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Signal processing in the olfactory system is initiated by binding of odorant mole-
cules to receptor molecules embedded in the membranes of sensory neurons. Most
analyses of odorant–receptor interaction focus on one or more types of odorants
binding with one type of receptors. Here, two basic models of this first step are
investigated under the assumption that the population of receptors is not homoge-
nous and is characterized by different activation/deactivation rates. Both, discrete
and continuous variation of the rates are considered. The steady-state characteris-
tics of the models are derived. In addition, time to crossing a threshold, defined as
a response time, is also investigated. The achieved results are compared with those
valid for models with the homogenous population of receptors and interpreted in
terms of information coding. The obvious implications of the modeling study—that
the heterogeneity of receptors enlarges the coding range and increases the sensitiv-
ity of the system—are quantified.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

A fundamental, but critical question in olfaction that has not yet been answered
satisfactorily is whether individual olfactory receptor neurons (ORNs) express only
one or more than one type of olfactory receptor protein (ORP) in their dendritic
membranes (Lancetet al., 1993b,a). Over the past decade, geneticists have become
increasingly aware that a surprisingly large number of genes in animals code for
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ORPs (Buck and Axel, 1991; Buck, 1996; Malnic et al., 1999; see alsoMombaerts,
1999): about 1000 or approximately 1% of genes in rats and mice code for ORPs,
which appears to be even more diverse than genes coding for ligand receptors as-
sociated with the immune system. Recently,Duchamp-Viretet al. (1999) argued
that responses of individual ORNs to several different classes of compounds (e.g.,
turpene, camphor, aromatic, and straight-chained ketones) imply that individual
frog and rat ORNs express several ORPs. Nonpheromonal insect ORNs are also
known to respond individually to a wide array of structurally different odorants
[for reviewsMasson and Mustaparta(1990), Smith and Getz(1994), Lemon and
Getz(1999)] and it is estimated that the fruit fly genome contains on the order of
100 ORP genes [as reviewed inMombaerts(1999)]. Malnic et al. (1999), however,
present empirical evidence that in rats individual ORNs appear to express only one
ORP and that it is individual ORPs themselves that are able to bind to an array
of structurally diverse odorants. Here we develop a model that can help assess
whether one or more subpopulations of ORPs are expressed by individual ORNs.
Application of the model is not limited to ORNs, but to the transduction of chem-
ical information across any cell membrane. Our leitmotif, however, is a generalist
insect ORN located in hair-like sensilla on the antenna. These ORNs are regarded
as coding olfactory information in terms of a firing rate response to both the quality
and concentration of an odor stimulus (Lemon and Getz, 2000).

The process whereby an odor stimulus evokes a response in an ORN involves
many steps with details varying for different kinds of ORNs (e.g., pheromonal
versus general ORNs in insects), different component odorants in mixtures (e.g.,
some odorants lead to higher excitation than others), and differences among species
of animals. Selected details of this process are known only for particular ORNs in
specific species, and then only for particular steps of the process. All the critical
stages involved in the response of a given class of ORNs in an identified species of
animal have yet to be described.

We carry out investigations in the context of a pure odorant stimulus presented
at constant levels and compare the proportion of bound ligand–receptor complexes
if the ligand (odorant) in question is able to bind with ORPs that have one, sev-
eral, or a distribution of different hypothetical affinities. The shape of the curve
representing the proportion of bound ligand–receptor complexes as a function of
ligand density (or the logarithm of ligand density) can be used as a surrogate for
ORN response. The activity of ORNs can be regarded as an amplification of the
weak signal resulting from the initial binding of the odorant molecules to the ORPs
on the neuronal membrane. Nonlinearities in second messenger cascades and ion
channel gating processes will distort the dependency of the bound complexes on
the stimuli, but if this distortion is a monotonic function, which seems to be a
natural presumption, of the proportions of bound ligand–receptor complexes then
many of our conclusions regarding the effects of heterogeneity of ORP populations
on transient and equilibrium proportions of bound ligand–receptor complexes will
provide insights into the effects of ORP heterogeneity on the response of individual
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ORNs. For details on how to introduce some of these additional processes into the
model, seeRosparset al. (1996) andGetz(1999).

We also have the option of selecting various levels of detail in modeling the
steps leading to the odorant–receptor complexes in terms of the concentration of
odorant delivered to the mucosal membrane (vertebrates) or sensilla (invertebrates)
containing the afferent dendrites of the ORNs. In the case of insects (Fig.1), for
example, odorants have to traverse pores in the cuticle of the olfactory sensilla and
then diffuse or to be carried by odorant binding protein (OBP) across the liquid
environment of the perireceptor space to then bind with ORPs embedded in the
ORN dendritic membranes. Although OBP has been found in pheromone ORNs
in moths, along with other enzymes that could be involved in metabolizing ‘used’
odorants or restoring OBPs from their oxidized (used) state to their reduced (active)
state (Kaissling, 1998). Again, the details of all the steps or even their number are
not known. If OBP is involved then the following processes should to be considered
(see Fig.1):

• the transfer of odorant from the external space into the perireceptor space
with ratekI and its possible release form this space with ratek−I ;
• reversible interaction between OBP (in its reduced state) and odorant in

perireceptor space to form bound their complexes at ratesk0 andk−0. An
influx of OBP can be due either to restoration of of its oxidized form or to
synthesis of new molecules;
• the binding of odorant–OBP complexes with ORPs on the dendritic mem-

brane at binding and unbinding ratesk1 andk−1 respectively.
• activation of bound receptors at ratek2 with reversal at ratek−2 and, in turn,

the breakdown after unbinding of odorant-OPB complexes at ratek3. We
make an assumption that when activated ORP complexes break up, the odor-
ant is in a form that is no longer accessible to OBPs.

A complete description of all known processes is too complicated for an analyt-
ical solution, especially in the context of membranes with more than one type of
ORP binding to the odorant or ligand of interest. (For each type of ORP, indexed by
j , j = 1, . . . ,n, binding to odoranti , i = 1, . . . ,m, distinct interactions governed
by rateski j need to be considered.) Several special cases, however, can be usefully
studied. Two scenarios already thoroughly studied for homogenous populations of
ORPs are extended below to the case of membranes with two or more ORP types.
Each is a special case of the more general approach presented in Fig.1, which is,
of course, closer to reality but less formally tractable and transparent.

