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We develop a system of equations to analyse the existence of genetic 
polymorphisms under disruptive selection in heterogeneous environments. These 
equations have both a genetic and a population density regulation component. In 
the absence of the genetic component, the equations reduce to a discrete time 
description of competition between interacting clonal lines or species. We use these 
equations to demonstrate that different populations, competing along a resource 
spectrum, are able to dynamically coexist, as asymptotically periodic or chaotic 
solutions to our system of equations, despite the fact that a coexistence equi- 
librium-stable or unstable4oes not exist. We then extend these results to 
environments in which several niches are explicitly detined. Our analysis of the 
ecological component of our model establishes that the answer to questions of 
coexistence among groups of individuals cannot rely on analyses of the existence of 
equilibria and their stability properties. 

In the most general model presented here, we allow for an assortative mating 
structure that is induced by the spatial heterogeneity of the environment. The level 
of assortative mating is controlled by a parameter so that at one extreme mating 
is panmictic, while at the other extreme individuals mate within their natal niches 
before dispersing to oviposit in other niches. We refer to this spatial mating 
structure as heteropatry. 

We investigate, through numerical studies, the properties of a heteropatric model 
containing both ecological and genetic components. First we address the question 
of the existence of protected genetic polymorphisms (i.e., the different allelles at a 
particular locus all increase in frequency when rare) under a wide range of model 
parameter values in a diallelic one-locus version of our model, assuming panmixis 
and partial dominance selection of varying direction. We make the point that 
establishing the instability of monomorphic population equilibria is insufficient to 
guarantee the existence of a protected polymorphism, since the instability may be 
in the population size component rather than the genetic frequency component of 
the monomorphic equilibrium solution. The results indicate that density 
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dependence serves to decrease the likelihood that a protected polymorphism exists, 
while the degree of selection of natal habitat for oviposition purposes serves to 
increase this likelihood. The situation is complicated, though, since conditions 
which promote the existence of protected polymorphisms may actually reduce the 
possibility that a stable polymorphism exists. Further, the way we introduce density 
dependence (either by scaling the population interaction coefticients or by altering 
the shape of the response function) differentially affects the results. Finally, our 
results suggest that if individuals prefer to oviposit in their best niche (where they 
are most tit), rather than their natal niche (where they mature), then allele fixation 
very probably occurs, 8 1989 Academic Press, Inc. 

1. INTRODUCTION 

Models combining ecological and genetic components (hereafter referred 
to as ecogenetic models) have been used to establish that stable and/or 
protected genetic polymorphism’ can exist under disruptive selection in 
density regulated sympatric populations exploiting heterogeneous environ- 
ments. Levene (1953) was the first to use an ecogenetic model to 
demonstrate that heterosis (viz., heterozygote Au is fitter than either 
homozygote AA or au in a diallelic one-locus system) is not required for 
the existence of a stable polymorphism. Levene demonstrated that it is 
possible for all genotypes (AA, Aa, and aa) to coexist when the environ- 
ment is heterogeneous and each homozygote outcompetes the other two 
genotypes in one of the available niches. Several studies have used Levene’s 
approach to obtain sharper results, and have extended it to include one or 
more of the following: migration between niches; temporal heterogeneity; 
some level of habitat preference by females; and assortative mating 
under the control of Mendelian genes (Deakin, 1966; Levins and 
MacArthur, 1966; Maynard Smith, 1966, 1970; Prout, 1968; Ewing, 1979; 
Felsenstein, 1981; Rausher, 1984; Hoekstra, Bijlsma, and Dolman, 1985; for 
a review see Hedrick, Ginevan, and Ewing, 1976). Models of the Levene 
genre are ecologically deficient because niche size is used as a surrogate for 
a true intra-niche density-dependent fitness or survival response. 

The main purpose of our paper, however, is to place ecogenetic analyses 
of polymorphisms in spatially heterogeneous environments on a sound 
ecological footing, and to dispel the idea that an equilibrium analysis is 
sufftcient for addressing questions relating to the existence of stable and/or 
protected genetic polymorphisms. Our results demonstrate that genotypes 
may coexist in the absence of both stable and unstable polymorphic equi- 
libria, and that chaotic coexistence of genotypes is possible. We also intro- 
duce the notion that assortative mating may be induced in a sympatric 

’ A system or model has a protected polymorphism if, for example, alleles A and a at a 
diallelic locus both increase when rare. 
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population solely by the heterogeneous structure of the environment. We 
refer to this phenomenon as heteropatry. As expected, we are able to 
demonstrate that this spatially induced assortative mating extends the 
range of conditions under which polymorphisms can exist. More 
importantly, however, it emerges from our analysis (presented below) that 
conditions which ensure the local stability of a polymorphic equilibrium 
may be out of consonance with those that ensure the existence of a 
protected polymorphism. 

In contrast to Levene (1953), Dempster (1955) developed a model in 
which he allowed differential selection to take place between niches as a 
consequence of selective forces within niches: an approach that has been 
extended to a density-dependent setting by Arnold and Anderson (1983). In 
Dempster’s model the proportions of individuals that enter each niche 
before selection acts are a priori fixed. Christiansen (1975), however, 
demonstrated that Dempster’s model is a linear transformation of Levene’s 
model: the transformation matrix is constructed from the intra-niche 
selection coefficients. 

Clarke (1972) was one of the first to rigorously present an intra-niche 
density-dependent competition analysis in which he assumed that a 
concave saturating function (Holling type II response function) of a 
weighted function of the combined densities of the different genotypes 
controlled fitness. This allowed him to obtain conditions under which a 
rare allele is able to increase its representation in the population. His model 
did not explicitly define the niche structure in the environment; rather, the 
niches were implicitly defined through the competitive interaction functions 
which he used. The existence of polymorphisms came about because one of 
the genotypes (phenotypes when one of the alleles is assumed dominant) 
was fittest at low densities and the other was fittest at high densities. In the 
case of three phenotypes (a diallelic one-locus model) the heterozygote was 
assumed intermediate between the two homozygotes at both low and high 
densities. Maynard Smith and Hoekstra (1980) embedded the density- 
dependent approach of Clarke (1972) in an explicit multi-niche environ- 
ment. They conducted an insightful comparative analysis between their 
approach and the models of Levene, Clarke, and others. Also, Maynard 
Smith and Hoekstra (1980) demonstrated that polymorphisms can exist 
under much weaker conditions than suggested by analyses of the Levene 
genre of models (cf. Hoekstra et al., 1985; and also see Gillespie, 1976). 

