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Control analysis of trophic chains
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Abstract

Inspired by the application of metabolic control analysis (MCA) to biochemical networks, we conduct a generalized sensitivity
analysis of the equilibrium of a set of differential equations used to model trophic chains. We focus on changes in the equilibrium
to perturbations of feeding (i.e. functional responses) and growth rate functions. So-calledcontrol coefficient connectivity
relationships are derived for two broad classes of trophic chains: those governed by linear and those governed by nonlinear
growth functions. These connectivity relationships link global sensitivity coefficients to local elasticities represented by the
normalized partial derivatives of the rate functions. We derive results for specific classes of trophic chains, including hyperbolic
growth functions used in metaphysiological models. Our results provide formulae for computing the degree to which control
by the feeding and growth functions is top-down versus bottom-up at any level in any given trophic chain. Control analysis
provides a framework for articulating the degree to which equilibrium—or, more usefully, long term average—population levels
are influenced by the different rate functions in terms of local elasticity functions. Control Analysis also provides techniques for
probing thetrophic cascade hypothesis.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Biological systems are often represented as net-
works of nonlinearly interacting objects or nodes.
The interaction of these objects is modeled using rate
equations that allow the behavior of the system to be
integrated or simulated and studied as a whole. This
strategy has been applied at vastly different levels
of organization, ranging from biochemical networks
within cells to networks of interacting populations
constituting ecosystems. A question that universally
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applies to such networks is: “What are the conse-
quences for the objects of the network if one or more
of the functions (processes) connecting any two of
them is perturbed.”

A class of methods used to answer such questions
falls under the rubric of sensitivity analysis. Sensitiv-
ity of system trajectories or other characterizing values
to changes in the value of specific system parameters
has been of considerable interest to ecologists (e.g.
seeSwartzman and Kaluzny, 1987; Caswell, 2000).
Biochemists, on the other hand, have focused on the
sensitivity of particular system process rates to pertur-
bations in process rates in other parts of the biochemi-
cal system. They have developed coherent theories for
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undertaking this type of sensitivity analysis, that have
been classified into two related methods of analysis re-
spectively know as metabolic control analysis (MCA)
(Kacer and Burns, 1973; Heinrich and Rapoport, 1974;
Giersch, 1988a,b; Kahn and Westerhoff, 1991; Fell,
1996; Hofmeyr and Cornish-Bowden, 1996; Hofmeyr
and Westerhoff, 2001; Hofmeyr, 2001)and biochem-
ical systems theory (BST)(Savageau, 1976, 1996).

MCA methods of analysis have served to identify
principles of control and regulation that are gener-
alizable to other networks, such as foodwebs and
energy flows in ecosystems(Wennekers and Giersch,
1991; Giersch, 1991, 1995), but these generalizations
were not couched in terms of the per-capita process
rates driving foodwebs. Unlike biochemical processes
which are generally cast in terms of total process
rates, ecological systems are dominated by per-capita
process rates—specifically, per-capita rates at which
individuals extract resources as a function of resource
and species densities, and per-capita growth rates as
a function of resource consumption rates (e.g. see
Getz, 1991, 1993, 1994). This difference in how we
view biochemical and ecological processes reflects
the fact that the density of chemical species is con-
trolled by interspecific synthetic processes rather than
intraspecific reproductive processes.

In this paper, we focus on developing a theory
of process control in the topologically simplest of
all foodwebs—the unbranched trophic chain—using
MCA as guide to our basic method of analysis.
Trophic chains are based on an autotroph utilizing an
energy flux to sustain itself over many generations
while exploiting a renewable resource (e.g. plants or
algae using sunlight to grow in the presence of soil
nutrients and water). The next link in the chain is a
herbivore (or phytoplanktivore in aquatic planktonic
systems), followed by primary and possibly secondary
and tertiary carnivores, depending on the length of
the food chain.

The fact that long term changes in the density of a
population at one level in a trophic chain may have
repercussions for populations at several other levels
in that chain was first articulated byHairston et al.
(1960). They formulated what has now become know
as the Green World Hypothesis in which they main-
tained that the world can only be green in places
where carnivores keep the herbivores in check from
over-exploiting the plants below them. This hypothesis

was generalized byOksanen et al. (1981)andFretwell
(1977, 1987)to systems with five trophic levels. The
general hypothesis that foodwebs exhibit responses at
the primary producer level when perturbations occur
to populations two levels up (i.e. the primary carni-
vore level in plant–herbivore–carnivore systems) was
coined the trophic cascade hypothesis byPaine (1980).
This hypothesis, as articulated byBrett and Goldman
(1996), holds that changes in density at each trophic
level of a foodweb are inversely related to changes in
density at the trophic level above and directly related
to changes in density at the trophic level below. The
widespread validity of this hypothesis has been docu-
mented in a meta-analysis conducted bySchmitz et al.
(2000)on data from 41 different studies.

Discussions why, if at all, the trophic cascade hy-
pothesis should be true have been confounded by
insufficient attention to differences between the con-
cepts of ‘species level cascades’ and ‘community
level cascades’(Polis, 1999). Species level cascades
pertain to trophic chains embedded within foodwebs.
Such trophic chains, however, are rarely sufficiently
isolated from other parts of the foodweb to allow the
response of the species in a particular chain to be
considered in isolation from the rest of the foodweb,
although species level cascades have been identified
in systems where omnivory blurs the trophic structure
(Power, 1990). Community level cascades, on the
other hand, require that foodwebs have well-identified
trophic levels (which, for example, become fuzzy
when omnivory is prevalent—e.g. seePersson et al.,
1996) and that responses are measured as an aggre-
gate of the response of all populations functioning
at the same trophic level. Further, even with regard
to trophic chains that appear to be relatively iso-
latable from a more extensive web, discussions on
the relative importance of top-down (predator) con-
trol versus bottom-up (resource) control lead to a
polarization that control resides in one or the other,
rather than the notion that control is distributed over
both.

In this paper we resolve the debate on top-down
versus bottom-up control by using a trophic chain
model to demonstrate how control is distributed over
the different levels for both species and community
level cascades (in the former case, the model vari-
ables represent species densities; in the latter case,
they represent the aggregate of all species densities at
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each of the trophic levels) rather than residing at any
privileged level. We also develop a method of analy-
sis and a vocabulary for talking about how we might
expect steady states in trophic cascades to change in
response to perturbations in trophic and population
processes. In reality, biological populations fluctuate
around some average level that generally has a cyclic
or seasonal component. In such cases, the analysis
presented here must be interpreted in the context of
trophic chains that can equilibrate within a season or
in terms of population levels averaged over appropri-
ately long intervals of time.

Beginning with the pioneering work ofHairston
et al. (1960), ecologists have examined the extent
to which primary producer biomass is influenced
by resources needed for growth versus the extrac-
tion of biomass by consumers(Oksanen et al., 1981;
Fretwell, 1987; Power, 1992; Polis and Strong, 1996).
Ecologists have set up experiments and conducted
field work to address this question, but the more sub-
tle issues relating to this question have never been
formally articulated using mathematical analysis.

The material presented below closes this gap. We
call the approach trophic control analysis (TCA). Al-
though TCA has much in common with MCA, trophic
chains are fundamentally different from metabolic
networks. For TCA to obtain results relevant to trophic
chains it needs to move beyond MCA (some details
can be found in our companion paper). For example,
trophic chains cannot simply be couched in terms
of populations connected by mass flow processes, as
defined by a stoichiometry matrix(Giersch, 1995).
Unlike biochemical networks, growth processes are
generally nonconservative (biomass is lost to excre-
tion and deaths as material passes up the food chain)
in a way that corresponds to slippage in complex bio-
chemical networks(Westerhoff and Van Dam, 1987;
Schuster and Westerhoff, 1999).