1.1. Classical concentration detector.Beidler (1962), Ennis(1991), Getz and
Akers (1995), Malakaet al. (1995), Lánsḱy and Rospars(1993, 1995), Rospars
et al. (1996): in this scenario it is assumed that the neuronal membrane is directly
exposed to the odorant molecules present in the external space (this is formally
equivalent to lettingkI → ∞ and k−I → ∞). This simplification results in a
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Figure 1. A cartoon of some of the critical processes involved in odorant–receptor binding
in olfactory sensory neurons. For details see the text.

model which is substantially less sensitive than real neurons. By assuming very fast
(relative to other reactions) and reversible transfers of odorant molecules between
the external and perireceptor spaces, the model permits the actual concentration of
odorant in the perireceptor space to be higher than in the external space by a factor
equal to the ratio of the influx and outflux rates. More precisely, if no other steps
are considered, then the ratio between the perireceptor and external concentrations
is equal tokI/k−I and the amplification arises if this ratio is greater than one. If this
amplification is included, the sensitivity of the model can be boosted so that insen-
sitivity is no longer a disadvantage. Further, in the classical concentration detector,
the role of OBP is ignored. This is equivalent to assuming that concentration of
OBP is much higher than the odorant concentration in the perireceptor space (for-
mally equivalent to lettingk0→∞, k−0 = 0). Also, we assume that the activation
of the bound ORP is an immediate consequence of binding (formally equivalent to
letting k2 = k−2→∞). Finally, no degradation of the activated (bound complex)
is included (i.e., we setk3 = 0).

1.2. Flux detector. Kaissling(1998), Lánsḱy and Rospars(1998), Rosparset al.
(2000), Lánsḱy et al. (2001): in this scenario it is assumed that the transfer of
odorants between the external and perireceptor spaces is relatively slow and irre-
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versible, (this is equivalent to settingk−I = 0). In this model the concentration of
the odorant in the perireceptor space can be again substantially higher than outside.
The difference between the flux and concentration detector models is based on the
fact that in the flux detector model the rate of the influx is quantitatively taken into
account (reflecting for example the speed of wind) and no outflux is permitted. As
in the concentration detector model, we do not include OBP (formally equivalent
to allowingk0 → ∞ andk−0 = 0). Also, the difference the between bound and
activated states of ORPs is not taken into account (formally equivalent to letting
k2 = k−2→∞), but the degradation must be included to compensate for the fact
that no possible outflow of the odorant occurs (i.e., we must havek3 > 0).

At least two kind of problems must be solved by the ORNs:the detection prob-
lemandthe intensity coding problem. Detection relates to the lowest concentration
at which a response is obtained. Higher sensitivity means that lower concentra-
tions are able to evoke a response. The intensity coding problem is related to the
range of concentrations (coding range) over which graded responses are obtained.
Finally, related to both of these, but mainly to the detection problem is the ques-
tion of the response time. The reaction to the presence of the odorant, for obvious
reasons, must not be substantially delayed after its application, even for the low-
est detectable amount. Then, increasing the intensity of stimulation the response
time is expected to decrease. In this article we focus on how the steady-state lev-
els of the activated ORPs (i.e., activated ligand–ORP complexes) in both models
depend on the heterogeneity of the ORP populations. This permits us to evaluate
the extent to which heterogeneity of ORP populations modifies the sensitivity and
odor coding range, as predicted for membranes with a homogenous population of
ORPs. Additionally, we investigate the kinetics of activated ORPs in terms of the
time it takes for the proportion of activated ORPs to reach a predefined level after
the neuron is stimulated with a square wave input.

2. THE M ODEL

Consider a patch of sensory membrane uniformly covered withn types of ORPs.
Let N j denotes the density of ORPs of typej , and letRj (t) andC j (t) denote the
concentrations of free (‘not interacting’) and bound (‘interacting’) ORPs at timet ,
( j = 1, . . . ,n) i.e., Rj (t) + C j (t) = N j . ThusN =

∑n
j=1 N j is the total density

of ORPs. We assume that the bound complexes are indistinguishable from one to
another in terms of their contribution to membrane depolarization and thus only
the total concentration

C(t) =
n∑

j=1

C j (t) (2.1)

of the bound ORPs is relevant for determining neuronal activity. As mentioned in
the Introduction, here we assume that the signaling complex is created in a single
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step. Generalizations based on more than one step (k2 and k−2 are both finite)
follow in obvious manner despite formal complications.

2.1. The stimulus. The odorant molecules are diluted at timet in the carrier
medium at a concentrationLex(t). There is an abrupt change in concentration at
time t = 0 from zero to a constant levelLex > 0,

Lex(t) =
{

Lex for t ≥ 0
0 for t < 0.

(2.2)

With this stimulation, the steady-state behavior of the system and its reaction to
the stimulation onset can be investigated. The experimental results are always
related to the decadic logarithm of the odorant concentration,Kex = log10(Lex).
Therefore, for a possible comparison, we present the results not only in terms of
Lex but in terms ofKex as well.

2.2. Concentration detector.This is the simplest and most common model de-
scribing the early stages of information transfer in olfactory systems. The model
considers no practical distinction between perireceptor and external space. As we
have pointed out, a more general model is derivable by assuming that the influx
and outflux rateskI andk−I of odorant in the perireceptor space (Fig.1) are two or
more orders of magnitude larger that other constants. Consequently, the concen-
tration of odorant at the vicinity of the membrane,L(t), is not influenced by the
interaction of odorant with ORPs. From the balance equationdL

dt = kI Lex− k−I L
it follows that the equilibrium ratio betweenL andLex is equal tokI/k−I = α and
thus L � Lex if kI � k−I , even thoughk−I itself is taken to be relatively very
large. For notational simplicity we assumed that the concentration of the odorant
L in the perireceptor space is kept equal to the concentrationLex in the external
space,L(t) = Lex(t), so that the amplification isα = 1.