Asmussen (1983a, b) analysed density-dependent selection in an intra- 
specific competition setting for both haploid and diploid genetic systems. 
She concludes that “ . ..genetic polymorphism is greatly increased when 
intraspecific competition is incorporated within a density-regulated 
framework...” The analysis we present only confirms this to be true in the 
context of stable genetic polymorphisms. In fact the opposite is true in the 



ECOGENETIC MODELS 31 

context of protected genetic polymorphisms, which once again stresses the 
need to keep the two concepts of polymorphism separate. 

Polymorphism studies have also been undertaken that explicitly 
include competition through Lotka-Volterra type dynamics (Arnold and 
Anderson, 1983) and MacArthur’s (1972) resource-consumer type dyna- 
mics (Wilson and Turelli, 1986). In fact, Wilson and Turelli (1986) 
demonstrated that a lack of competition allows maladapted genotypes to 
invade ‘empty niches’ so that it is possible for stable polymorphisms to 
exist in which the most heterozygous individuals are in fact the least fit at 
equilibrium. 

All the above studies assumed that mating in the population as a whole 
either is random or, if assortative, is explicitly under the control of 
Mendelian genes (except for Hoekstra et al. (1985) who also analysed the 
case where mating occurs before any of the adults move out of their natal 
niches). Here we assume that assortative mating can be induced in a sym- 
patric population occupying a heterogeneous environment, if the scale of 
heterogeneity is small relative to typical mating dispersal distances. 
Dickenson and Antonovic’s (1973) analysis of pollen-borne gene flow 
between different plant genotypes in two niches satisfies these assumptions. 
Their model, like Levene’s (1953) however, lacks an adequate density- 
dependent component. 

The theory we present here is developed around a ‘model’ organism 
whose immature stages develop on single host species, where each host 
species constitutes an ecological niche. Unlike Dickinson and Antonovic’s 
(1973) pollen transfer model, we allow the mature stages to disperse and 
deposit eggs or give birth to individuals on the same or other host species, 
under the control of a preference parameter. This model is applicable, for 
example, to polyphagous insects feeding on several host species (Futuyma, 
1986). As a function of spatial structure, we assume that adults are more 
likely to mate with individuals from the same than from different host 
species. In addition, further assortative mating may be under the control of 
genes influencing mate selection. 

We begin by outlining the general structure of our model. We then 
present, in some detail, the ecological component of the model. This is 
necessary because discrete time models of competition have received little 
attention in the literature. Finally we present simulation results obtained 
using a complete ecogenetic model. 

2. ECOGENETIC MODEL 

We develop a general model by letting N,(t) denote the number of 
individuals of genotype i, i= 1, . . . . n, that are born or hatch at time t in 
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niche j, j= 1, . . . . m. Later we use the more informative, but less general, 
notation exemplified by NAaZ, which denotes the number of individuals of 
genotype Au in niche 2. For convenience, we will refer to a set of 
individuals of type ij as a phenotype; that is, we have n x m distinct 
phenotypes each consisting of N,(t) individuals in our population at 
time t. 

The ecological phase of the process will be the maturation of each 
genotype, in a niche, from a newly hatched or newborn individual at time 
t to a sexually mature adult at time t + t’, where 0 < t’ < 1. The number of 
individuals maturing in niche j is assumed to depend on a proportional 
survival rate siJ( .) E [0, 11, where the functional argument of sii( .) is 
assumed to be the weighted sum 

N:‘(t)= i a{,N,(t), j = 1, . . . . m, (1) 
i= I 

of individuals in niche j. Note that the weighting parameters cr;, can be 
interpreted as interaction coefficients since they represent the relative 
impact individuals of each phenotype have on one another, where the index 
j relates to explicit niche competition, the index 1 relates to implicit niche 
competition, while the index i relates to the genotype’s being influenced by 
the density of the weighted population N,Y in niche j.* In selecting values 
CQ, it is important to consider the fact that density-dependent effects are 
influenced by the number of individuals of each phenotype which survive 
through to maturation. Thus, if individuals of a particular genotype are 
unable to feed on a specific host, their initial presence in the niche should 
have a minimal effect on the development of the other genotypes in that 
niche. 

From the above it follows that the number of individuals of each 
phenotype that mature is 

N,(t+ t’)=s,(Nr’(t)) N,(t). (2) 

For purposes of exposition we will think of each niche as consisting 
of a number of patches, where the patches themselves are randomly 
distributed throughout some region of space (Fig. 1). After individuals 
mature in a niche, they begin around time t’ a process of dispersal and 
mating. If we assume that a proportion (1 - 6,) of individuals N,( t + t’) 
mate within their patch, while a proportion 6, mate outside of their patch, 
then (assuming random mating within patches and between those that 

‘We can also view explicit and implicit niche competition respectively as inter- and intra- 
habitat competition. In this case, we cannot equate habitat with niche, since implicit niche 
competition that supports competitive coexistence is equivalent to a several niche structure in 
a single habitat. 
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FIG. 1. Schematic outline for the construction of a model of genotypes competing in a 
heterogeneous multi-niche environment. See text for details. 

disperse out of patches) we can represent this process by a set of random 
mating pools rcji, j = 1, 2, . . . . m + 1, as illustrated in Fig. 1. Thus the number 
of individuals of phenotype ij in each mating pool is for genotype i = 1, . . . . n 

mating pool nj: N2(t+t’)=(l-6,)N,(t+t’) j = 1, . . . . m, 

mating pool n, + , : N~+‘(t+t’)=6,N,(t+t’) 
(3) 

j = 1, . . . . m, 

where 0 < 6, < 1 for i = 1, . . . . n and j= 1, . . . . m. Note that mating pools 
nj, j= 1, . . . . m have individuals from niche j, while mating pool rc,,,+ 1 has 
individuals from all niches. From the structure of these mating pools it is 
evident that 6, = 0, for all i and j, corresponds to the case where mating is 
wholly within the particular niche in which each individual developed; 
while 6, = 1, for all i, j, corresponds to panmixis in the population as a 
whole. Our notion of heteropatry corresponds to the assumption that 
6, < 1, even when mate selection behavior has no genetic component at all. 
Of course more complicated mating pool structures can emerge if spatial 
associations between niches are themselves non-random and/or there is a 
genetic component to mate selection. 

