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Abstract: Descriptions of spatial patterns are important components of forest ecosystems, providing insights into functions
and processes, yet basic spatial relationships between forest structures and fuels remain largely unexplored. We used stand-
ardized omnidirectional semivariance modeling to examine the spatial pattern of fuels and forest structure measured in a
systematic nested plot grid covering 144 ha. Forest structure variables were spatially dependent at scales ranging from 62
to 572 m. Cross-variograms of fuels and forest structure showed both positive and negative correlations, ranging from 0.04
to 0.67. Notably, fine fuels were correlated positively and negatively with forest structure variables of white fir (Abies con-
color (Gord. & Glend.) Lindl. ex Hildebr.) and Jeffrey pine (Pinus jeffreyi Balf.), respectively. Old-growth Jeffrey pine –
mixed conifer forest within the study area exhibited both identifiable spatial correlations and high stand-level spatial heter-
ogeneity, as demonstrated by the influence of outliers on the underlying spatial pattern. The spatial dependency of fuels
with species-specific variables suggests that less common species may have a large influence in the characterization of for-
est attributes and that fuel classifications may be improved by accounting for the spatial distributions of overstory species.
Spatial correlations have many applications to forest management, including the classification and mapping of forest struc-
ture, establishing guidelines for fuel treatments, and restoration of old-growth forest ecosystems.

Résumé : La description des patrons spatiaux est une composante importante des écosystèmes forestiers qui fournit un
aperçu des fonctions et des processus. Par contre, les relations spatiales fondamentales entre les structures forestières et les
combustibles demeurent largement inexplorées. Nous avons utilisé la modélisation de la semi-variance omnidirectionnelle
standardisée pour examiner le patron spatial des combustibles et celui de la structure forestière, mesurés au moyen de pla-
cettes emboı̂tées disposées selon une grille systématique couvrant une superficie de 144 ha. Les variables de la structure
forestière étaient spatialement dépendantes à des échelles allant de 62 à 572 m. Des variogrammes croisés des combusti-
bles et de la structure forestière ont montré qu’il y avait des corrélations tant positives que négatives, allant de 0,04 à
0,67. Notamment, les combustibles légers étaient corrélés positivement avec les variables de la structure de la forêt de sa-
pin argenté (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.) et négativement avec celles de la forêt de pin de Jeffrey
(Pinus jeffreyi Grev. & Balf.). Il y avait des corrélations spatiales identifiables et une forte hétérogénéité spatiale à
l’échelle du peuplement, démontrées par l’influence des observations aberrantes sur le patron spatial sous-jacent, dans les
forêts anciennes mélangées de conifères et de pin de Jeffrey présentes dans l’aire d’étude. La dépendance spatiale des
combustibles avec des variables propres à chaque espèce indique que les espèces moins communes pourraient exercer une
grande influence sur la caractérisation des attributs forestiers et que la classification des combustibles pourrait être amélio-
rée en tenant compte de la distribution spatiale des espèces dominantes. Les corrélations spatiales ont plusieurs applica-
tions en aménagement forestier, incluant la classification et la cartographie de la structure forestière en vue d’élaborer des
directives pour le traitement des combustibles et la restauration des écosystèmes de forêt ancienne.

[Traduit par la Rédaction]

Introduction

Many biological phenomena exhibit spatial correlation (or
spatial dependence, e.g., Isaaks and Srivastava 1989; Rossi
et al. 1992), usually expressed in the form of patches and
gradients. Spatial dependence is the relationship of environ-
mental data across space; values of variables from nearby
locations are more likely to be similar than values observed
at more distant locations. In old-growth coniferous forests of

the western United States, this type of patterning is evident
at multiple ecological and spatial scales, illustrated by the
diversity in ectomycorrhizal fungal communities (Lilleskov
et al. 2004), variation in tree-ring growth (Meko et al.
1993), growth, biomass, and arrangement of trees (Biondi et
al. 1994; Chen et al. 2004), distribution of tree canopies
(Cohen et al. 1990; Van Pelt and Franklin 2000), and fire
synchrony across landscapes (Kellogg et al. 2008). These
studies utilized one geostatistical method recognized as
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semivariance analysis, a branch of applied spatial statistics
(Isaaks and Srivastava 1989) that quantitatively estimates,
models, and predicts spatial patterns of regionalized varia-
bles.