2. Model and methods

2.1. Trophic model

The history of trophic chain models is rooted in the
prey–predator models ofLotka (1925)and Volterra
(1926) with extensions due, among others, to the
ideas ofLeslie (1948), Holling (1959), Rosenzweig

and MacArthur (1963), andOksanen et al. (1981). A
more recent view of trophic chains that focuses on
the process of per-capita feeding (alternatively forag-
ing, extraction, ingestion) and growth process rates
results in the following general model(Getz, 1991,
1993, 1994). Definexi, i = 1, . . . , n as the biomass
in the ith level of ann-level trophic chain. Assume
the lowest level of the chain (i = 1) is supported by
an underlying buffered resourcex0 and the highest
level (i = n) is subject to extraction by a process
modeled by an external input or driving function (e.g.
human harvest). Further, definegi to be the growth
rate of each trophic level andfi+1 the per-capita rate
at which biomass at theith trophic level is extracted
by each unit of biomass at the (i + 1)th trophic level.
The model for the dynamics of theith trophic level
takes the form

dxi

dt
= gi(fi)xi − fi+1xi+1, i = 1, . . . , n. (1)

The functionsfi are commonly called the func-
tional responses, but we prefer to call them the feeding
(or extraction) rate functions. The model, as written,
implies that the per-capita growth rate depends on the
per-capita feeding rate. Unless otherwise stated, we
assume that feeding rates are functions only of the
“consumer’s” own densityxi that of its “resource”
xi−1—that is, fi(xi−1, xi). Note, the system can be
truncated atn variablesxi, i = 1, . . . , n, by defining
h = fn+1xi+1 to represent extraction by a “harvest”
rate h that can be set to 0. Finally, we note that
Eq. (1) provides a richer, more naturally framework
for incorporating additional resolution in the model
pertaining to physiological and behavioral processes
than modified Lotka–Volterra approaches such as
the Rosenzweig–MacArthur formulation (also see
Ramos-Jiliberto et al., 2002).

2.2. Elasticity and control

MCA theorems and analysis are usually cast in the
context of models that have the form (Heinrich et al.,
1977; Reder, 1988; Hofmeyr and Westerhoff, 2001;
also seeFell, 1996; Hofmeyr, 2001)

dxi

dt
=

m∑
j=1

nijvj(x,λ), i = 1, . . . , n, (2)
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wherex = (x1, . . . , xn)
′ (′ denotes vector transpose)

is a metabolite concentration vector,nij is theith row
andjth column entry of an×m stoichiometry matrix
N, v(x,λ) = (v1(x, λ1), . . . , vm(x, λm))′ is a vector
of process total (as opposed to per capita) rate func-
tions, andλ = (λ1, . . . , λm)′ is vector of parameters.
The functionsvj(x, λj) are assumed to be homoge-
neous of degree 1 inλj so that the unperturbed state
corresponds toλj = 1. This implies thatλj is func-
tionally equivalent to a scaling perturbation ofvj and
can always be introduced when needed.

MCA focuses on how an unperturbed nontrivial
steady-state solution̂x to Eq. (2), that is a solution
satisfying

Nv̂ = 0, (3)

where v̂ = v(x̂,1), responds to perturbations ofλ
around the nominal valueλ = 1. Although, from a
mathematical point of view,̂x is referred to as an
equilibrium, the terminology “steady-state” is used to
emphasize the fact that, in general, each of the ele-
mentsvj(x̂, λj) are themselves non-zero, but repre-
sent steady-state fluxes.

In MCA, each process that occurs at a non-zero rate
vj is characterized by elasticity coefficientsε

vj
xi , i =

1, . . . , n, j = 1, . . . , m that are defined in terms of the
normalized partial derivatives of the process functions
vj with respect to the argumentsxi: viz.,

ε
vj
xi = xi

vj

∂vj

∂xi

∣∣∣∣
x=x̂,λ=1

≡ ∂ ln |vj|
∂ ln xi

∣∣∣∣
x=x̂,λ=1

. (4)

Also, in MCA, the control that all the processes ex-
ercise on the steady-state concentrations of the entire
system is characterized by concentration-control co-
efficients defined, assumingxi > 0, by

cxi
vj

= λj

xi

dxi

dλj

≡ d lnxi

d lnλj

∣∣∣∣
x=x̂,λ=1

. (5)

To facilitate the development of TCA, we replace
the feeding and growth functions inEq. (1) with
fj → λjfj andgj → µjgj, allowing us to nominally
perturb process rates by varyingλj or µj around the
valuesλj = 1 or µj = 1. In particular, we use per-
turbations of thisλj to calculate then TCA feeding
control coefficients

c
xi

fj
= d lnxi

d lnλj

∣∣∣∣
x=x̂(1),λj=1

, i = 1, . . . , n. (6)

Similarly, the same kind of perturbations can be used
to calculate then TCA growth control coefficients

cxi
gj

= d lnxi

d lnµj

∣∣∣∣
x=x̂(1),µj=1

, i = 1, . . . , n.

Note that each perturbation of a particular feeding or
growth function is made, assuming that the other func-
tions remain unperturbed except through the variation
of their arguments. From this perspective, the new
steady-state level̂x is considered a function of the par-
ticular perturbed growth or feeding function so that
for some particular value ofj = 1, . . . , n, this new
steady-state value can be approximated by the expan-
sion

x̂(λj) ≈ x̂(1) + (λj − 1)cxi

fj

x̂(1)

λj

or by

x̂(µj) ≈ x̂(1) + (µj − 1)cxi
gj

x̂(1)

µj

,

as the case may be.

2.3. Feeding and growth functions

The feeding functionsfi in Eq. (1) are typically
monotonically increasing, but saturating functions of
the associated resourcexi−1 (seeHolling, 1959 and
also Table 1), although some ecologists argue that
feeding functions might more appropriately depend
on the ratio of consumers to resources (i.e.fi =
fi(xi/xi−1)—seeArditi and Ginzburg, 1989; Matson
and Berryman, 1992; but seeOksanen et al., 1992;
Abrams, 1994). More generally, we develop our the-
ory for feeding functions that depend on both the
densities of consumers and their resources (i.e.fi =
fi(xi−1, xi)). Of course, feeding functions may depend
on other species in the hierarchy, but this level of gen-
erality is beyond the scope of our analysis.

In addition to the functions listed inTable 1, we
present their elasticity coefficients defined byEq. (4).
These coefficients provide one way of characterizing
the form of the dependence of the functions on each of
the parameters. The elasticity coefficient for a power
function is equal to the power to which the variable is
raised in the function (see second row inTable 1).
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Table 1
Feeding functions

Name Form (i = 1,2) Elasticities

Lotka–Volterra fi(xi−1, xi) = aixi−1, ai > 0 ε
fi
xi−1 = 1, ε

fi
xi = 0

Compensatory power function fi(xi−1, xi) = aix
pi

i−1, ai > 0,0 < pi < 1 ε
fi
xi−1 = pi, ε

fi
xi = 0

Holling type II (Holling, 1959) fi(xi−1, xi) = aixi−1

bi + xi−1
, ai > 0, bi > 0 ε

fi
xi−1 = bi

bi + xi−1
, εfi

xi
= 0

Ratio-dependent type II
(Getz, 1984)

fi(xi−1, xi) = aixi−1

bixi + xi−1
, ai > 0, bi > 0 ε

fi
xi−1 = bixi

bixi + xi−1
, εfi

xi
= −bixi

bixi + xi−1

Beddington type II
(Beddington, 1975;
DeAngelis et al., 1975)

fi(xi−1, xi) = aixi−1

bi + xi−1 + cixi

, ai > 0, bi > 0, ci > 0 ε
fi
xi−1 = bi + cixi

bi + cixi + xi−1
,

εfi
xi

= −cixi

bi + cixi + xi−1

Generalized holling type
III (Getz, 1999)

fi(xi−1, xi) = aix
γi
i−1

b
γi
i + x

γi
i−1

, ai > 0, bi > 0, γi > 1 ε
fi
xi−1 = γib

γi
i

b
γi
i + x

γi
i−1

, εfi
xi

= 0

Generalized holling I–II
hybrid (Getz, 1999)

fi(xi−1, xi) = aixi−1

(((1 − αi)bi + αicixi)γi + x
γi
i−1)