The individuals in these mating pools produce zygotes that depend on 
both their own genotype and the genotypes of the other individuals in the 
mating pool. Since we have assumed that mating within each pool is pan- 
mictic, the genotype frequencies of the progeny are easily calculated. For 
purposes of this calculation, it is convenient to introduce an intermediate 
variable Ep( t + 1) to represent the number of eggs of genotype p that are 
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produced by individuals of phenotype ij in mating pool rr,, r = 1, . . . . m + 1. 
To calculate Ep( t + 1) we assume that each adult of phenotype ij produces 
an average of b, eggs (average taken over both sexes where appropriate). 
The genotypes of the eggs can be calculated only if the genotypes of the 
parents are known. Thus, the details of this calculation can only be given 
for specific cases, as discussed in the diallelic one-locus two-niche model 
presented below. 

After mating has occurred, we assume that individuals lay their eggs in 
the different niches, where the proportion laid in each niche is a function 
of both their phenotype ij and the mating pool from which they come. If 
preference for oviposition site depends on i, then oviposition is, by defini- 
tion, under genetic control (see Rausher, 1984; Jaenike, 1986). On the other 
hand, oviposition preference may be linked to diet or imprinting cues and so 
be dependent on the niche j in which the individual matured. As depicted 
in Fig. 1, we use parameters /$‘+ to represent the proportion of eggs that 
individuals of phenotype ij from mating pool X~ lay in niche I, I = 1, . . . . m. 
With this definition it follows that 

-f kF=l 

/= I 
(4) 

for i = 1, . . . . n and for j= r when r = 1, . . . . m;orj=l,...,mwhenr=m+l. 
Using our intermediate egg variable Ep(r + 1 ), it easily follows that 

N,,,(t+l)=i f [kfW&"l(t+ l)+kF+lEp+l(f+ I)]. (5) 

I j=l 

This completes the formulation of the equations that describe a one 
generation transformation from N,(t), appearing on the right-hand side of 
Eq. (2), to (renaming the indices P and I) NV( t + 1 ), appearing on the 
left-hand side of Eq. (5). 

3. ECOLOGICAL MODEL 

Basic Growth Equation 

We begin our analysis by considering the dynamics of a homogeneous 
population in a homogeneous environment; that is, the single phenotype 
case. Here Eq. (2) simply reduces to 

N(t+t’)=s(N(t))N(t). (6) 
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During the reproductive phase, assume each individual produces h zygotes 
which become the new individuals at time t + 1; that is, 

N(t+ l)=bN(t+t’). (7) 

Combining Eqs. (6) and (7) we obtain 

N(t+l)=hs(N(t))N(t). (8) 

Equation (8) is obviously most suitable for populations with discrete 
non-overlapping generations, such as are found in many insect species; 
although, if generations overlap, as happens in many species of birds, fish, 
and mammals, then Eq. (8) can be expanded to include age structure 
(Bergh and Getz, in press). The equilibrium and stability properties of this 
class of equations have been extensively analysed (May and Oster, 1976; 
reviewed in May, 1981). In much of the population modeling literature, 
specific density-dependent survival functions s(N) have a negative slope at 
N = 0 (e.g., the linear function s(N) = 0 - /?N, the ‘Ricker’ function 
s(N) = aeePN, and the ‘Hassell’ function s(N) = a( 1 + j?N) +--see May and 
Oster, 1976). Density-independent growth at low population densities is 
more realistically modeled, however, by survival functions which satisfy 

ds 

2% N=O=o. (9) 

To ensure that Condition (9) is satisfied, we select the proportion 
survival rate function (Maynard Smith, 1973) 

dN) = 1 + (;,fi)P Y> 1, 

where 0 < c < 1 is the density-independent proportional survival rate, p is 
the population density at which this density-independent rate is reduced by 
a factor of 2, and y is a shape parameter that determines, for increasing N, 
how rapid the transition is from a density-independent survival rate of cr to 
almost zero. Note that if y = 1 (the form adopted by Hoekstra et al. 1985), 
then Condition (9) is not satisfied. As y tends to infinity, however, we 
obtain a step function which corresponds to intra-niche density-inde- 
pendent survival when the initial population density is below the carrying 
capacity p and a survival rate of zero when the initial population density 
is above /3 (i.e., the environment runs out of food before any of the 
individuals mature). Sometimes it is useful to retain j? explicitly, since s(N) 
approaches the density-independent unlimited carrying-capacity case as 
p + cc; and we may want to investigate how the properties of certain 



42 GETZ AND KAITALA 

solutions are affected by the transition from density-dependent to density- 
independent survival. 

When s(N) has the form expressed by Eq. (lo), then Eq. (8) has the 
explicit form 

/?“baN( t ) 
W+l)=8y+N(t);. (11) 

It is straightforward to show that Eq. (11) has an equilibrium value 
(Maynard Smith, 1973) 

fi= fl(bg- l)? (12) 

Thus, a nontrivial biologically meaningful equilibrium (a > 0) exists when 
and only when bo > 1; that is, at low densities each individual must at least 
be able to replace itself if an equilibrium is to exist. 

The existence and local stability properties of the equilibrium fi are 
easily deduced using standard techniques (Maynard Smith, 1973; May, 
1975; May and Oster, 1976). Specifically, it is possible to show that the 
equilibrium fi is always locally stable when 1 < y < 2, while, for y > 2, local 
solutions 

approach fi monotonically when l<ba<L 
Y-l 

oscillate and approach fi when 

oscillate and move away from fi when ba>L 
y-2’ 

Finally, for y > 2, the solutions are chaotic provided ba is sufficiently large 
(May, 1975). In keeping with life-table terminology, we refer to ba as the 
reproductive value of the population. 

