the dry season.

4 Discussion

This study demonstrates that mRNA is a promising indicator of viability of P. ramorum. At the tested conditions, mRNA was
detected only for a week after cultures of P. ramorum were killed by rapid lyophilization, while DNA of the pathogen was
detected even 3 months after the same treatment. Positive results obtained using the RT-PCR assay here described may thus
indicate the presence of a pathogen isolate that is either alive or recently dead. The application of any molecular diagnostic
approach directly on field samples requires a highly sensitive assay and justifies the choice of a multiple copy gene, such as
COXI. Although cross-reactivity of the primers tested in this study was detected with a few other species, the main purpose of
this study was to test whether mRNA detection may help confirm or deny viability of the pathogen in samples positively
diagnosed as infected by P. ramorum through DNA-based tests. Additionally, cross-reactivity may only occur when RNA
concentrations are relatively high, a condition not likely to occur in samples from nature. If absolute specificity is required,
samples can always be tested using one of many DNA-based PCR assays to confirm that P. ramorum is present and other
Phytophthora species absent.
It is generally accepted that DNA-based diagnostic techniques are extremely sensitive to the presence of target DNA, but do

not differentiate between living and dead target cells. It has also been reported that culturing success of P. ramorum varies
extremely depending on year, season, climatic conditions of the site and host substrate (Hayden et al. 2004; Vettraino et al.
2009). Thus, in unfavourable climatic conditions, culturing success is extremely low because of pathogen dormancy, and
probably, it is not a good indicator of presence ⁄ absence of the pathogen.
In this study, all culture-positive samples were also RT-PCR positive, and all RT-PCR-positive samples were positive through

nested PCR. Samples that were negative through nested PCR were negative by all other assays and were not included in the
analysis, as they most likely represent leaves infected by foliar pathogens other than P. ramorum. The nested configuration of
the data allows to draw some inferences on pathogen viability based on the differential results provided by each diagnostic
assay. Cumulatively, diagnostic success of RT-PCR was always intermediate between culturing and nested PCR. RT-PCR was
shown to be statistically different from either culturing or nested PCR. Our data are suggestive that 31% (n = 24) samples
positive by nested PCR but negative by RT-PCR may represent isolates that either have recently died or produce mRNA under
the threshold of detection of the assay. On the other hand, 20% (n = 15) samples that are culture negative but RT-PCR positive
are likely to be dormant, but still alive, in spite of their lack of growth in vitro.

Table 3. Percentage of symptomatic bay laurel leaves from which Phytophthora ramorum was identified by direct plating on PARP selective
medium, RT-PCR, Nested TaqMan PCR and Nested SYBR Green PCR. Each sampling consisted of 20 leaves, but only SYBR Green positive
samples (in parentheses) were used in the calculations. Pearson�s chi-square was utilized to compare frequencies of positive P. ramorum
detection among nested SYBR Green, RT-PCR and PARP plating. One-tailed Fisher�s exact tests were employed to compare nested SYBR Green to

RT-PCR, and RT-PCR to PARP plating.

Methods

China camp Briones Samuel P. Taylor

All samplesOctober April July July July

PARP 41 100 40 7 50 49
RT-PCR 53 100 45 67 83 69
TaqMan 94 100 100 100 100 99
SYBR Green 100 (17) 100 (20) 100 (20) 100 (15) 100 (6) 100 (78)
p of Pearson�s chi-square <0.0007 n.s. <0.0001 <0.0001 n.s. <0.0001
Fisher�s exact tests
p SYBR>RT-PCR 0.001 <0.0001 0.02 <0.0001
p RT-PCR>PARP n.s. n.s. 0.0008 0.017
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This study also highlights that the relative diagnostic power of each of the three assays may differ based on time of sampling
and study site. The Spring of 2006 was rainy and conducive to active infestations by P. ramorum (Rizzo et al. 2005); hence, it is
no surprise that samples collected in April were 100% positive, independent of assay employed. However, in the dry months of
October 2005 and July 2006, the three approaches were not equivalent, and nested PCR assays identified P. ramorum in a
number of samples significantly larger than RT-PCR. During the dry season, thus, nested PCR may definitely overestimate the
presence of the pathogen by detecting its DNA even when the isolate is no longer viable. Finally, the advantage of RT-PCR over
culturing for the detection of viable infections was strongly demonstrated by the results from Briones Regional Park. In this
particularly xeric site, culturing success was extremely low (7%), but RT-PCR success was significantly (p = 0.0008) higher
(67%). Overall, these results suggest that culturing and DNA-based diagnosis of P. ramorum may be acceptable in mesic sites
and in years climatically favourable to the pathogen, but in dry sites and ⁄ or in years climatically unfavourable to the pathogen,
culturing may greatly underestimate the number of viable samples, while DNA-based detection may overestimate that number.
RT-PCR appears to be a better indicator of viability of P. ramorum, providing consistent results that are independent of climatic
conditions or seasonal patterns. Because P. ramorum is seasonally active and RT-PCR was less variable than culturing in the
detection of viable infections, we conclude that mRNA has the potential to be the most appropriate target for assays to be
employed not only for diagnosis and detection but also for studies on the ecology of P. ramorum and of other Phytophthora
species as well as on the epidemiology of polycyclic diseases. Finally, although mRNA quantification was not attempted in this
study, it may be tested in the future using this technique. Quantitative RT-PCR may be an approach to better differentiate
between active, dormant and recently dead cells.
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