1/γi
,

ai > 0, bi > 0, ci > 0,0 ≤ αi ≤ 1, γi > 1

ε
fi
xi−1 = ((1 − αi)bi + αicixi)

γi

((1 − αi)bi + αicixi)γi + x
γi
i−1

,

εfi
xi

= αicixi((1 − αi)bi + αicixi)
γi−1

((1 − αi)bi + αicixi)γi + x
γi
i−1

In MCA, elasticities are usually considered in terms
of total ratesvi = xifi rather than per-capita ratesfi.
In the most general casevi(x) = xifi(x), the relation-
ship between the two kinds of elasticity coefficients,
using the definition provided byEq. (4) is

εfi
xj

= εvi
xj

− δij, i, j = 1, . . . , n,

where δii = 1 and δij = 0 when j 
= i. If we use

Ev
x andEfx to represent the matrices of the total and

per-capita elasiticitiesεvi
xj and ε

fi
xj , respectively, this

equation becomes

Ev
x = Efx + I. (7)

Table 2
Growth functions

Name Form (i = 1,2) Elasticities

Linear growth (Lotka–Volterra) gi(fi) = rifi − mi, ri > 0,mi > 1 ε
gi

fi
= rifi

mi − rifi

Hyperbolic growth(Getz, 1991, 1993, 1994) gi(fi) = ri

(
1 − mi

fi

)
, ri > 0,0 < mi < maxfi ε

gi

fi
= mi

fi − mi

Metaphysiological growth(Getz
and Owen-Smith, 1999)

gi(fi) = rifi − mi − qi

fi

, ri > 0,mi > 0, qi > 0 ε
gi

fi
= rif

2
i + qi

rif
2
i − mifi − qi

In Lotka–Volterra and derivative models (e.g.
Rosenzweig and MacArthur, 1963) growth is assume
to be a linear function of feeding: the slope param-
eter r accounts for the direct conversion of ingested
resource to population biomass (or, alternatively,
population numbers), and the intercept parameterm

accounts for biomass losses due to deaths (Table 2).
In populations that do not decay at an exponen-
tial rate m when resources are absent, a hyperbolic
growth model or a metaphysiological approach may
be more appropriate. These functions, together with
their elasticities are listed inTable 2.

Finally, although we do not consider the more
general situation here, in addition to its dependence
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directly on feeding, the growth function may also de-
pend directly on other state variables(Westerhoff and
Van Dam, 1987; Westerhoff et al., 2002). Growth may
even depend on an external forcing function that, for
example, represents a seasonal signal or a climatic
trend (e.g. global warming) driving the model.

3. Control theorems

Our purpose in this section is to present the main
technical results of a control analysis of a general
trophic chain model with respect to perturbations
in the feeding and growth functions. The proofs are
relegated to the appendices. In the next section, we
demonstrate how these results can be applied to as-
sessing the relative importance of different feeding
and growth functions in determining the steady-state
levels (or more appropriately in some cases, our rep-
resentations for the long term average levels) of the
various populations in the trophic chain.

The theorems stated below allow us to express the
growth coefficients in terms of elasticity coefficients
and other specially defined matrices. In particular, with
respect to a steady-state solutionx̂ > 0 (the inequality
applies element-wise with respect to the vector0 =
(0, . . . ,0)′) to Eq. (1), we define matriceŝXD, T̂D,
andĜD to be diagonal matrices whose diagonal ele-
ments are respectively the vectorsx̂, f̂ = f (x̂) and
ĝ = g(f̂ ). Also, we do not limit our analysis to the
particular casefi(xi−1, xi), but assume the general de-
pendencefi(x̂). On the other hand, we are more spe-
cific about the form of the growth functionsgi and,
in particular, our first theorem relates to systems in
which growth is a linear function of extraction, viz.
gi(fi) = rifi − mi, i = 1, . . . , n.

3.1. Connectivity Theorem I: linear growth functions

Consider then-species trophic chain

dxi

dt
= rifixi − fi+1xi+1 − mixi, i = 1, . . . , n,

(8)

where ri and mi are positive constants and the
undefined quantityfn+1xn+1 is fixed at some con-
stant nonnegative value symbolically represented by

h = f̂ n+1x̂n+1. Initially, conditions are such that all
species densities are initially positive and the struc-
ture of the feeding rate functions ensures that species
remain positive. Define

R =




r1 −1 0 · · · 0 0

0 r2 −1 · · · 0 0

0 0 r3
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · rn−1 −1

0 0 0 · · · 0 rn




.

For allri > 0, i = 1, . . . , n, this matrixR is invertible.
Consequently

Ŝ = (RT̂DX̂D)−1MDX̂D (9)

exists, whereMD is a diagonal matrix with diagonal
elementsmi (the other diagonal matriceŝXD and T̂D
as defined above) and then the matrixCxf of feeding
rate control coefficients associated with a particular
steady-statêx > 0 is given by

Cxf (I + Efx − Ŝ) = −I (10)

whenever the matrix(I + Efx − Ŝ) is invertible.
A proof of this theorem is given inAppendix A.

Notes

1. If, as in MCA, we had regarded perturbations to the
total ratesvi = fixi rather than to the per-capita
ratesfi, then, fromEq. (7), our connectivity rela-
tionship(10) would have been written as

Cxf (Ev
x − Ŝ) = −I.

The difference between the result presented here
and the standard MCA connectivity resultCxf Ev

x =
−I is that in our treatment here the matrixŜ arises
as a correction matrix because the ratesmixi are
themselves not perturbed. If the maintenance re-
lated parametersmi are zero then, in effect, the
matrix Ŝ is 0, although a more detailed derivation
of the result than the one we present is required
for the casemi = 0.

2. At any steady statêx > 0 obtained for the case
h = fn+1xn+1 = 0, provided the parameters
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mi > 0, we have(rif̂ ix̂i − f̂ i+1x̂i+1) = mix̂i,
i = 1, . . . , n. These relationships imply that the
matrix Ŝ has the form

Ŝ =




m1x̂1

r1f̂ 1x̂1

m2x̂2

r1r2f̂ 1x̂1
· · · mn−1x̂n−1

r1r2 · · · rn−1f̂ 1x̂1

mnx̂n

r1r2 · · · rn−1f̂ 1x̂1

0
m2x̂2

r2f̂ 2x̂2
· · · mn−1x̂n−1

r2r3 · · · rn−1f̂ 2x̂2

mnx̂n

r2r3 · · · rn−1f̂ 2x̂2

...
...

. . .
...

...

0 0 · · · mn−1x̂n−1

rn−1f̂ n−1x̂n−1

mnx̂n

rn−1f̂ n−1x̂n−1

0 0 · · · 0
mnx̂n

rnf̂ nx̂n




.

Further, it is easily seen that all the elements ofŜ

are positive and that all rows of̂S sum to 1 (also,
see point 3 below).