Implicit Niche Competition 

One needs first to understand the dynamics of competition between 
reproductively separate groups of individuals (different species or clonal 
lines of the same species) before addressing the more complex question of 
coexistence of interbreeding genotypes. Competition between species has 
been studied in much depth, but never in the context of the proportional 
survival rate function defined in Expression (10). Here we do so and obtain 
a result that has not been found in any other analysis of competition 
between two species. Specifically we show that two species can theoretically 
coexist even if no coexistence equilibrium-stable or unstable--exists. 

Before analysing the case of competition among species or clonal lines 
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competing in an explicitly defined multi-niche environments, we begin with 
the simpler case of analysing competition when the different niches are only 
implicitly defined. This approach (taken in most continuous time analyses 
of competition) assumes that the impact individuals in different population 
groups have on each other can be characterized by the interaction 
coefficients introduced in Eq. (l), but which now have only two indices 
(and are written as aV 3 0, i, j = 1, . . . . n,) since no explicit niche structure is 
defined (cf. May, 1973). In this case, Eq. (11) expands to 

py?;o,N,(t) 
N,(r+l)=p;‘+(& qvj(l))” i = 1, . . . . n, (14) 

where i refers to individuals of type i (species or clonal lines, depending on 
applicability). This type of implicit niche competition model is applicable 
when an environment contains some resource gradient (e.g., seed size) and 
one group is more efficient at one end of the resource spectrum, while the 
other is more efficient at the other end of the resource spectrum. 

The dynamic properties of this model can now be investigated to 
establish under what conditions several different groups of individuals 
(species, clonal lines) are able to coexist. The first requirement for a stable 
coexistence is that a positive equilibrium solution m = (w,, . . . . IVn)’ > 0 exist 
(the inequality is taken element-wise and ’ denotes vector transpose). 
Under equilibrium conditions, N,( t + 1) = Ni( t) = m;, i = 1, . . . . n, whence 
System (14) reduces to 

i CcijNj=ji(bjcTi- l)lirl, i= 1, . . . . n; 
/=I 

(15) 

or, using Expression (12), we obtain 

n 

1 aqlVj= fliTi, i= 1 , . . . . n. (16) 
j= 1 

From Expression (12), however, the right-hand side of this equation is 
Ai, the equilibrium level of the ith population in the absence of com- 
petition. Since we assume fi,>O, we require that 

biGi > 1, i=l n. 9 . . . . (17) 

Whether the linear system of Eqs. (16) has a positive solution N > 0 
depends on both the values of the parameters aii and the isolated 
population levels fii. 
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Since we have assumed that 6,6,> 1, it follows from Eqs. (15) that 

or from Eqs. (16) that 

(18) 

(19) 

In two dimensions the situation is easy to analyse (see Hassell and 
Comins, 1976, for an analysis of a similar two-dimensional model). 
Specifically, if the interaction coefficients are normalized so that aj= 1, 
i = 1,2, then the intersection of the two equations defined by System (16) 
will only permit 15, > 0 and m, > 0 (Fig. 2) when 

azl < fi2/fil < l/a,,, (20) 

or when 

a2, > fiz/fil > l/a,;. 

In both cases the equilibrium solution (ml, N*i,) is given by 

ml = (al - a12fi2Tz)/(l - a12a2,) 

m2=(~Z-a21~71)/(1-a12a21). 

(21) 

(22) 

N2 

FIG. 2. The equilibrium isoclines equations (see (16) with i= 2) plotted in the N,-N, 
phase plane in A and B. In A Inequality (20) is satisfied and this leads to the existence of an 
interior equilibrium (N,, m,). In B neither Inequality (20) nor (21) is satistied and no 
coexistence equilibrium exists. 
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Conditions (20) and (21) for the existence of an equilibrium, and the equi- 
librium values expressed in (21), are identical to those for the continuous 
time Gause-Lotka-Volterra model of competing species. The stability 
properties, however, are different. The local stability properties of the equi- 
librium (Nr, m,) depend on whether the eigenvalues of the Jacobian matrix 
associated with System (14) have modulus greater or less than 1 and are 
real or complex. Using linearization techniques and defining 

y;N, (b;cJ- 1) 
“=K bp, ’ 

(23) 

for i= 1,2, it is easily shown (Edelstein-Keshet, 1988) that the eigenvalues 
of the Jacobian stability matrix associated with the equilibrium (w,, wz) 
are given by 

1”’ = l- KI +Kz+&I -K,)2+‘%WGK2 

2 - 2 (24) 

It follows from Inequality (17) and Expression (23) that the discriminant 
in (24) (term under the square root) is positive. Further, if c(~~c(~, < 1 (this 
condition can be expected to hold in situations where each competitor is 
superior in some region of the resource spectrum, since this implies that 
both ~1,~ < 1 and c12, < l), then the discriminant is less than (K, + K*)~ and, 
consequently, 

l-(K1+K2)<Ap<%+<1. (25) 

Thus the equilibrium (m,, m,) is stable whenever K, + ~~ < 2, which is 
likely to occur when y1 and y2 are relatively small (not much larger that 2). 
If y1 and/or y2 is much larger that 2, then the left-hand side of Inequality 
(25) (see Identities (23)) is likely to be less than - 1, and the equilibrium 
(N,, R2) may be unstable. 

Even if the equilibrium (m,, R2) is unstable, dynamic coexistence is 
possible if the populations oscillate around (R,, R2) but are not attracted 
to the other three equilibria (0, 0), (fli, 0), and (0, fi2) (Fig. 2A). The 
eigenvalues of the Jacobian stability matrices associated with these three 
equilibria (also the three equilibria depicted in Fig. 2B) are easily deter- 
mined. They are (since we don’t know which of the eigenvalues is the 
larger, we use the notation 2, and E., instead of A+ and AZ) 

(03 0): 1 1’” = b 101 and ]“‘=b c '2 2 2 

- ’ b,a, 1 and Y2 
(fi,,O): i(2)= , 1 --y A’*‘=b 2 2 0 2 B2 

~ 
b,a, fly + fiL)” (cI21 

(0, A29 ): 1'3'=b o K' 
1 ’ I 

Pi;’ + (tl&)Y~ 
and $3’ = 1 

b,a,- 1 
- y2 r. 

