Discovery could lead to ‘molecular fountain of youth’

January 31, 2013
By Sarah Yang, UC Berkeley Media Relations

A new study led by researchers at the University of California, Berkeley, represents a major advance in the understanding of the molecular mechanisms behind aging while providing new hope for the development of targeted treatments for age-related degenerative diseases.

Researchers were able to turn back the molecular clock by infusing the blood stem cells of old mice with a longevity gene and rejuvenating the aged stem cells’ regenerative potential. The findings were published online today (Thursday, Jan. 31), in the journal Cell Reports.

The biologists found that SIRT3, one among a class of proteins known as sirtuins, plays an important role in helping aged blood stem cells cope with stress. When they infused the blood stem cells of old mice with SIRT3, the treatment boosted the formation of new blood cells, evidence of a reversal in the age-related decline in the old stem cells’ function.
“We already know that sirtuins regulate aging, but our study is really the first one demonstrating that sirtuins can reverse aging-associated degeneration, and I think that’s very exciting,” said study principal investigator Danica Chen, UC Berkeley assistant professor of nutritional science and toxicology. “This opens the door to potential treatments for age-related degenerative diseases.”

Read the full story.