3. This connectivity theorem applies more generally
to the equation

dx

dt
= RXD · f − MD · x

for invertible, but otherwise arbitraryR. Defin-
ing 1 = (1, . . . ,1)′, the steady-state equation
associated with this model (note in this model
fn+1xn+1 = 0), as commented under Note 2,
satisfies

Ŝ · 1 = 1
from which it follows that

Cxf E
f
x · 1 = −1. (11)

More specifically, the latter in detail is

n∑
j=1

n∑
k=1

c
xi

fj
ε
fj
xk

= −1, i = 1, . . . , n

which relates to the effects of allxk on a particular
xi through all functionsfj.

3.2. Connectivity Theorem II: nonlinear
growth functions

The matricesCxf of extraction rate control coeffi-
cients andCxg of growth rate control coefficients for
the trophic chain

dxi

dt
= gi(fi)xi − fi+1xi+1, i = 1, . . . , n (12)

for constanth = fn+1xn+1 
= 0, are given by solutions
to the equation

Cxf (Efx + (Egf − T)−1(I − T)) = −I (13)

and

Cxg((E
g
f − T)Efx + I − T) = −I. (14)

At some steady-statêx > 0 (the inequality app-
lies element-wise with respect to the vector0 =
(0, . . . ,0)′), where

T =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0




,

provided the matrices(Egf − T ) and ((Egf − T )Efx
+ I − T ) are invertible.

A proof of this theorem is given inAppendix B.

Notes

1. FromEqs. (13) and (14), it follows that

Cxg = Cxf (Egf − T)−1.

2. If h = 0, then at a steady state satisfyingxn > 0
it follows that gn(fn) = 0, which implies that the
elasticity coefficientεgn

fn
is undefined. The theorem,

however, holds for arbitrarily smallh. Further, the
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results are not explicitly dependent on the value of
h, but only on the values of̂x as influenced byh.
Thus, the theorem also holds ath = 0.

3. In matrix notation, recallingx = (x1, . . . , xn)
′

and XD is a diagonal matrix with elements
xi, i = 1, . . . , n on the diagonal, for the case
h = fn+1xn+1 = 0 our generalEq. (1) can be
expressed more generally in terms of the feeding
and growth functionsf (x) andg(f ) and ann×n

matrix of constantsT as

dx

dt
= GDx − TXDf , (15)

where the diagonal elements of the diagonal matrix
GD are the functionsgi(fi). The special case of
Eq. (12) is obtained by assumingT is the up-
per diagonal matrix given above. For generalT ,
however, the theorem generalizes to

Cxf (Efx + (Egf − L̂)−1(I − L̂)) = −I

and

Cxg((E
g
f − L̂)Efx + I − L̂) = −I,

whereL̂ = (X̂DĜD)−1T X̂DT̂D. In this more gen-
eral case, however, the matrix̂L in the above
expression cannot be replaced by the matrixT , as
it can whenT is upper diagonal with unit entries,
as defined in the theorem.

4. When the growth rate is simply proportional to
the feeding rate, thenEgf = I, and the theorem
reduces to

Cxf (Efx + I ) = −I,

provided the matrix(Efx + I ) is invertible.

The two connectivity theorems demonstrate that
each control coefficient is expressed by the corre-
sponding element in the inverse of a matrix that
essentially is the sum of the identity matrix and the
matrix of elasticity coefficients, corrected for losses
not balanced in the equations (viz. in Connectivity
Theorem I, natural mortality flows to detritus pool
that is not included in the model, or, in Connectivity
Theorem II, losses not explicitly accounted for in
modeling the growth rate as a function of the feeding
rate). Further, the theorems elucidate how control in

a trophic chain depends on the feeding and growth
rates of all populations in the chain rather than by
just the population above and below the population of
interest. Calculating the actual values of the elasticity
coefficients (i.e. the elements ofEfx and Egf ) and of

the elements of̂S (linear case) and of̂L (nonlinear
case) requires knowing the values of steady-state
population densitieŝx. For specific systems, these
may be obtained experimentally, while fair estimates
of elasticity values may be obtained by guessing the
power dependence of functions on variables in the
neighborhood of the steady state. Also, for simple
systems (see below), analytical solutions are possible
in terms of system parameter values, otherwise nu-
merical solutions are necessary. Numerical solutions
decrease the utility of our theorems in the sense that
the numerical values for the control coefficient can al-
ways be obtained directly from numerical simulations
of how the system responds to perturbations in the
growth and feeding function parameters. For complex
problems, however, the utility of the theorems still
remains in allowing us to predict how the distribution
of control is affected by changes in the elasticities of
the feeding and growth rates.

4. Two species chains

Let x1(t) and x2(t) represent the biomass density
of a primary producer and consumer in a two species
trophic chain, and letx0 represent the buffered den-
sity of an underlying nutrient or free energy flux (e.g.
light) critical for the growth of the primary producer.
Our assumption thatx0 is buffered is just a way of
stating that extraction of this underlying resource
has no effect on the densityx0, as perceived by the
producer. For systems in which resources are not
buffered, we would need to add an equation that de-
scribes the pool dynamics of the resourcex0 leading
to the more complex three-species trophic chain.

Focusing on the case of a buffered resourcex0,
our general mathematical description of a two-species
trophic chain overlying this resource is

dx1

dt
= g1(f1)x1 − f2x2,

dx2

dt
= g2(f2)x2 − h,

(16)

whereg1(f1) andg2(f2) are per-capita growth func-
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tions, f1(x0, x1) and f2(x1, x2) are the per-capita
resource extraction functions, andh ≥ 0 (h ≡ f3x3) is
a rate that allows for extraction of the second species
by some process “above”’ the chain (e.g. harvesting
by humans).

4.1. Linear growth functions

If we assume that the growth functions have the
linear form (Table 2) gi(fi) = rifi − mi, then the
trophic chainEq. (16)becomes

dx1

dt
= (r1f1 − m1)x1 − f2x2,

dx2

dt
= (r2f2 − m2)x2 − h. (17)

In this case, ifh = 0, positive steady-state solutions
(x̂1, x̂2)

′ are simultaneous solutions to the two equa-
tions

r2f2(x̂1, x̂2) = m2 ⇒ f̂ 2 = m2

r2

(r1f1(x̂0, x̂1) − m1)x̂1

= f2(x̂1, x̂2)x̂2 ⇒ f̂ 1 = m1x̂1 + f̂ 2x̂2

r1x̂1
.

For this system

R =
(

r1 −1
0 r2

)

and (seeEq. (9)and Note 2 inSection 3.1):

Ŝ =

 r2m1x̂1

r2m1x̂1 + m2x̂2

m2x̂2

r2m1x̂1 + m2x̂2
0 1


 .

Noting thatf1 = f1(x0, x1) ⇒ ε
f1
x2 = 0, the con-

trol coefficients in terms of the growth parameters
r1, r2,m1 and m2 and the remaining three elasticity
coefficientsεf1

x1 , ε
f2
x1 andε

f2
x2 can be calculated by in-

verting the matrix (seeSection 3.1)

−I − Efx + Ŝ =


−1 − ε

f1
x1 + r2m1x̂1

r2m1x̂1 + m2x̂2

m2x̂2

r2m1x̂1 + m2x̂2

− ε
f2
x1 − ε

f2
x2




to obtain the individual solutions

c
x1
f1

= −ε
f2
x2(m1r2x̂1 + m2x̂2)

ψlinear(f̂ , Efx )

c
x1
f2

= − m2x̂2

ψlinear(f̂ , Efx )

c
x2
f1

= ε
f2
x1(m1r2x̂1 + m2x̂2)

ψlinear(f , Efx )

c
x2
f2

= −ε
f1
x1(m1r2x̂1 + m2x̂2) + m2x̂2

ψlinear(f , Efx )
,

where

ψlinear(f̂ , Efx ) = εf1
x1

εf2
x2

(m1r2x̂1 + m2x̂2)

+ (εf2
x1

+ εf2
x2

)m2x̂2.