Let us suppose that unbound ORPs Rj compete for ligands L through the inter-

actions, L+ R j

k1 j

�
k−1 j

C j , where, for j = 1, . . . ,n, the rate constants of the binding

and release, for ORP typej , are denotedk1 j andk−1 j . Taking into account that∑n
j=1 Rj (t) + C(t) = N is constant,n independent equations can be written for

description of the system. We select the equations inC j as it is the quantity of
interest. Thus our model is

dCj (t)

dt
= −(k−1 j + k1Lex(t))C j (t)+ k1 j Lex(t)N j , C j (0) = 0. (2.3)

In equation (2.3) we assume that the initial concentrations of bound ORPs are
equals to zeros and it is indicated explicitly thatLex is a function oft . For a step
input of the form given in equation (2.2), the solution of system (2.3) is

C j (t) = C j∞(1− exp(−t (k−1 j + k1 j Lex))), (2.4)
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where

C j∞ =
k1 j LexN j

k−1 j + k1 j Lex
(2.5)

is the steady-state level of the activated ORPs of typej . The levelC j∞ is achieved
exponentially with time constant(k−1 j+k1 j Lex)

−1 and the curveC j∞ as a function
of Lex is hyperbolic, though as a function of log10(Lex) its shape is sigmoid.

From equations (2.1), (2.4) and (2.5), the total density of activated ORPs is

C(t) =
n∑

j=1

N
k1 j Lex

(k−1 j + k1 j Lex)
(1− exp(−t (k−1 j + k1 j Lex)))p j , (2.6)

wherep j = N j /N. If the number of ORPs of each type is sufficiently large so that
N j /N reflects the probabilityp j that a randomly chosen ORP is of typej , then
function (2.6) may be seen as the mean of the random function

0(t) = N
K1Lex

K−1+ K1Lex
(1− exp(−t (K−1+ K1Lex))), (2.7)

where Prob(K1 = k1 j ∩ K−1 = k−1 j ) = p j ; that is, by definition,C(t) = E[0(t)],
whereE[.] is the expectation operator.

Steady-state response.For the steady-state of the total concentration of bound
ORPs,C∞ =

∑n
j=1 C j∞, it follows from equation (2.5), that

C∞ = N
n∑

j=1

Lex

kd j + Lex
p j , (2.8)

wherekd j = k−1 j /k1 j is called the dissociation constant. As seen from equa-
tion (2.8), the steady-state behavior of the studied model of a heterogenous system,
as for the homogenous system, depends only on the ratios between dissociation
and association rates. Function (2.8), as a function ofKex = log10(Lex), can be
written in form

C∞(Kex) = N
n∑

j=1

10Kex

kd j + 10Kex
p j . (2.9)

Thus with respect to log-concentration, equation (2.8) is a sum of sigmoids cen-
tered atkd j with height N j , (Fig. 2). If all consecutive steps in the signal trans-
duction were linear, then equation (2.9) would be the theoretical counterpart to
experimentally observed input–output (transfer, response) curves. However, non-
linearities in signal transduction from binding to firing of a neuron may distort the
shape of the final response function.

If follows form equation(2.7) that

C∞ = E

[
N

Lex

Kd + Lex

]
, (2.10)
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Figure 2. The concentration of activated ORPs (bound odorant–receptor complexes)—
referred to here as the transfer function—is plotted as a function of the decadic logarithm of
stimulus intensity [i.e.,Kex = log10(Lex)] for the case of homogenous and heterogenous
ORP populations in the concentration detector ORN model. The heterogenous population
is composed of two equally large subpopulationsN1 = 5 µmol l−1, N2 = 5 µmol l−1

each respectively characterized by dissociation constantskd1 = 0.01µmol, kd2 = 1µmol
[solid nonsigmoid line given by (2.8) which is the sum of the two component long-dashed
lines]. The two transfer functions for the two component homogenous populations re-
garded as a separate ORN are the two dashed lines. The transfer function for the homoge-
nous ORN, characterized by the arithmetic mean of the dissociation constants (i.e., the
parameters areN = 10µmol l−1 andkd = 0.505µmol), is given by the solid sigmoid
curve. Note, the transfer functions for homogenous populations of ORPs are given by
equation (3.1).
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Figure 3. The mean concentration of activated ORPs (solid line)± two standard deviations
of this random variable (dashed lines) for the concentration detector in dependency onKex
in case of heterogenous ORP population with binomially distributed dissociation constant
(parameters as in Fig.2).
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where Kd is a random dissociation constant. So, equations (2.8) and (2.9) can
be interpreted as the response curves for a multinomial distribution of the disso-
ciation constant,Cmn

∞
= E[0mn

∞
], where the superscript ‘mn’ is used to indicate

the type of distribution. The quantity0mn
∞

is a random variable and thus also the
moments of higher orders can be calculated. For example, the variance of0mn

∞
is

given inAppendix A. Note that the assumption Prob(K1 = ki j ∩ K−1 = k−1 j ) =

Prob(Kd = kd j ) = p j = N j /N is meant to imply that ORPs having different
both activation and deactivation rates cannot have the same dissociation constant
(the ratiok−1 j /k1 j ). However, this is only a notational restriction that can be
easily removed.

For a cumulative distribution functionF of the dissociation constantKd, F(x) =
Prob(Kd ≤ x), the input–output curve defined by equation (2.10) can be written in
the form

Cx
∞
= N

∫
∞

0

Lex

x + Lex
d F(x), (2.11)

where the superscript ‘x’ is used to denote the generic form of the probability distri-
bution (e.g., for multinomial, x is replaced by mn, for uniform—u, for normal—n).

If the number of ORP type is large, a continuity approximation would lead us to
the assumption that the population of ORPs is not divided into several subgroups
with substantially different parameters, but that the heterogeneity is reflected by
continuous fluctuations of the dissociation constant. The same condition can be de-
duced from assuming that the population of ORPs is homogenous, but susceptible
to random fluctuations. These fluctuations can be both small or large and this will
be reflected by dispersion of the dissociation constant, Var(Kd) (i.e., variance of
the dissociation constant). Continuous fluctuation of the dissociation constant in-
duces existence of the probability density functionf (x) = d F(x)/dx. Examples
of steady state responses for uniform and normal densities are presented inAp-
pendix Aand later illustrated in Fig.4.