2 2 

(26) 
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From this it is clear that these three equilibria are unstable provided 

b,a,, BF + (Ctqfij)” 

I I 
p;, ’ l 

i= l,j=2 and i=2,j= 1, (27) 

which, as a consequence of Identity (19), is always true for the case 
depicted in Fig. 2A (fir > cr,,fii, and @72 > cc*,N,). Note that equilibrium 
point (0,O) is unstable under the weaker condition 

b,a, > 1 i= 1, 2. (28) 

For the case depicted in Figure 2B, it similarly follows that J&f) < 1 and 
1’i3’ > 1. Thus one expects the superior competitor N, (dominating isocline 
in Figure 2B) to drive the inferior competitor to extinction, as happens in 
the Lotka-Volterra competition model (Edelstein-Keshet, 1988). However, 
a very interesting situaton occurs when y, is large enough to ensure that 
%‘,” > 1. Now the isolated equilibrium associated with the competitively 
dominant population is also unstable; that is, no interior equilibrium exists 
and all three axis equilibria are unstable. 

Two situations can arise, as illustrated in Figure 3A, where either the 
inferior competitor is driven to extinction while the dominant competitor 
oscillates around its isolated equilibrium (y = 4.5, 5.0), or both populations 
coexist despite the fact that no interior equilibrium, stable or unstable, 
exists (y = 1.0, 2.0, 3.0, 4.0). In all these cases, the solution asymptotically 
approaches a two-point cycle in the interior of the phase plane. If both y, 
and y2 are sufficiently large, however, chaotic behavior ensues (Figure 3B); 
that is, the behavior of the solution is governed by a strange attractor in 
the interior of the N,-N, plane (Guckenheimer and Holmes, 1983). 

These results have important implications for the analysis of competing 
subpopulations. They imply that the absence of an interior (coexistence) 
equilibrium point, in a discrete time competition model, does not automa- 
tically imply that coexistence is impossible. We have demonstrated here 
that coexistence for this case is possible, and could be cyclic (Figure 3A) or 
chaotic (Figure 3B). Of course, in some cases one or both populations may 
pass through a level that is sufficiently low to threaten their existence under 
stochastic conditions not considered here. 

Explicit Niche Competition 

As already discussed, some ecological systems can be explicitly separated 
into several distinct niches rather than implicitly defined by coexistence of 
competitors exploiting resources along a spectrum. For example, fruit flies 
lay their eggs on several different host plant species, and the larvae develop 
in those fruit on which they hatch. If several hosts occur sympatrically, 
then a single population may simultaneously exploit these hosts as different 
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t 
Nz 

FIG. 3. When the parameters in the implicit niche two-population competition model 
(Eqs(14) for i=2) have the values pl~,=p2u2=2, a,,=0.98, ~(~,=1.00, y,=8.0, and yz 
takes on a range of values from 1.0 to 5.0, as indicated in A, then the solutions starting with 
initial condition N,(O) = N,(O) = 1 converge on a cyclic solution with period 2. Coexistence is 
lost as yz increases. The two lines in the N,-N, phase plane (intersecting at IV, = 1 and 
N2 = 0) are the isoclines satisfying Eqs. (16) for i = 1, 2. If a,, and a,, are respectively changed 
to 0.90 and 1.02 and yz = 11 then chaotic coexistence is possible, as illustrated in B. The initial 
condition for the simulation in B is N,(O)=N,(O) =0.5, although diagrams exhibiting the 
same density structure of points results from other initial conditions. In particular, the same 
line-like accumulations of points are apparent. Connecting consecutive points in this diagram 
reveals that the solution oscillates between points lying on these “lines” until an edge area of 
the line is reached, at which time the solution bounces around before running up and down 
a pair of lines again. 
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niches. In some of these niches, individuals of one type (genotype or species 
as the case may be) may compete with individuals of a different type, and 
the suite of competitors may vary from niche to niche. In this case we are 
back to the model presented in Eqs. (1) and (2); except, if the different 
types are non-interbreeding or non-clonal, we interpret the index i as a 
species rather than a genotype index. 

If a survival function of the form given in Expression (10) h,olds with its 
own set of parameters for each phenotype ij, then Eqs. (1) and (2) can be 
combined to obtain 

/3.$r,iNii(t) 
Ndt + f) = & + (XI= 1 &J$(t))‘u’ i= 1, . . . . n,j= 1, . . . . m. (29) 

If the various population types are reproductively distinct (i.e., clonal 
lines or different species), then we do not need to consider dispersal with 
respect to mating: we only need to consider the proportions ky (cf. Eq. (4)) 
of eggs from species i in habitat j that are oviposited in habitat I, i.e., 

f k;l=l. 
/= 1 

(30) 

Thus at time t + 1 it follows that 

N,(t + 1) = f kyb,N,(t + t’), 
j=l 

(31) 

where we recall that b, is the average number of zygotes produced by an 
individual of phenotype ij. We can now combine Eqs. (29) and (31) to 
finally obtain 

N,,(t+ l)= f 
kP@b,o,N,(t) 

j= I /?p + (C:=, aj;N,-(t))Q 

i = 1 , . . . . n, I = 1, . . . . m. (32) 

This model is considerably more complicated than the implicit niche 
competition model, because we now have an explicit niche dimension and 
a dispersal component between distinct niches. 

We will not analyse this model in detail. Analytical results are more 
complicated to derive than for the implicit niche model. It does, however, 
form the ecological backbone of the ecogenetic model discussed in the next 
section where numerical simulation studies are carried out in a full 
ecogenetic framework. 
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4. DIALLELIC ONE-LOCUS TWO-NICHE MODEL 

Model Equations 

The simplest genetic component of an ecogenetic model for a diploid 
species involves two alleles at one locus. Consider the case where the alleles 
A and a differentially influence an individual’s ability to exploit two niches. 
For example, if individuals in a herbivorous species require an enzyme 
coded by allele A to detoxify a chemical compound produced by a plant, 
then only genotypes Aa and AA (assuming codominance or dominance of 
the allele A) are capable of exploiting this plant as an alternative niche. 