Also, taking ratios, and using the notationcx1
f1/f2

=
c
x1
f1

/c
x1
f2

it follows that

c
x1
f1/f2

= εf2
x2

(
1 + m1r2x̂1

m2x̂2

)

and that

c
x2
f2/f1

= −ε
f1
x1

ε
f2
x1

(
1 + m2x̂2

ε
f1
x1(m1r2x̂1 + m2x̂2)

)
.

If m1 is negligible (i.e. if the overwhelming cause
of prey death is predation), then

c
x1
f1/f2

≈ εf2
x2

(18)

and

c
x2
f2/f1

≈ −ε
f1
x1 + 1

ε
f2
x1

. (19)

Verbal interpretation of these results are given in
Section 6.
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4.2. Hyperbolic growth functions

If we assume that the growth functions have the
hyperbolic form

gi(fi) = ri

(
1 − mi

fi

)
,

then the trophic chain equations (16) become

dx1

dt
= r1

(
1 − m1

f1

)
x1 − f2x2,

dx2

dt
= r2

(
1 − m2

f2

)
x2 − h. (20)

In this case, the positive steady-state solutions(x̂1, x̂2)
′

(more than one may exist, depending on the forms of
f1 andf2) are found by solving

r1

(
1 − m1

f̂ 1

)
x̂1 = f̂ 2x̂2 and r2

(
1 − m2

f̂ 2

)
x̂2 = h.

For this system, it follows fromTable 2 that the
elasticity matrix is given by

Egf =




m1

f̂ 1 − m1
0

0
m2

f̂ 2 − m2


 .

The matrixT is simply

T =
(

0 1

0 0

)

so that the inverse−Efx − (Egf − T)−1(I − T) of the
control matrix Cxf , as stated in Control Coefficient
Connectivity Theorem II, can be calculated in terms
of the hyperbolic growth parametersri and mi, the
steady-state values of the feeding functionsf̂ i, and the

feeding function elasticity coefficientsεfi
xj , i, j = 1,2

to obtain

(Cxf )−1 =




1 − ε
f1
x1 − f̂ 1

m1

f̂ 1(2m2 − f̂ 2) + m1(f̂ 2 − m2(ε
f1
x2 + 2))

m1m2

−ε
f2
x1 1 − ε

f2
x2 − f̂ 2

m2


 .

Inverting this matrix yields the individual control co-
efficients:

c
x1
f1

= m1(−f̂ 2 + m2(1 − ε
f2
x2))

ψhyp(f̂ , Efx )

c
x1
f2

= f̂ 1(f̂ 2 − 2m2) − m1(f̂ 2 − m2(ε
f1
x2 + 2))

ψhyp(f̂ , Efx )

c
x2
f1

= ε
f2
x1m1m2

ψhyp(f̂ , Exf )

c
x2
f2

= m2(m1(1 − ε
f1
x1) − f̂ 1)

ψhyp(f̂ , Exf )
,

whereψhyp(f̂ , Exf ) = m1m2(1− ε
f1
x1 − ε

f2
x1(ε

f1
x2 + 2)+

ε
f2
x2(ε

f1
x1 −1))+m1f̂ 2(1−ε

f1
x1 −ε

f2
x1)+ f̂ 1f̂ 2(1−ε

f2
x1)+

f̂ 1m2(2ε
f2
x1 + ε

f2
x2 − 1).

Also, taking ratios we have

c
x1
f2/f1

= m1(f̂ 2 − m2(ε
f1
x2 + 2)) − f̂ 1(f̂ 2 − 2m1)

m1(f̂ 2 + m2(ε
f2
x2 − 1))

and that

c
x2
f2/f1

= −f̂ 1 + m1(1 − ε
f1
x1)

ε
f2
x1m1

.

In most of the standard models, the feeding rate of
the prey does not depend on the density of the preda-
tor above it—i.e.εf1

x2 = 0 (seeTable 1). This simpli-
fying assumption does not hold, however, if prey re-
duce their feeding rate by engaging in predator avoid-
ance behavior (e.g. foraging less regularly and at times
when predators are not around). In this case we would
expectf1(x) to depend negatively onx2, in which
case the above expressions apply.

In the simpler case, whereεf1
x2 = 0 and we set

h = 0 (see Note 2,Section 3.2)—that is, the predators
have no natural enemies—it follows from the above
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predator equation that̂f 2 = m2, so that the relative
effects of perturbations of the two feeding functions
on the steady-state values of the prey and predator
reduce to

c
x1
f2/f1

= f̂ 1 − m1

m1ε
f2
x2

c
x2
f2/f1

= −ε
f1
x1

ε
f2
x1

− f̂ 1 − m1

m1ε
f2
x1

.

Additionally, if we now use the fact (from setting
Eq. (20)to 0) that

f̂ 1 = m1r1x̂1

r1x̂1 − m2x̂2

it follows that (note in the first ratio we have inverted
the role off1 andf2)

c
x1
f1/f2

= εf2
x2

(
r1x̂1

m2x̂2
− 1

)
(21)

and

c
x2
f2/f1

= −ε
f1
x1

ε
f2
x1

+ 1

ε
f2
x1(1 − (r1x̂1/m2x̂2))

. (22)

Verbal interpretation of these results are given in
Section 6.

4.3. Beddington feeding and linear growth

Further insights can be obtained after specifying the
forms of the feeding functionsfi(xi−1, xi) in Eq. (17).
In particular, consider feeding functions having the
Beddington form (Table 1). In this case the two
null-isoclines corresponding to nonzero steady-state
solutions to the equations are

dx1

dt
= 0 ⇒ x̂2 = (b2 + x̂1)(a1r1x0 − m1(b1 + c1x̂1 + x0))

a2(b1 + x0 + c1x̂1) − c2(a1r1x0 − m1(b1 + c1x̂1 + x0))
(23)

dx2

dt
= 0 ⇒ x̂1 = (m2x̂2 + h)(b2 + c2x̂2)

x̂2(a2r2 − m2) − h
. (24)

Also, the elasticity matrix for the Beddington form
(seeTable 1) is

Efx =




−c1x̂1

b1 + c1x̂1 + x0
0

b2 + c2x̂2

b2 + c2x̂2 + x̂1

−c2x2

b2 + c2x̂2 + x̂1


 . (25)

Without loss of generality we can scale the units of
xi, i = 0,1,2, and of timet in a way that corresponds
to setting the following four parameters to unity:b1 =
1, b2 = 1, r1 = 1 andr2 = 1. With this dimensional
scaling, settingh = 0, and reorganization of terms, the
null-isocline equations can be simultaneously solved
to yield closed form solutions expressed in terms of
the seven parametersai, ci, mi, i = 1,2 andx0. We
denote these solutions by

x̂1 = ξ1(a1, a2, c1, c2,m1,m2, x0) and

x̂2 = ξ2(a1, a2, c1, c2,m1,m2, x0).

Explicit solutions can be obtained in terms of surds
(specifically square roots), which then permits the con-
trol parameters to be calculated directly using the iden-
tity

c
xi

fj
= aj

ξi

∂ξi

∂aj

, i, j = 1,2.