Let us investigate the mutual positions of the steady-state transfer curves for
homogenous and heterogenous populations of ORPs. For symmetric binomial dis-
tribution of Kd,

[
Prob(Kd = k1) = Prob(Kd = k2) =

1
2

]
we have (see Fig.2)

1

2

2∑
j=1

Lex

k j + Lex
>

Lex

1
2

∑2
j=1 k j + Lex

. (2.12)

In general, for any randomKd with symmetric or asymmetric cumulative proba-
bility distribution functionF defined on[0,∞), for which E[Kd] = kd, it can be
shown (seeAppendix B) that

Cx
∞
> N

Lex

kd + Lex
. (2.13)

This fact will be related later to the sensitivity of the system, (see Figs2 and4). In-
equality (2.13) implies that the number of activated ORPs in heterogenous popula-
tion is always higher than the number of activated ORPs in homogenous population
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Figure 4. The mean concentration of activated ORPs in the concentration detector for uni-
form distribution of dissociation constant with mean 0.505µmol andε = 0.4950µmol
calculated as a function ofLex using expression (A2) (dashed line), is plotted in terms of
Kex = log10(Lex). For comparison, the mean concentration of activated ORPs is plot-
ted for the binomial distribution of dissociation constant, as in Fig.2. (solid nonsigmoid
curve), and for a homogenous population withkd = 0.505µmol (solid sigmoid line).
The case of heterogenous population withε = 0.05µmol is not distinguishable from the
homogenous population.

with dissociation constant equal to the mean dissociation constant of the heteroge-
nous population. Visualizing this result leads to realization that the ‘mean’ curve in
the case of two equal subpopulations of ORPs is not centered between the curves
of the corresponding two homogenous cases (Fig.2). On a logarithmic scale, a
more symmetrical picture arises because the expressions 10Kex/(kd j + 10Kex) are
symmetric functions ofK = Kex with respect to a curve of slope−1 through their
centerKex = log10 kd j , while the expressionsLex/(kd j + Lex) are not symmetric
functions ofL = Lex [cf. equations (2.8) and (2.9)]. Thus, for purposes of com-
parison, we derive the results in terms of a distribution for log10 Kd. Intuitively
we might require thatE(log10 Kd) = log10 kd. This, however, would imply that
E(Kd) > kd. For example, if Prob(log10 Kd = 0)− Prob(log10 Kd = −2) = 1/2,
thenE(Kd) = 0.505, butE(log10 Kd) = −1, which implieskd = 0.1. For sym-
metric binomial distribution ofKd, Prob(log10 Kd = a) = Prob(log10 Kd = b) =
1/2, it can be shown that (see Fig.5)

1

2

(
10Kex

10a + 10Kex
+

10Kex

10b + 10Kex

)
>

10Kex

10(a+b)/2+ 10Kex
(2.14)

wheneverKex < (a+b)/2 and reverse inequality holds wheneverKex > (a+b)/2.
If we now generalize by assuming that log10 Kd is uniformly distributed on

(log10 kd − ε, log10 kd + ε), then the probability density function forKd is

f (x) =
1

2εx ln 10
, x ∈ (10log10 kd−ε,10log10 kd+ε). (2.15)
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Figure 5. The mean concentration of activated ORPs in the concentration detector is plot-
ted as a function ofKex = log10(Lex) for ORNs with both homogenous and heterogenous
populations of ORPs. The heterogenous ORPs are composed of two distinct subpopula-
tions of ORPs with concentrationsN1 and N2, and corresponding dissociation constants
kd1 = 0.01µmol, kd2 = 1 µmol. The homogenous populations are characterized by the
parametersN = 10µmol l−1, and in one casekd1 = 0.01µmol [most left long-dashed
line in (a), (b) and (c)] and in the other casekd2 = 1µmol [most right long-dashed line in
(a), (b) and (c)] andkd being the geometric mean of the dissociation constantskd1 andkd2,
kd = 0.1µmol [center short-dashed line in (a), (b) and (c)]. The plots for the heterogenous
ORPs are: (a)N1 = 2µmol l−1, N2 = 8µmol l−1, (b) two equally large subpopulations
N1 = 5µmol l−1, N2 = 5µmol l−1 and (c)N1 = 8µmol l−1, N2 = 2µmol l−1.
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Figure 6. The mean concentration of activated ORPs in the concentration detector is plotted
as a function ofKex for the uniform distribution of decadic logarithm of the dissociation
constant with meanE(log10 Kd) = −1 andε = 3 (straight line),ε = 2, ε = 1, ε =
0.01 (coincides with transfer function of homogenous population of ORPs), calculated
from (2.16). By decreasingε the transfer function approaches the sigmoid function. The
rest of the parameters as in Fig.2.

Thus, by substitutingf (x) into equation (2.11), we obtain

Cln u
∞
= N

(
1−

1

2ε
log10

(
kd10ε + Lex

kd10−ε + Lex

))
, (2.16)

which tends toLex/(kd+ Lex) asε → 0. Again, the relative positions of the curves
is analogous to that in equation (2.14) (Fig. 6).

In general, for homogenous and heterogenous systems it is possible to derive a
relationship similar to (2.13), assuming that the distribution of log10 Kd is sym-
metric. For the cumulative distribution functionF(x) = Prob(log10 Kd ≤ x), a
symetricity assumption implies thatF(µ− x) = 1− F(µ+ x), [if density exists,
then f (µ− x) = f (µ+ x)], whereµ = E(log10 Kd). In this case, it holds that

Cx
∞
(Lex)


> N Lex

µ+Lex
for Lex < µ,

=
N
2 for Lex = µ,

< N Lex
µ+Lex

for Lex > µ.
(2.17)

Relationship (2.17) is illustrated in Fig.6, where uniform distribution of log10 Kd

with different spreads are used. The symmetry off implies that the distribution of
Kd is positively skewed, which holds true for all the most common distributions
defined on[0,∞). Further, it induces symmetry inCx

∞
(Kex) around the concen-

tration at which half of the ORPs are activated.
The assumption thatKd is a random variable following some common distribu-

tion (e.g., multinomial, normal, or uniform) could also imply that only the unbind-
ing rateK−1, or only the binding rateK1 is random, rather than the ratioKd itself.
For example seeAppendix Cand Fig.7.
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Figure 7. The mean concentration of activated ORPs in the concentration detector is
plotted as a function ofKex for heterogenous population of ORPs with uniform distri-
bution of decadic logarithm of association rate with mean 1µmol−1s−1 and dissociation
rate 0.01 s−1, ε = 0.99 µmol−1s−1, calculated from expression (2.5) (full line). For
comparison, we plot concentration of activated ORPs for a homogenous population with
kd = 0.01 (dashed line) and for the case whenkd is the mean of distribution (C1) (dotted
line), is presented.