Let N&(t + t’), N&(t + t’), and Nz~~(t + t’), j = 1, 2, denote the number 
of individuals of each of the six designated phenotypes that mate at 
random within mating pools rc,, r = 1, 2, 3 (cf. Identities (3)). If we define 
Nnr as the total number of individuals in mating pool x,, that is, 

N”r = ; (N;Aj + N”a,, + N,“:,), 
j=l 

then it follows that the proportion of gametes, produced by individuals in 
mating pool n,, containing either A or a alleles are respectively 

(33) 

Now, if mating is random in x~, it follows that the number of eggs 
Ey(t + 1) of genotype p (p = AA, Aa, aa) produced by individual of 
phenotype q (i = AA, Aa, au, j = 1,2) in mating pool rc,, r = 1, 2, 3, is 

E ;“d”‘(t + 1) =~;(t + t’) b,,N;;,,(t + t’) 

EA,~(f+l)=$~;(t+t’)b~,~N;~~(t+t’) 

E “,y(t+ l)=,~~‘(t+t’)b,,N~~~(t+t’) 

EA,f-(t + 1) = fbA,N;Uj(t + t’) (34) 

Eznr(t + 1) =p;(t+ t’) b,,Nz;,(t + t’) 

E$jnr(t+ l)=$pz(t+ t’)b,,N”A,,(t+ t’) 

EzzJnr(t + 1) =p:(t + t’) b,,N;;,(t + t’) 

where we recall that h,, i= AA, Aa, au, j= 1, 2, are the zygote production 
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rates for the designated phenotypes. Finally, we can now calculate the 
number of individuals of each genotype hatching in either habitat at time 
t + 1 (assuming all eggs hatch), by substituting Expressions (34) in Eq. (5). 

Likelihood of Protected Polymorphisms 

As we discussed in the Introduction, several studies analyse conditions 
for the existence of genetic polymorphisms using Levene type ecogenetic 
models. To provide a frame of reference for our results, we compare them 
with results obtained by Hoekstra et al. (1985). 

Before we do this, we reconcile the notation and assumptions in 
Hoekstra et al. (1985) with our approach. First, the assumption by 
Hoekstra et al. that mating is random throughout the population is 
equivalent to our assumption that 6, = 1 for i, j = 1, 2 (see Fig. 1); that is, 
all individuals end up in mating pool rr3 (cf. Expressions (3)). 

Inherent in the Levene model is the assumption that the relative propor- 
tion of adults produced in each niche is constant. Thus the proportion of 
genotypes maturing in each niche is regulated by their relative fitness in 
that niche, but the number of individuals of each genotype entering the 
mating pool is readjusted so that the total number from each niche is in 
proportion to the relative carrying capacity of that niche. Specifically, the 
proportion of individuals from niche 1 entering h3, in each time step, is the 
fixed value 0 < c < 1. Hence 1 - c is the relative proportion from niche 2. 
Unfortunately, there is no analogue in our model for delivering a fixed 
proportion of individuals from each niche independent of differential 
survival rates that affect the density of individuals from one time period to 
the next. In our formulation, however, the parameters /Iii (cf. System (29)) 
are niche size parameters, so we set /Ii1 = c and pi2 = 1 - c, for i = AA, Aa, 
aa. Note, however, that we are unable to capture Levene’s approach as a 
special case of our own, because the concept of intra-niche competition is 
entirely missing from Levene’s model (only differential survival is possible). 

After mating, following Maynard Smith (1970) we assume that the 
oviposition preference coefficients k;/“) (i = AA, Aa, aa, j, I= 1, 2) depend 
on the niche size parameter c, but are independent of the genotype i. In 
addition we use the parameter h, varying in value between 0 and 1, to 
control the degree of habitat preference, such that h = 0 corresponds to no 
habitat preference (selection is purely proportional to habitat size) while 
h = 1 corresponds to the case where all individuals oviposit in the same 
niche in which they mature (natal niche). Specifically, the habitat 
preference components of Hoekstra et al’s (1985) and our model are 
equivalent if we set k’,Ln3=c+h(l-c) and k’,Z”‘=l-c+hc for i=AA, 
Aa, aa. (Note from Relationship (4) that it also follows that kg”‘= 
(1 -h)(l -c) and kyn3= c-hc for i=AA, Aa, aa.) 

Using the relative fitness expressions in Table I, Hoekstra et al. (1985) 
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TABLE I 

Relative Fitness under Partial Dominance of Varying Direction, 0 < v, s < 1 
(Hoekstra er al., 1985) 

Genotype AA Aa aa 

Niche 1 
Niche 2 

(1 -s) (1 -vs) 
1 (1 -vs) (11-S) 

derived conditions which guarantee the existence of a protected genetic 
polymorphism: 

v(2 - h + hvs - 2s) < c < (1 - v)(2 - h + hvs) 
(1 -vs)(2-h) (1 -vs)(2-h) . (35) 

Note from Table I that if 0 < v < 0.5, then in either niche the heterozygote 
is at least as fit as the arithmetic mean of the two homozygotes. This latter 
condition originally was thought to be necessary for the existence of genetic 
polymorphisms in a heterogeneous environment (Maynard Smith and 
Hoekstra, 1980), although Arnold and Anderson (1983) have weakened 
this condition by replacing the arithmetic mean with a weighted harmonic 
mean. In the simulations presented below, we set v = 0.5. 

We now address the question of how intra-niche density-dependent com- 
petition influences the likelihood that genetic polymorphisms exist. To do 
this, we compare the range of parameter values defined by Inequality (35) 
with results obtained from our model, when the parameters bp, are 
selected according to the fitness values in Table I. Specifically, the survival 
coefficients (TV were given the values in Table I (e.g., aALl = 1 - vs) and the 
fecundity parameters were assumed to be independent of the phenotype; 
i.e., b,= b for all i,j. Since any value of b maintains the same relative fitness 
values in Table I, we are free to choose any positive value for 6. Our choice 
of 6, however, affects the stability properties of solutions, although we can 
still evaluate how changes in the density-related parameters affect the 
existence of protected polymorphisms for a given value of b. We note 
from the results presented in Figure 2A for y2 = 4.5 and 5.0, however, that 
it is not sufftcient to check the stability properties of the monomorphic 
solution to establish whether the polymorphism persists through time. A 
monomorphism equilibrium may be unstable and yet the population may 
asymptotically approach the monomorphic axis on which the equilibrium 
lies; that is, the monomorphic gene frequency solution is stable but the 
equilibrium population size is unstable. 