This was done for the casem1 = 0 and the results
obtained compared with the results obtained using
Connectivity Theorem I to verify this theorem for the
particular case at hand (details of the algebra are not
shown, but were calculated using Mathematica 4.0).
Specifically, whenb1 = 1,b2 = 1, r1 = 1, r2 = 1, and
h = 0, but keepingm1 general, Connectivity Theorem
I produces the following expressions for the control
coefficients (details of the calculations are omitted:
expression were obtained using Mathematica 4.0):

c
x1
f1

= c2(1 + x0 + c1x̂1)(m1x̂1 + m2x̂2)

m2(1 + x0 + c1x̂1) + c1c2x̂1(m1x̂1 + m2x̂2)

c
x1
f2

= −m2(1 + x0 + c1x̂1)(1 + x̂1 + c2x̂2)

m2(1 + x0 + c1x̂1) + c1c2x̂1(m1x̂1 + m2x̂2)

c
x2
f1

= (1 + x0 + c1x̂1)(1 + c2x̂2)(m1x̂1 + m2x̂2)

x̂2(m2(1 + x0+c1x̂1)+ c1c2x̂1(m1x̂1+m2x̂2))

c
x2
f2

= (c1m1x̂
2
1 − m2x̂2(1 + x0))(1 + x̂1 + c2x̂2)

x̂2(m2(1 + x0+ c1x̂1)+ c1c2x̂1(m1x̂1+m2x̂2))
.

We now see that the relative importance of the func-
tions f1 andf2 in controlling populations 1 and 2 is
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given by the expressions

c
x1
f1/f2

= − c2(m1x̂1 + m2x̂2)

m2(1 + x1 + c2x̂2)

c
x2
f1/f2

= (1 + x0 + c1x̂1)(1 + c2x̂2)(m1x̂1 + m2x̂2)

(c1m1x̂
2
1 − m2x̂2(1 + x0))(1 + x̂1 + c2x̂2)

.

Note that these expressions imply that whenever the
functional responsef2 is Holling Type II (i.e. pure
resource dependence becausec2 = 0), thenc

x1
f1

= 0

andc
x1
f1/f2

= 0. At first, it may seem paradoxical that
the prey feedingf1 has no effect on its own density
x1, until we recall that the consumer (predator) has
a vertical null-isocline whenc2 = 0. In this case,
it follows that the predator null-isoclineEq. (24) is
(recall we have setb1 = 1, b2 = 1, r1 = 1, r2 = 1,
andh = 0)

a2x̂1

1 + x̂1
= m2 ⇒ x̂1 = m2

a2 − m2
.

Thus, for the case where predator interference com-
petition is absent (c1 = 0), the prey feeding rate (f1)
has no influence on the prey density (x1) and conse-
quently the corresponding control coefficient is zero
(cx1

f1
= 0).

For generalc2, the predator null-isoclineEq. (24)
for the caseb1 = 1, b2 = 1, r1 = 1, r2 = 1, and
h = 0 can be rewritten as
c2x̂2

x̂1
= (a2 − m2)

m2
− 1

x̂1
. (26)

If we now assume that the overwhelming number of
prey deaths are due to predation (i.e.m1 ≈ 0) then the
prey null-isoclineEq. (23)reduces to

x̂2 = (1 + x̂1)a1x0

a2(1 + c1x1 + x̂0) − c2a1x0
.

The coefficient denoting the relative control by preda-
tor and prey feeding rates on prey density reduces to

c
x1
f1/f2

= − c2x̂2

1 + x1 + c2x̂2
= εf2

x2
(27)

which provides no additional insight compared with
Eq. (18). For this case, however,

c
x2
f1/f2

= − (1 + x0 + c1x̂1)(1 + c2x̂2)

(1 + x0)(1 + x̂1 + c2x̂2)

= −
(

1 + c1x̂1

1 + x0

)(
1 − x̂1

1 + x̂1 + c2x̂2

)
.

UsingEq. (26), it now follows that

c
x2
f1/f2

= −
(

1 + c1x̂1

1 + x0

)(
1 − m2

a2

)
. (28)

Note that the denominator of the Beddington feed-
ing function in this case is(1 + x̂0 + c1x̂1). Thus,
the first term in the above expression forc

x2
f1/f2

is
increased from unity in proportion to the ratio of inef-
ficiencies in resource exploitation due to intraspecific
competition (c1x1) and due to resource limitations
((1 + x0)—the value of 1 appears in this term be-
cause in this caseb1 = 1). The second term in the
above expression forcx2

f1/f2
is decreased from unity

by the ratio of the predator metabolic breakeven
value (m2) to the predator maximum feeding rate
(a2).

4.4. Beddington feeding and hyperbolic growth

For systems with specific growth and feeding func-
tions, general results are difficult to interpret when
the number of free parameters is greater than three or
four. This is why, as in the previous section, we resort
to analyzing special cases obtained by setting some
of the parameters to zero. As the systems become
more complex, either because the feeding and growth
functions each contain three or more parameters, or
the number of interacting species is greater than two
or three, numerical methods can be used to obtain in-
sights into questions of control. Here, for purposes of
illustration, we consider how numerical methods can
be used to analyze control in prey–predator systems
with hyperbolic growth functions and Beddington
feeding functions.

A prey–predator system with hyperbolic growth
(Table 2) and Beddington feeding (Table 1) is mod-
eled by the specific set of equations (i.e. insert
the specific growth and feeding functions inEq.
(16))

dx1

dt
= r1

(
1 − m1(b1 + c1x1 + x0)

a1x0

)
x1

− a2x1

b2 + c2x2 + x1
x2,

dx2

dt
= r2

(
1 − m2(b2 + c2x2 + x1)

a2x1

)
x2 − h. (29)
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Control in this model was investigated with respect to
the parameter set

P := {a1, a2, b1, b2, c1, c2, h,m1,m2, r1, r2, x0}
using the following parameter values as our baseline
for our numerical simulations and calculations:

Pbase= {1,1,5,20,2,10,0,0.1,0.5,8,2,100}.
Numerical simulations were carried out using a
Runge-Kutta 4 method of integration with step size of
,t = 1/16 implemented using the software simula-
tion program Berkeley Madonna 8.0.2. For this set of
parameters, the equations have a steady-state solution
(rounded to four digits)

x̂ = (444.5,42.45).

As the parameterh increases from 0 to 10.16, the
prey steady-state density increases very slightly to
x1 = 445.5, while the predator steady-state density
decreases tox2 = 21.45. At h = 10.17, these steady
states are no longer stable. This type of bifurcation
to instability is typical of systems subject to constant
harvesting(Getz and Haight, 1989).

The control coefficients were calculated with
respect to the baseline parameter setPbase, except for
h which was set toh = 0.01. In particular, the control
coefficientscx1

f1
and c

x2
f1

were obtained fromEq. (6)
by respectively calculating the change in the prey
(x1) and predator (x2) densities for a perturbation in
the parametera1 from 1 to 1.00001. Similarly, the
control coefficientscx1

f2
and c

x2
f2

were obtained for a
perturbation in the parametera2 from 1 to 1.00001 to
yield the control matrix

Cxf =
(

1.11775 −0.01406

1.17071 2.08027

)
.

The same values were obtained directly from the
formula given in Connectivity Theorem II, using
Mathematica 4.0 to

1. Calculate the steady-state values from the two
null-isocline equations

dx1

dt
= 0 ⇒ x2

= r1(b2 + x1)(a1x0 − m1(b1 + c1x1 + x0))

a1a2x0 − r1c2(a1x0 − m1(b1 + c1x1+ x0))

dx2

dt
= 0 ⇒ x1 = m2r2x2(b2 + c2x2)

r2x2(a2 − m2) − a2h
.

2. Numerically calculate and invert the matrix−Efx −
(Egf − T)−1(I − T).

Note, the matrixT is specified in the statement of
Connectivity Theorem II and, the elasticity matrixEfx
is given by expression(25), and the elasticity matrix
for the growth functions is (seeTable 2)

Egf =




m1(x0 + b1 + c1x̂1)

a1x0 − m1(x0 + b1 + c1x̂1)
0

0
m2(x̂1 + b2 + c2x̂2)

a2x̂1 − m2(x̂1 + b2 + c2x̂2)


 .