Response time.We now turn our attention to the question of the length of time,
δ(Lex), that it takes as a function of concentrationLex for the proportion of acti-
vated ORPs to reach a critical thresholdSneeded to trigger an ‘on’ response down-
stream. For a homogenous population of ORPs(n = 1)δ is obtained by solving
equationC(δ) = S following from equation (2.4) for j = 1 to obtain

δ = −
1

k−1+ k1Lex
ln

(
1−

S(k−1+ k1Lex)

k1LexN

)
≈

S

k1LexN
. (2.18)

The approximation holds reasonably well for the thresholds far below the asymp-
totic level of the concentration of the signaling complexes,S� N Lex/(kd + Lex).
In other words, for sufficiently strong stimulations the response time does not de-
pend on the dissociation rate. On the other hand, times to reach levels close to the
steady-state depend strongly on the dissociation rate.

For populations composed of different ORPs, an analytical solution analogous to
formula (2.18) is not available and only approximations can be used. The approx-
imation valid in this case is obtained from the equationC(δ) =

∑n
j=1 C j (δ) = S

and, as in deriving equation (2.18), it is

δ ≈
S

Lex
∑n

j=1 k1 j N j
. (2.19)

Using the notationp j = N j /N, equation (2.19) can be written in the form

δ ≈
S

LexN E(K1)
, (2.20)
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whereK1 has a multinomial distribution. The primary conclusion from this analy-
sis is that if the heterogeneity is characterized by different dissociation rates then,
as in the homogenous ORP population case, for sufficiently strong stimulation only
the means of the association rates determine the response time. From convexity of
function (2.20) it follows that the reaction time of ORN with heterogenous popu-
lation of ORPs is shorter than that for ORN with the homogenous population in
which the association rate is equal to the mean of the association rates character-
izing the subpopulations, [Fig.8(b)]. This suggests that the improvement of the
response time with respect to the homogenous populations of ORPs exists.
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Figure 8. The reaction timesδ are plotted as functions ofKex: (a) two homogenous
populations—the components of the heterogenous population of ORPs with parameters
given in Fig.2. The reaction times are given by expression (2.18). (b) Approximation of
the reaction time given in expression (2.19) for a homogenous population (dashed line) and
expression (2.18) for a heterogenous population (full line) characterized by the same mean
association rate as the homogenous population. The parameters areN1 = 5 µmol l−1,
N2 = 5 µmol l−1, k11 = 10 µmol−1s−1, k12 = 1 µmol−1s−1, N = 10 µmol l−1,
k1 = 5.5µmol−1l−1, S= 15µmol l−1.
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2.3. Flux detector. In contrast with the concentration detector, where there was
no distinction between the external space and perireceptor space, it is now assumed
that the vicinity of the membrane is physically distinguishable from the external
space (see Fig.1). Further, in accordance withKaissling(1998), it is assumed that
this transfer is unidirectional—from outside to inside. Two direct consequences
of these assumptions are the dependency ofL(t) on the interaction of L with R
and the necessity of degrading the ligand molecules, to prevent their unbounded
accumulation in the perireceptor space. The main effect of the perireceptor space
existence is in shifting the model transfer function to the left (higher sensitivity)
along the stimulus concentration axis as many decades as required. Physically,
this is enabled by accumulation of odorant molecules at the perireceptor space at
much higher concentration than at the external space. Of course, this step must
be very fast not to delay the response time. On the other hand, we should keep
in mind that this approach is oriented mainly on odorant detection. Both transfer
functions (flux and concentration detectors) have a similar shapes in the left part of
their coding ranges, for higher concentration the flux detector fails to describe the
system behavior, for detailed comparison of the models seeRosparset al. (2000).

The reaction schema describing the flux detector with heterogenous population

of ORPs is Lex
kI
→ L, L + R j

k1 j

�
k−1 j

C j
ko j
→ R j + L, whereL represents a degraded

form of L that cannot interact with R,k1 andko j are the rates of the influx and
degradation. The influx to the system iskI Lex(t). Let us first assume that the
degradation process is independent of the ORP type,ko j = ko and thus the outflow
is koC(t). Using the same notation as before and taking into account, thatRj (t)+
C j (t) = N j is constant, only two independent equations can be written for each
fixed j , e.g.,

dCj (t)

dt
=−(k−1 j + ko+ k1 j L(t))C j (t)+ k1 j L(t)N j ,

C j (0)= 0 (2.21)

dL(t)

dt
= kI Lex(t)−

n∑
j=1

(k1 j L(t)N j − (k1 j L(t)+ k−1 j )C j (t)),

L(0)= 0. (2.22)

With step stimulus (2.2), the system can reach a stationary state only if condition

kI Lex < koN (2.23)

holds, which means that the influx to the perireceptor space must be smaller than
the maximum possible flow out of this space. Under the condition (2.23), the
steady-state solution of equations (2.21) and (2.23) is

C∞ =
kI Lex

ko
. (2.24)
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We can see that the diversity of binding and unbinding rates play no role in
the steady-state behavior of the flux detector. This, seemingly paradoxical result,
is due to the fact that the odorant concentration in the perireceptor spaceL can
increase above the odorant concentrationLex and, for example, a low binding rates
is finally compensated by high perireceptor space concentration of the odorant. Of
course, equation (2.24) describes only the steady state behavior of the system and
the situation is entirely different when the dynamical properties are investigated.

For n = 1 and at low concentrations, equation (2.5) can be written asC∞ ≈
(Nk1Lex)/k−1. Thus we can see exactly the same qualitative behavior of both
models at low concentrations. However, the meaning of the term ‘low concen-
tration’ is different and determined by the ratio(Nk1)/k−1 for the concentration
detector and by the ratiokI/ko for the flux detector. Over the whole range of con-
centrations the models behave differently. The flux detector does not result in the
hyperbolic-like (sigmoid in log scale) dependency of the response on the external
concentration and this result is true irrespectively to the diversity of ORPs because
the shape of the curve is independent of the ratesk−1 andk1.

3. CODING PROPERTIES

In the previous section, several analytical results for two basic models of the first
stage in olfactory signal transduction were derived. Heterogenous populations of
ORPs were assumed in both models. The investigation was performed without any
specific reference to the implications for coding, which we now consider.