For simulation purposes, we set b = 10. Initially we also assumed that 
each individual has the same effect on density-dependent growth regardless 

653’36 I-4 
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of genotype; that is, we assumed LY{, = 1 for i, 1= AA, Au, or au, and j = 1,2 
(see Eq. (32)). 

When the habitat selection parameter has a value h =O.S, the results 
illustrated in Figure 4A indicate that an increase in the intra-niche density 
dependence associated with a reduction in the value of the parameter y 
leads to a reduction in the likelihood that a protected polymorphism exists. 
These results suggest that by increasing the value of y we obtain a system 
in which protected polymorphisms become increasingly likely. From our 
earlier purely ecological analyses, however, we might suspect that 
increasing y also leads to less stable behavior including, as we demonstrate 
below, periodic and chaotic solutions. Thus, large y may permit polymor- 
phisms to exist under a wider range of conditions, but it also means that 
these polymorphisms are less likely to be stable equilibria and more likely 
to exhibit chaotic behavior. 

A second way of decreasing density dependence is to reduce the weighted 
population size in each niche by decreasing the interaction parameter 
values (cf. Expression (1)). In fact, as a consequence of differential survival 
of the different genotypes in each niche, we expect that some of the inter- 

0 0.2 0.4 0.6 0 8 I 0 
Fttness Parameter (s) 

FIG. 4. Comparative analysis between Levene’s and our model in terms of the set of 
parameter values under which a protected genetic polymorphism exists (i.e., the points in c-s 
parameter space, above the lines in question, support a protected genetic polymorphism). 
Recall that when c = 0.5 both niches are equal in size while when c = 0.0, niche 1 is of size 0. 
The parameter s relates to relative fitness such that s = 0 implies that both homozygotes are 
equally lit in both niches and s = I implies that each homozygote can only survive in one of 
the niches (see Table I). Note that symmetry considerations imply the reflection of this 
diagram around the line c = 0.5 holds for c E [OS, 11. In A we have panmixis (a,, = 0 for all 
i, j) and in B we have extreme heteropatry (6, = I for all i, j). The solid lines correspond to 
interaction parameters xi,= 1, while the broken lines correspond to interaction parameters 
a;=~,,, for all i, j, 1. Note that the lines were not plotted for s ~0.1 because the simulations 
took too long to converge when stable equilibria did exist. 
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action parameters are less than 1. To explore the effects of this, we set 
#, = oli, for i, 1= AA, Au, au and j= 1, 2 (i.e., the weighted population size 
depends on the survivability of each genotype in each niche, but no addi- 
tional structure is assumed for the way different genotypes interact in the 
same niche). The broken line in Fig. 4A, again, indicates that a reduction 
in competition increases the likelihood of a protected polymorphism; in 
this case beyond the limits of the Levene model. This does not contradict 
Asmussen’s (1983b) finding that ‘...intergenotypic interactions may allow 
genetic variation to be more easily maintained than in the corresponding 
model of purely density-dependent selection’ (the latter corresponds to set- 
ting c({, = 0 for all i, 1,j). We need to bear in mind, as discussed above, that 
conditions which increase the likelihood of a protected polymorphism may 
decrease the likelihood of a stable polymorphism; the notions of protected 
and stable genetic polymorphisms must be kept distinct. 

We also explored the effects of habitat selection on the existence of 
protected polymorphisms. In particular, we see in Fig. 4A that the 
likelihood of a protected polymorphism is decreased with a decrease in the 
habitat selection parameter h from 0.8 to 0.5. Note from Fig. 4A, for the 
selectively extreme condition s = 1, that stable polymorphisms can be main- 
tained in Levene’s model for all c E [0, 11, but in our model this does not 
hold under panmixis when the interaction coefficients are all one. It is also 
apparent from these results that, in a heterogeneous environment where 
density-dependent selection acts and is important, assumptions related to 
the way that density dependence acts strongly influence the existence of 
stable and/or protected genetic polymorphisms. 

The question of how density dependence affects the existence of 
protected polymorphisms was also posed by Hoekstra et al. (1985), who 
employed a density-dependent model introduced by Arnold and Anderson 
(1983). In this model, the fitness of the different genotypes in each environ- 
ment was assumed to be of the logistic form. Hoekstra et al. (1985) 
concluded that the added density dependence decreases the likelihood of a 
protected polymorphism when compared with Levene’s model. Our results 
support this conclusion, with the caveat that although increasing density 
dependence appears to reduce the likelihood of a protected polymorphism 
we were still able to formulate a model that is more likely to support a 
protected polymorphism than is Levene’s. 

As mentioned above, we can except the onset of oscillatory solutions 
when the value of the parameter y is increased, even though the likelihood 
of a protected polymorphism is increased as well. For example, when we 
select parameter values c = 0.4, h = 0.8, b = 10, set bii according to values 
in Table I with s=O.8 and v=O.5, and let y take on values in the 
range 2.6-3.4, the simulations indicate that the solutions are asymptotically 
periodic in both the gene frequencies in each niche (Figure 5A) and the 
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total number of individuals in each niche (Figure 5B). However, when we 
increase y to 3.6, both the gene frequency in each niche (Figure 5C) and the 
total number of individuals in each niche (Figure 5D) exhibit chaotic 
behavior. Interestingly, this chaotic behavior has an intricate structure with 
points preferentially clusteering along certain curves in the plane. 