The values so obtained were identical to five deci-
mal places with the values of the matrixCxf given
above.

As the value ofh increases from 0 to 10.16, at
which point the equations are no longer stable, the
value of the control coefficientscx2

f1
and c

x2
f2

slowly
increase until they have doubled their value between
h = 8 andh = 9. Beyond this point the values increase
hyperbolically to become infinite when the bifurcation
to instability occurs. On the other hand, the control
coefficientscx1

f1
andc

x1
f2

slowly decrease with the first
coefficient hardly changing in value of over the whole
interval until within 0.0005 of the value ofh at which
bifurcation to unstable equilibria occurs.

5. Discussion

The value of analyses are limited by the degree to
which the models of the processes being investigated
capture the essence of those processes. Consequently,
MCA may be intrinsically more powerful than the
TCA presented here merely because biochemical ki-
netic models are more able to capture the dynamics
of biochemical networks than population models are
able to capture the dynamics of foodwebs. Foodwebs
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are far more complicated than biochemical networks
because stoichiometric principles cannot be applied
in quite the same way(Giersch, 1995)—although
stoichiometric principles have been invoked in under-
standing growth rates and C:N:P ratios in the tissues
of organisms as a function of the relative availabil-
ity of phosphorus in various ecosystems (seeElser
et al., 2000and the references therein). An additional
complicating factor is that individual animals have a
vastly richer repertoire of behaviors than molecules.

At this time, the TCA methods presented here
provide the most coherent quantitative theory for an-
alyzing distributed control in trophic chains. Thus,
we need to use this tool to obtain whatever insights
we can into questions that have interested foodweb
ecologist for the past 40+ years. For example, the
numerical study in the previous section illustrates
how TCA provides a complete characterization of
the impact of perturbations to feeding rates on the
long term densities of populations at various levels
in a trophic chain (i.e. after the transient effects of
the perturbations have disappeared). Thus, in the spe-
cific 2-trophic interaction analyzed inSection 4.4,
the resulting four numerical values (rounded to two
d.p.)—that iscx1

f1
= 1.12, cx1

f2
= −0.01, cx2

f1
= 1.17,

andc
x2
f2

= 2.08—imply the following:

• A (small) unit increase in the per-capita feeding
rate of the prey results in a 112 and 117% unit
increase in the long-term prey and predator densities
respectively.

• A (small) unit increase in the per-capita feeding
rate of the predator reduces the long-term density
of the prey by a mere 1% of a unit, but results in a
208% unit increase in the long-term density of the
predators.

This information could not be guessed ahead of time,
but emerges through TCA analysis because of the
nonlinearities in the system.

Beyond providing a method for conducting a global
analysis of distributed control of population densities
by feeding and growth processes occurring at each
level in a trophic chain, TCA also provides a con-
trol and elasticity coefficient vocabulary for concep-
tual discussions of foodwebs. As examples of this, we
recast some of the mathematical results obtained for
the different cases considered inSection 4, in terms
of control and elasticity coefficients.

Case 1 (Prey–predator interactions—linear depen-
dence of growth on feeding). Consider a prey–predator
systems in which the per-capita growth rate of the
prey in exploiting a buffered (i.e. constant density)
resource is proportional to its feeding rate minus
losses to predation, and the per-capita growth of the
predator is proportional to its feeding rate minus its
natural death rate. In such systems, control of the
prey feeding rate relative to the predator feeding
rate on:

• prey density is equal to the value of the elasticity
coefficient of the predator feeding rate with respect
to predator density (i.e. equalsεf2

x2—interpretation
of Eq. (18)) so that, essentially, changes in preda-
tor feeding efficiency or levels of satiation have no
effect on prey density;

• predator density is negative—with prey feeding
exercising positive control and predator feeding
negative control—and approximately equal in mag-
nitude when, at steady-state, the prey is satiated
but the predator is food limited (i.e. in this case
ε
f2
x1 ≈ 1) (interpretation ofEq. (19)).

Case 2 (Prey–predator interactions—hyperbolic de-
pendence of growth on feeding). Consider prey–
predator systems in which the per-capita growth rates
of both the prey and predators populations are hy-
perbolic functions (seeTable 2) of their respective
per-capita feeding rates. In such systems, the relative
control of prey and predator feeding rates is negative
on:

• prey density and is proportional to the elasticity
coefficient of the predator feeding rate with re-
spect to predator density multiplied by a factor
representing the excess of the ratio of the gross
resource conversion rate of the prey (i.e.r1x̂1) to
the metabolic maintenance rate of the predator (i.e.
m2x̂2) (interpretation ofEq. (21)).

• predator density and is proportional to the ratio of
the prey and the predator elasticities with respect
to prey density with a correction to this amount
equal to the inverse of the product of the elasticity
of the prey and one minus the ratio of the gross
resource conversion rate of the prey (i.e.r1x̂1) to
the metabolic maintenance rate of the predator (i.e.
m2x̂2) (interpretation ofEq. (22)).
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We cannot apply the theory developed here directly
to a trophic cascade hypothesis that posits the idea that
each trophic level of a foodweb is inversely related in
magnitude to the trophic level above and directly in
magnitude to the trophic level below. The reason is
that the trophic levels are state variables rather than
processes or parameters that affect processes, so a
change in their density represents a perturbation from
steady state that ultimately leads to a return to the
original steady state. Thus any trophic cascade hy-
pothesis should be couched in terms of perturbations
to process rates as a whole or parameter values that
determine process rates. (An implementation of this
would be if one population is replaced by another due
to anthropogenic or natural causes, such as mutations,
where the feeding or growth rates of the new popula-
tion are different from those of the old population.)

From the theory presented in this paper, it is clear
that a way to couch a trophic hypothesis consistent
with the theory is to articulate it in terms of how per-
turbations to processes at one level in the trophic chain
alter trophic levels not directly linked by that process.
Thus, for example, one might speculate how an in-
crease in per-capita carnivore consumption rates will
affect the density of plants eaten by the intervening
herbivore population. A full analysis of this question
is beyond the scope of this introductory presentation.

6. Conclusion

Metabolic control analysis provides a powerful tool
for understanding and manipulating metabolic path-
ways embodied through biochemical networks(Fell,
1996; Snoep et al., 2002; Ortega et al., 2002). By any
measure, organisms are considerably more complex
than molecules. Thus, we cannot expect a relatively
compact system of ordinary differential equations—
such asEq. (2)or (1)—to provide anywhere as precise
a description of an ecological network, as it can of a
biochemical network. Concomitantly, we should not
expect control analysis applied to models of foodwebs
to be nearly as powerful a tool as it is in biochemical
network analysis. Nevertheless, control analysis pro-
vides a useful tool, perhaps more useful than any other
tool currently available, for understanding how differ-
ent processes in foodwebs and ecosystems influence
populations not directly impacted by those processes.

In other words, despite the limitations in applying any
analytical methods to systems as complex as food-
webs, control analysis has much to offer ecologists.

First, control analysis provides a framework for
assessing the degree to which any selected process,
conceptualized at the level of resolution of the system
description (in our case feeding and growth func-
tions), controls steady-state values of the system. It
provides understanding of how local processes trans-
late through their elasticity coefficients into global
effects. In the case of systems that vary over time, pro-
vided the coefficient of variation is relatively small,
the results obtained here may be interpreted in terms
of long term population averages over time and space
rather than steady states that do not exist.