We have shown that the flux detector, despite its importance in making the model
more realistic and suitable for identification of biophysical parameters using empir-
ical data, does not produce qualitatively different behavior from the concentration
detector. Thus we restrict our attention to the analysis of the concentration de-
tector. From the concentration detector assumption it follows that rangesLex to
which the models can be exposed are different. Therefore, if the following re-
sults are interpreted in the flux detector context, the range of applied concentration
would be substantially lower (Rosparset al., 2000). For purpose of illustration, the
following constants were used, except where otherwise specified: 10−4

≤ Lex ≤

102 µmol l−1 for the range of odorant concentration,N = 10 µmol l−1 for the
concentration of ORPs, andk1 = 1µmol−1 s−1 andk−1 = 1s−1 (k−1 = 0.01 s−1)

respectively for the activation and deactivation rates.
The traditional understanding of sensitivity is based on identifying the concentra-

tion of odorant at which the sigmoid curve for homogenous ORP case [i.e.,n = 1,
cf. equation (2.9)—also recallKex = log10(Lex) and note thatδ(kd) represents a
Dirac function positioned atkd]

Cδ(kd)
∞

(Kex) = N
10Kex

kd + 10Kex
, (3.1)

first reaches a critical value for the proportion of activated ORPs (typically 1%).
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As the shape of this curve is invariant, only its position on the abscissa is shifted
as the value ofkd changes, the sensitivity for (3.1) can also be defined in terms of
the valueK 50

ex at which 50% of ORPs are active,Cδ(kd)
∞

(K 50
ex) = N/2 = log10(kd)

(see Fig.2). However, if a more flexible curve is used to characterize the input–
output properties (or an experimentally obtained curve), an intuitive understanding
of sensitivity is unclear and several separate characteristics can be used. In Fig.2,
the transfer function for a heterogenous population of ORPs is flatter than the three
sigmoid curves to which it is compared. This fact cannot be reflected using a
single coordinate of the midpoint, as was done for curve (3.1). Obviously, the part
of the curve where the response is regarded as the minimum perceivable, or to
be no longer distinguishable from the saturation level may be independent of the
midpoint position (cf. Fig.6).

The coding range of the system can be defined as an interval of concentrations
in which the input–output curve gets fromp% of the maxima (detection threshold,
L p

ex) to (100− p)% of the maxima (saturation threshold,L100−p
ex ), where selection

of p depends on the choice of experimenter (p = 1,5 and 20 can be used as values
for high, moderate, and low levels of resolution). Also, the range over whichLex is
detected is related to the thresholdSused in formula (2.18). The situation is differ-
ent for symmetric curves like those obtained for homogenous population of ORPs
(also for some heterogenous cases) and for asymmetric curves. A general condi-
tion, as stated in the previous section, for symetricity of the response curve around
the midpoint in heterogenous population of ORPs is that the distribution of the dis-
sociation constant is symmetric in the logarithmic scale. In this case the coding
range is double the distance between the detection threshold and the midpoint.

It follows from equation (3.1) that for the concentration detector with homoge-
nous population of ORPs holdsL p

ex = (pkd)/(100− p). We can verify that the size
of coding range of the concentration detector is 3.99 log units forp = 1 and 1.91
for p = 10. This implies that the concentration of activated ligand–ORP complexes
increases by almost 104 times from detection threshold, at which 1% of ORPs are
in the activated state, to the saturation threshold, at which only 1% of ORPs are
not active. Choosingp = 1, we calculated log10(L

p
ex) for binary case illustrated in

Fig. 2 to be log10(L
1
ex) = −3.69 and log10(L

99
ex) = 1.69 so that the coding range in

this case is 6.38 orders of magnitude. The size of the coding range of this binary
population of ORPs is more than 50% larger for this choice of parameters. By
taking lower values forkd1 and/or higher values forkd2 we can enlarge the coding
range without limit. The limitation to this procedure is that the linear part of the
sigmoid transfer function becomes increasingly nonlinear and flat in the middle so
that the coding resolution is lost in the middle of the range. The problem of op-
timal information transfer (linearity of the input–output function) in systems with
two different populations of ORPs is solved elsewhere (Getz and Ĺansḱy, 2001).

Comparing the above calculated detection threshold (K 1
ex = −3.69) with corre-

sponding values of the components (K 1
ex = −4.00 andK 1

ex = −2.00), we can see
that ORPs withkd = 0.01 serves mainly as the detectors. Similarly, those with
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kd = 1 close the coding range and are effective at the saturation threshold. Obvi-
ously, if the transfer function is not symmetrical around the midpoint, the coding
range can be deduced only from knowledge of both thresholds and is highly depen-
dent on the distributional properties of the ORPs as well as on the relative sizes of
the subpopulations. For example, in Fig.5(a) the parameters used shifts mainly the
saturation threshold, in Fig.5(b) the coding range is enlarged symmetrically, while
Fig. 5(c) the detection threshold is moved. More specifically, the detection and sat-
uration thresholds and the coding ranges corresponding top = 1 are(−3.30,1.90)
in Fig. 5(a), (−3.69,1,69) in Fig. 5(b) and(−3.90,1.30) in Fig. 5(c). The largest
coding range is in Fig.5(b) with differences due primarily to the shift in the central
part of the curves. In Fig.5(a), over the most of the coding range the curve is at
low values, the situation in Fig.5(c) is opposite.

The easiest way to illustrate the effect of heterogeneity and relative indepen-
dence of the midpoint and detection threshold is to consider the concentration de-
tector with n types of ORPs (i.e., a multinomial distribution of the dissociation
constant). In general, the position where curve (2.9) reachesN/2 can be found,
but only numerically. In the case when the different ORPs are presented at the
same concentrations, i.e.,p j = 1/n and whenkd j are equally spaced in log scale
(it is automatically fulfilled for binomial distribution), valueN/2 is reached in the
middle n

√∏n
j=1 kd j , which is a special case of relation (2.17). On the other hand, if

the subpopulations are sufficiently large in comparison with the detection thresh-
old, then the detection is controlled by the subpopulation with fastest reaction and
practically does not depend on the remaining types of the ORPs. Analogous con-
clusion can be derived for saturation threshold.