In all cases, the population size fluctuates much more than the gene 
frequencies. This is probably due to the fact that the gene frequency 
component is inherently stable (Asmussen, 1979), while the population 
regulation mechanism destabilizes as the value of y is increased. 
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FIG. 5. Simulation results using the diallelic one-locus model described by Eqs. (29), (33), 
and (34), and for the parameter values discussed in the text. Figures A and B, respectively, 
illustrate the asymptotic frequency and population size solutions in each niche for various 
values of the shape parameters y, and yz. When y, = yz = 2.6 the asymptotic solution is a 
stable point. For increasing values of y, = y2 it is a stable two-cycle until y, = y2 = 3.6 when 
the solution, as illustrated in C (frequency) and D (population size), becomes chaotic. 
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Genotype Habitat Preference 

55 

So far, we have considered the situation where adults have a tendency to 
choose their natal habitat for oviposition purposes, regardless of genotype. 
This was incorporated in the model using the habitat preference parameter 
h, as discussed in the previous section. Now, we study the effects of 
genotype controlled habitat preference process, where each genotype 
prefers the habitat in which it is most lit according to the relative fitness 
values listed in Table I. To do this we redefine the preference parameters 
kr’ in terms of the previously introducted parameters h and c in the 
following manner. (Note that our definitions are just one of many possible 
definitions of kp that will satisfy the assumption that each genotype 
preferentially migrates to the habitat in which it is most fit). Specifically, 
in niche 1 we set k:A’n3=c--c,k:a1n3=c, and k’;“‘“3=c+h(l -c), 
while in niche 2 we set ktAZR3 = 1 -c + hc, kiazn3 = 1 -c, and ky2a3 = 
1 -c - h( 1 -c). Note from Identity (4) that it follows that kfA’n] = 
1 - c + hc, k;- = 1 - c, kyln3 = 1 - c - h( 1 - c), kfAZrrl = c - hc, k;LUZn’ = c, 
and k y2n3 = c + h( 1 - c). 

From the above expressions it is apparent that h = 0 corresponds to no 
preference (selection of niche is purely proportional to niche size). 
Heterozygotes continue to display no niche preference for all values of h 
(same relative fitness in both niches), but as h increases each homozygote 
shows an increasing preference for the niche in which it is most Iit. In fact, 
for h = I, the homozygotes aa all choose niche 1 and the homozygotes AA 
all choose niche 2. After extensive simulations, using the same set of 
productivity rates, interaction coefficients, and shape parameter y as 
discussed in the natal niche preference studies, we were unable to establish 
the existence of protected polymorphism for h = 0.2, 0.5, or 0.8. 

This is a surprising result, but must be interpreted circumspectly. First, 
it is dependent on the form of the fitness table (Table I): for example, if 
allele A is completely dominant so that there are only two phenotypes 
(A- and aa), then we have found in additional simulation studies that 
stable polymorphisms are possible. Second, there is no way that individuals 
can teleologically know in which habitat they are most lit. It is easy to 
see how natal habitat preference can evolve, say, through some type of 
imprinting mechanism. It is hard to conceive of a mechanism that allows 
individuals to assess which niche provides the greatest relative fitness to 
their genotype, given that they only experience one niche in their matura- 
tion phase, and that some individuals are more Iit in other niches (they 
may all be able to assess which niches are inhospitable to the species as a 
whole). If a mechanism does exist for all individuals to assess niche quality 
for their genotype prior to oviposition (perhaps individuals can sample and 
evaluate each niche) and preferentially oviposit in the most favorable niche, 
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then it appears that fixation always occurs. The allel that is fixed will 
depend on many factors including population and fitness parameters, 
initial gene frequencies, and relative niche size (e.g., it is more likely the 
homozygote au will win if niche 1 is much larger than niche 2, etc.). 

Heteropatry 

So far we have assumed that mating is panmictic for the population as 
a whole (i.e., 6, = 1 for all i, j in Eqs. (3)). We now analyse the other 
extreme where individuals mate within their niche before dispersing to 
oviposit (i.e., 6, = 0 for all i, j). Depending on the values of ky”, in Eq. (5), 
oviposition preference may or may not be random. As in the previous 
section we use the habitat preference parameter h to model oviposition 
behavior. Recall that (h = 0) corresponds to no habitat preference, while 
h = 1 now implies that there is no genetic interaction between the niches; 
that is, the niches are genetically isolated entities. 

Figure 4A illustrates the simulation results for h = 0.5 and 0.8 with the 
two different sets of interaction parameters, N{, = 1 and a:,= a0 for all i, j, 
1. All three curves illusstrated in Fig. 4B can be directly compared with 
corresponding curves in Fig. 4A (the three curves for which y = 2), since the 
only parameters that differ between corresponding curves are the assor- 
tative mating parameters 6, (see Fig. 1 and Expressions (3)). Recall that 
the results in Fig. 4A correspond to panmixis in the population as a whole 
(6,= 1, i,j= 1, 2) while the results in Fig. 4B correspond to mating within 
the habitat before dispersing to oviposit (6, = 0, i,j = 1, 2). 

The condition 6,= 0 for i,j= 1,2, is the most extreme form of 
heteropatry, while the other extreme, 6,= 1, for i, j= 1, 2, is sympatry. 
From the comparison, it is clear that strong heteropatry leads, as expected, 
to a noticeable increase in the likelihood that a protected polymorphism 
exists; that is, the area above comparable curves in the s-c plane is 
noticeably larger in Fig. 4B than in Fig. 4A. 

It is clear from the simulation studies compared in Fig. 5A and B that, 
much as one would expect, spatially induced assortative mating together 
with some level of niche oviposition preference can dramatically enhance 
conditions for the existence of protected polymorphisms. If, in addition, 
genie assortative mating mechanisms become linked with habitat preference 
(i.e., the values of the parameters 6, become increasingly determined by 
genetic factors) then heteropatry enhances the possibility of sympatric 
speciation (but see Futuyma and Mayer, 1980). In essence we have 
heteropatry in a polyphagous organism when dispersal to mate is on a 
scale comparable with environmental heterogeneity, but dispersal to 
oviposit or bear young is on a larger scale. Biologists should evaluate the 
scales in appropriate populations (i.e., possible polyphagous ancestor, 
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sessile young, and adults highly dispersive after mating) when they argue 
that sympatric speciation might have occurred. 
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