Second, even if the background environment fluc-
tuates on a seasonal basis (i.e. process parameters
are periodic functions of time), then control analysis
provides a first approximation to assessing the degree
to which each factor controls the long term average
values for each population. The smaller the fluctua-
tions, the more valid this approximation. Obviously,
if fluctuations are relatively large compared with the
average values (i.e. the coefficient of variation is close
to or greater than 1), then nonlinear effects degrade
approximations of average values as represented by
a deterministic model (i.e. a certainty equivalence
principle fails because of the nonlinear nature of the
model—e.g.Getz, 1976).

Third, and most importantly, the value of control
analysis applied to foodwebs or ecosystems critically
depends on the validity of the equations used to model
the systems of interest. Thus, as better models and
equations are formulated in the future, the methods
discussed here can be applied to these new equations
to obtain an assessment of the relative importance
of processes modeled by those equations that deter-
mine the long term average values of system variables.
Note that analytical results for states of systems vary-
ing with time, even though more difficult to express
than for systems at steady state, have been obtained
in a limited way for oscillating biochemical networks
and even networks relaxing to their steady-state val-
ues over time(Heinrich and Reder, 1991; Kholodenko
et al., 1997; Reijenga et al., 2002).

Trophic chains provide a particularly convenient
structure for connectivity theorems because the num-
ber of feeding and growth functions is equal to the
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number of species in the chain. This results in square
control matrices that usually have inverses. More
complex webs in which individuals feed on more than
one species or are the prey of more than one preda-
tor, or webs that lack a well-defined trophic structure
because of omnivory or mutual predation (e.g. large
individuals in a two species interaction may eat the
small individuals of the other species, as is the case
for interactions of some piscivorous fish) often re-
quire multiple subscripts to conveniently characterize
the foodweb (e.g. seeGiersch, 1995). This increase
in notational complexity makes the development and
statement of theorems more complicated. Such im-
pediments can be overcome in developing theorems
for more general networks, as we have done else-
where(Westerhoff et al., 2002, in preparation), but at
the expense of some transparency associated with the
simpler characterization of a trophic chain compared
with a general foodweb.

Finally, in a nutshell, we have derived tools for
analyzing control and trophic chains, as well as
demonstrated how these tools provide a vocabulary
for talking about control in trophic chains. This vo-
cabulary allows us to refine the concept of top-down
and bottom-up control in trophic chains and to dis-
cuss less ambiguously than before how the relative
strengths of control by the various processes are
distributed throughout the chain or network.
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Appendix A. Proof of Connectivity Theorem I

We prove the theorem for the more general sys-
tem of equations (see Note 3 after statement of the
theorem)

dxi

dt
=

n∑
k=1

rikfkxk − mixi, i = 1, . . . , n,

where the matrixR of elementsrij, i, j = 1, . . . , n,
yieldsEq. (8)when it has the special form given in the

statement of the theorem. In the above equation replace
the functionsfi by λifi and consider perturbations of
λi in the neighborhood of 1 and of the steady-state
solutionx̂: i.e. we are interested in the approximations

x̂(λj) ≈ x̂(1) + dx

dλj

∣∣∣∣
λj=1

(λj − 1).

Thus, consider the derivative of the above dynamic
equations byλj, i.e.

d

dλj

[
dxi

dt

]
λj=1

= rijfjxj +
n∑

k=1

rikfk

dxk

dλj

+
n∑

k=1

rikxk

n∑
l=1

∂fk

∂xl

dxl

dλj

− mi

dxi

dλj

.

At a steady-state solution̂x, the above equation
can be written in matrix terms as (recall thatTD is
defined to be the diagonal matrix with elementsf̂ on
the diagonal)[

d

dλ

dx

dt

]
λj=1,x=x̂

= 0 = RX̂DT̂D + RX̂DT̂DC
x
f

+ RX̂DT̂DE
f
x C

x
f −MDX̂DC

x
f .

Collecting terms in the control coefficient matrix, this
reduces to

(RX̂DT̂D(I + Efx ) − MDX̂D)Cxf = −RX̂DT̂D.

If R is invertible, implying that the matrixŜ =
(RX̂DT̂D)−1MDX̂D exists, this equation becomes

(I + Efx − Ŝ)Cxf = −I.

Hence, if the matrix(I + Efx − Ŝ) is invertible, then

Cxf = −(I + Efx − Ŝ)−1

and post-multiplying both sides, we obtain the sum-
mationEq. (10), thereby proving the theorem

Appendix B

Following the same procedure as inAppendix A,
we prove the theorem for a general matrixT and
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vector of constantsh = (h1, . . . , hn), by considering
the derivatives of (cf.Eq. (15))

dxi

dt
= xigi(λifi(x)) −

n∑
k=1

tikxkλkfk(x) − hi

by λj evaluated atλj = 1 and at the steady-state
solutionx̂: i.e.

d

dλj

[
dxi

dt

]
λj=1,x=x̂

= 0

=
[

d

dλj

gi (ΛDf (x)) xi

− d

dλj

n∑
k=1

tikxkλkfk(x)

]
λj=1,x=x̂

whereΛD is the diagonal matrix with elementsλi.
First consider

d

dλj

n∑
k=1

tikxkλkfk(x)

∣∣∣∣∣
λ=1

= tijxjfj(x)

+
n∑

k=1

tik
dxk

dλj

fk(x) +
n∑

k=1

tikxk

n∑
r=1

∂fk

∂xr

dxr

dλj

,

which evaluated atx = x̂ yields

d

dλj

n∑
k=1

tikxkλkfk(x)

∣∣∣∣∣
λ=1

= (T X̂DT̂D)ij

+ (T X̂DT̂DC
x
f )ij + (T X̂DT̂DE

f
x C

x
f )ij.

whereTD is the diagonal matrix with diagonal ele-
mentsf̂ .

Next consider

d

dλj

gi(ΛDf (x))xi

∣∣∣∣
λ=1

= xi

∂gi

∂fj

fj

+ xi

n∑
k=1

∂gi

∂fk

n∑
r=1

∂fk

∂xr

dxr

dλj

+ gi

dxi

dλj

,

which evaluated atx = x̂ yields

d

dλj

gi(ΛDf (x))xi

∣∣∣∣
λ=1

= (ĜDX̂DE
g
f )ij

+ (ĜDX̂DE
g
f E

f
x C

x
f )ij + (ĜDX̂DC

x
f )ij.

The second equation of theseAppendices A and B
implies that we should equate the right-hand sides of
the last two equations to obtain:

ĜDX̂D(Egf + Egf Efx Cxf + Cxf )

= T X̂DT̂D(I + Cxf + Efx Cxf ).

If ĜDX̂D is invertible, and we defineL̂ =
(ĜDX̂D)−1T X̂DT̂D then

Egf + Egf Efx Cxf + Cxf = L̂ + L̂Cxf + L̂Efx C
x
f .

Collecting and rearranging terms containCxf implies
that

((Egf − L̂)Efx + (I − L̂))Cxf = −(Egf − L̂).

If the matrices(Egf − L̂) and((Egf − L̂)Efx + (I − L̂))

are invertible, thenEq. (13)is obtained.
Note that for the casehi = 0, i = 1, . . . , n − 1, it

follows from the steady-state conditions that

1

xigi(fi(x))

n∑
k=1

tikxkfk(x) = 1,

for all i = 1, . . . , n − 1.

From this, it follows for the trophic cascade which
satisfiesti i+1 = 1, and tij = 0, when j 
= i + 1,
that if hi = 0, i = 1, . . . , n − 1, that L̂i i+1 =
(ti i+1x̂i+1f̂ i+1)/ĝix̂i = 1 and thatL̂ij is otherwise 0.
This implies for the special case of the trophic cas-
cade, irrespective of whether or noth = hn = 0, that
L̂ = T , proving the theorem.
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