For the models with arbitrary distribution of dissociation constants, we have
shown that inequality (2.13) holds: Cx

∞
> Cδ(kd)

∞
, whereδ(kd) stands for Dirac

distribution atkd, wherekd is the mean ofKd, (i.e., E[Kd] = kd, see Fig.2). Thus
heterogenous systems always have higher sensitivities than homogenous systems
with a dissociation constant equal to the mean of the dissociation constants of the
heterogenous population of ORPs irrespective of the definition of sensitivity or the
distribution of the dissociation constant. In other words, the detection threshold
and the saturation threshold are shifted to lower concentrations in the heteroge-
nous case.

The heterogeneity of ORPs increases the coding range for very obvious reason.
For distributions with the same mean and increasing variance, the range of the
curve increases. If the distribution is symmetrical and restricted on a bound in-
terval then the largest increase in the coding range is obtained with the binomial
distribution concentrated at the end points of this interval (Fig.4). Thus a normal
(truncated to fit on the bounded interval) or uniform distribution contributes less to
the coding range comparing than binomial distribution. However, this is true only
in the natural scale for the dissociation constant distribution. In log scale the num-
ber of bound ORPs for uniform distribution of decadic logarithm of dissociation
constant can cover practically any range of stimulus intensity (Fig.6).
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The previous conclusions concerning the coding properties of membranes with
heterogenous populations of ORPs were based on variability of the dissociation
constant. The result for fixed dissociation rate and variable association rate, il-
lustrated in Fig.7, indicates that the coding range is enlarged for heterogenous
populations and confined between the transfer curves of homogenous populations
in which the mean of the constants and the mean of the distribution are used.

The response curve for symmetric binomial distribution ofKd together with two-
standard-deviation regions calculated using formula (A1), is illustrated in Fig.3.
The figure suggests the possible variability of the response curve with the largest
variability being around the midpoint. Variability of the transfer curve, as illus-
trated in Fig.3, provides an explanation of variability observed in experimentally
derived transfer curves (Rosparset al., 2000). This is not possible to achieve with
homogenous populations of ORPs and therefore the evident statistical fluctuations
of the response curves has to be explained in terms of being generated by the other
processes down stream from the cell membrane.

The problem of response time is related to the detection problem. We have used
a simple example to demonstrate that heterogeneity of ORPs may substantially im-
prove the performance of the response time of a system. Equation (2.18) is highly
nonlinear [Fig.8(a)] and for suitable set of parameters there exists only a very
narrow range of stimulation intensities within which the response time gets very
close to zero and thus the total reaction time may be practically independent of
the response time after stimulation. If there is a subpopulation of ORPs which is
sufficiently large and fast in binding, then the response time is the minimum of
δi given by an equation analogous to equation (2.18) calculated for this subpop-
ulation. Such a subpopulation can be considered just specialized in signaling the
presence of the odorant, not its intensity.

4. DISCUSSION

At this time, no serious efforts have been made to use ligand–ORP binding the-
ory to assess whether ORNs express one or more ORPs in their membranes. The
only direct evidence we have comes from molecular labeling studies (Malnic et al.,
1999), and these suggest that in mice each ORN expresses only one kind of ORP.
Duchamp-Viretet al. (1999) come to the opposite conclusion using electrophysio-
logical methods to measure the response of individual rat ORNs to stimulation by
a suite of structurally dissimilar odorants. Inferring the characteristics of ORP be-
havior from ORN activity, as inDuchamp-Viretet al. (1999) is difficult for several
reasons:

• The spiking rates of individual neurons are hard to relate to the proportion
of bound ORPs because neuronal spikes are a series of discrete events while
the large numbers of ORPs and odorant molecules make the proportion of
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bound ORPs behave like a continuous variable with dynamics modeled by
equation (2.3).
• Even if ORN activity is represented by a continuous variable such as spike

rate, several intervening processes (e.g., second messenger cascades, ion
channel gating controlling ion flow across ORN membranes, etc.) make the
relationship between the two variables (proportion of activated ORPs and
ORN spike rate) nonlinear and noisy.
• The process of averaging to obtain the spike rate of an ORN begs the question

of time constants involved in ORP binding and other intervening processes,
particularly the fact that ORNs may have an initial burst of activity when
stimulated, but accommodate by reducing their activity if the stimulus per-
sists [cf. Getz and Akers(1997), Lemon and Getz(1997), also seeLemon
and Getz(1999, 2000)].

Despite these difficulties, the range of concentrations over which ORNs respond
cannot be greater than the range of concentrations over which ORPs are activated
but not saturated (physical laws imply that information on concentration can only
be degraded by the intervening processes), althoughp, the lowest proportion of
activated ORPs that provides the lowest discernible signal, is not known. Thus we
can infer that if an ORN exhibits a graded response over more than 4 orders of
magnitude, then a heterogenous ORP population is implied while a response over
less than 4 orders of magnitude does not necessarily imply a homogenous ORP
population—the ORP population could be heterogenous but the resolution of the
ORN low (i.e.,p is relatively large).

The best data we are aware of relating ORN response to odorant concentration is
in insects.Fujimuraet al. (1991) present results on the spike rate of general cock-
roach olfactory neurons as a function of concentration of a number of odorants
including n-alcohols, terpenes, aromatic compounds, acids, and acetates. Unfortu-
nately, most of their plots do not show that full range of response because either the
thresholds or saturation points are not apparent. Many of these curves indicate a
response range of at least 2–3 orders of magnitude, suggesting a sensitivity level of
at leastp = 5%. Cells sensitive to terpineol appear to have response ranges greater
than 3, but no ranges of 4 orders of magnitude or greater are indicated: that is, the
data show no evidence for ORNs with heterogenous populations of ORPs unless
the cells themselves are known to be relatively insensitive (i.e., values forp exceed
5–10%). Kaissling (as reviewed in 1987) presents data (see his Fig. 29) that indi-
cate pheromonal ORNs in the mothBombyz moriare sensitive to at least 5–6 orders
of magnitude of the odorant bombykol. According to our analysis, this should not
be possible unless these pheromone ORNs have at least two subpopulations with
ORNs with dissociation constantskd different by 2 or so orders of magnitude.

Thus,Malnic et al.’s (1999) conclusion that the broad spectrum response of in-
dividual mammalian ORNs is due to the ORPs themselves being generalists rather
than supporting several subpopulations of more specialized ORPs may well hold
for generalists insect ORPs. On the other hand, specialized pheromonal ORNs may
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well have heterogenous subpopulations of ORPs to extend the range of pheromone
concentrations to which individual cells respond.

Besides providing us with the insight that ORN responses of concentration ranges
greater than 4 orders of magnitude strongly suggest that different ORP subpopula-
tions are expressed by individuals ORNs, our model provides the following addi-
tional insights (some of which were already known).

• The shape and placement of the proportion of activated ORPs at equilibrium
in the concentration detector is determined by value of the ratiokd = k−1/k1

but not the individual association and disassociation ratesk−1 andk1 them-
selves.
• In the context of neuronal response time the chemical reaction rates them-

selves are important, but for sufficiently strong stimuli the association rate
k1 alone is the critical determinant.
• In the flux detector, sensitivity is independent of both the association and

dissociation ratesk1 andk−1, being dependent rather on odorant influx and
degradation rates. This implies that the response time and sensitivity are sep-
arated, which is probably not valid for most ORNs. Also the independence
of the flux detector on heterogeneity of ORPs limits these types of ORNs
from having a their response range enlarged by the expression of several
subpopulation of ORPs.
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APPENDIX A

For the multinomial distribution of the dissociation constant the variance of the number
of activated receptors is

Var(0mn
∞ ) = N2

 n∑
j=1

(
Lex

kd j + Lex

)2

p j −

 n∑
j=1

Lex

kd j + Lex
p j

2
 . (A1)

If we assume that the dissociation constant is uniformly distributed in 2ε vicinity of kd,

f u(x) =

{0 for 0≤ x < kd − ε
1
2ε for kd − ε ≤ x ≤ kd + ε

1 for kd + ε < x,
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and from equation (2.11) we obtain

Cu
∞ =

N Lex

2ε
ln

(
kd + ε + Lex

kd − ε + Lex

)
. (A2)

If in equation (2.14) the range of dissociation constant decreases, then, asε → 0, Cu
∞ →

N Lex
Lex+kd

, which is equation (2.10) with N1 = N, kd1 = kd. The restriction 0< kd − ε

substantially decreases the difference between response of homogenous and heterogenous
population. The variance for uniform distribution ofKd is

Var(0u
∞) = N2L2

ex

(
1

(kd + ε + Lex)(kd − ε + Lex)
−

1

4ε2
ln2
(

kd + ε + Lex

kd − ε + Lex

))
(A3)

and, as with equation (A1), equation (A3) can be used to create a confidence interval
around the transfer function represented by equation (A2).

If we assume a normal distribution of the dissociation constant in equation (2.11) (with
suitable varianceσ 2 and meankd to minimize probability of negative values), then we can
write

CN
∞ ≈ N

(
Lex

kd + Lex
+
σ 2

2

Lex

(kd + Lex)3

)
.

The conditionkd > 0 implies that the attainable spread of normal distribution is even
lower than that of uniform distribution and thus the difference between homogenous and
heterogenous populations is even lower than in Fig.4. The variance of the concentration of
bound ORPs for the normal distribution of the dissociation constant can be also calculated.

APPENDIX B

The mean input–output curve given by (2.10) can be written by using the Taylor expan-
sion ofLex/(x + Lex) in pointµ as

E(C∞) = N
∫
∞

0

∞∑
n=0

(−1)nLex

(µ+ Lex)n+1

(x − µ)n

n!
d F(x). (B1)

If all the moments of random variable characterized by the cumulative distribution function
F exist, then the sum and integral can be replaced. If we selectµ to be the mean ofKd

then the first term(n = 0) in (B1) is the ‘mean’ term

N
Lex

µ+ Lex
.

For cumulative distribution functions of symmetrical distributions holdF(µ − x) = 1−
F(µ + x), [if density exists, thenf (µ − x) = f (µ + x)]. Thus the terms with oddn are
zero due to the symetricity of the distribution and terms for whichn is even are positive,
so (2.13) is proved. It follows from the shape of Lex

(µ+Lex)n+1 that the shift of the curves is
mainly for low level ofLex and increasing with the variance of the distributionF .
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APPENDIX C

Let us consider the case where we assumeK1 has a uniform distribution over the interval
[k1− ε, k1+ ε],

gu(x) =

{0 for 0≤ x ≤ k1− ε
1
2ε for k1− ε ≤ x ≤ k1+ ε

1 for k1+ ε < x,
andk−1 is constant. Then the probability density function ofKd has the form

f (x) =
k−1

2x2ε
, x ∈

(
k−1

k1+ ε
,

k−1

k1− ε

)
. (C1)

Now, it follows that Kd is no longer centered aroundk−1/k1, as it was in density used
in Appendix A. Further, the mean of distribution (C1) is [k−1 ln{(k1+ ε)/(k1− ε)}]/(2ε)
which tends tok−1/k1 asε → 0. Again, we see thatf (x) is positively skewed with the
majority of ORPs having a realized values ofKd higher thank−1/k1. From equation (2.11)
we obtain

E(C1/u
∞ ) = N

(
1+

k−1

2Lexε
ln

(
k−1+ (k1− ε)Lex

k−1+ (k1+ ε)Lex

))
.
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Getz, W. M. and P. Ĺansḱy (2001). Ligand concentration coding and optimal Michaelis-

Menten parameters in multivalent and heterogenous receptor membrane.Chem. Senses
26, 95–104.

Kaissling, K.-E. (1986). Chemo-electrical transduction in insect olfactory receptors.Ann.
Rev. Neurosci.9, 121–145.

Kaissling, K.-E. (1987).R.H. Wright Lectures on Insect Olfaction, Burnaby: Simon Fraser
University.

Kaissling, K.-E. (1998). Flux detectors vs. concentration detectors: two types of chemore-
ceptors.Chem. Senses23, 99–111.
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Rospars, J.-P., P. Lánsḱy, H. C. Tuckwell and A. Vermeulen (1996). Coding of odor in-
tensity in a steady-state deterministic model of an olfactory receptor neuron.J. Comput.
Neurosci.3, 51–72.

Smith, B. H. and W. M. Getz (1994). Nonpheromonal olfactory processing in insects.Annu.
Rev. Entomol.39, 351–375.

Received 10 October 2000 and accepted 2 May 2001


	Introduction
	Fig. 1

	The Model
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8

	Coding Properties
	Discussion
	Appendix A
	Appendix B
	Appendix C
	References