Research on spatial patterns in frequent-fire old-growth
conifer forests is relevant for several reasons. First, given
the decline in the distribution of these forests (Barbour et
al. 2002; Youngblood et al. 2004; Abella et al. 2007), de-
scriptions of spatial patterns will help to accurately define
these types of ecosystems (Kaufmann et al. 2007). Second,
spatial patterns can provide insights into ecosystem proc-
esses such as growth and mortality, regeneration, and dis-
turbance history (Barbour et al. 2002; Boyden et al. 2005;
Sánchez Meador et al. 2009), information that may be ob-
scured in forest sites that have undergone changes as a result
of Euro-American settlement activities (Stephens and Ruth
2005; Abella et al. 2007). Lastly, these sites serve as a
source of information for reference conditions (reviewed in
Swetnam et al. 1999; Sánchez Meador et al. 2010), provid-
ing a context for guiding management decisions to protect
the remaining intact stands and manipulate sites that are in
need of silvicultural and fuel reduction treatments (Stephens
and Fulé 2005; Abella et al. 2007).

Spatial dependence is an important component to charac-
terizing vegetation mosaics, utilizing recent advances in aer-
ial photography and remote sensing. Improvements in the
ability to map the distribution of biomass, or fuels, across
landscapes (reviewed in Arroyo et al. 2008) have applicabil-
ity to many important elements of forest and wildland fire
management: development of fuel classifications, fire spread
prediction models, and post-disturbance changes in vegeta-
tion patterns (Keane et al. 2001; Reich et al. 2004; Rollins
et al. 2004; Jia et al. 2006). In forest ecosystems, one limi-
tation of these methods is the ability to quantify variation in
vegetation and fuel characteristics not captured in forest
structure classifications. Challenges lie in the discrimination
of various fuel components as a result of overstory tree can-
opies obstructing direct views of the ground and surface
fuels too small to detect with imagery (Keane et al. 2001;
Reich et al. 2004). Using geostatistical tools to describe
stand-level fuels–forest structure spatial relationships would
provide another source of information to improve classifica-
tion and modeling accuracy (Keane et al. 2001; Reich et al.
2004; Rollins et al. 2004).

Although many studies have examined forest spatial pat-
terns, few have explored the basic spatial structures of sur-
face fuels and forest structure at stand scales in dry conifer
forests of western North America. Old-growth Jeffrey pine
(Pinus jeffreyi Grev. & Balf.) – mixed conifer forests in the
Sierra San Pedro Mártir (SSPM), northwestern Mexico, are
unique within the California floristic province in that sys-
tematic suppression of wildfire has been implemented only
since the early 1970s (Stephens et al. 2003; Skinner et al.
2008). This is in contrast with forests in the western United
States, which have largely experienced fire suppression for
over 100 years (Stephens and Ruth 2005). As such, these
forests still exhibit open, heterogeneous characteristics (Ste-
phens 2004; Stephens and Gill 2005; Stephens and Fry
2005; Stephens et al. 2007), making them an ideal reference
site to examine spatial structures through a geostatistical ap-
proach. Using semivariance analysis on data collected from

a grid of forest inventory plots, our objectives were to (i)
quantify the amount of variation in fuels and forest structure
variables that is spatially dependent and the distance in
which that relationship occurs and (ii) quantify the spatial
codependency of fuels variables with forest structure varia-
bles. Our initial hypotheses were that the relatively low,
patchy fine fuel loads found in the SSPM (Stephens 2004)
would be positively correlated across the study area,
although the correlation may be weak (van Mantgem and
Schwilk 2009). Similarly, coarse fuels would be positively
correlated but at larger scales. Whereas fine fuels are contin-
uously deposited throughout the stand, coarse fuels are usu-
ally created by various disturbance events (Lundquist and
Beatty 2002) resulting in small, sparsely scattered patches
of high fuel loads (Stephens 2004; Youngblood et al. 2004;
Stephens et al. 2007). Old-growth ponderosa pine (Pinus
ponderosa Dougl. ex P. & C. Laws.) forests, ecologically
and morphologically similar to Jeffrey pine dominated for-
ests, exhibit spatial aggregation of trees (Harrod et al. 1999;
Youngblood et al. 2004; Sánchez Meador et al. 2009). We
hypothesized that forest structure variables (i.e., canopy
cover, tree density, basal area, and species composition)
would show a similar pattern at variable spatial scales.

Study area
The study was conducted in the SSPM National Park (318

37’N, 115859’W) within the SSPM, approximately 120 km
southeast of Ensenada, Mexico. The SSPM is located in the
southern margin of the North American Mediterranean cli-
mate zone (Minnich et al. 2000) but is distinguished from
similar forests in California by a larger proportion of precip-
itation falling during the summer (Stephens et al. 2003). The
average annual precipitation at the closest weather station
(980 m above sea level, 1959–2005), approximately 20 km
southwest of our study site, was 29.2 cm. Summer and win-
ter average temperatures were 24.5 and 12.1 8C, respec-
tively. The precipitation on the forest plateau (2200–2600 m
above sea level) was much higher; averages calculated from
a temporary weather station installed at Vallecitos Meadow
(1989–1992), 1.2 km east of our study site (2500 m above
sea level), were 55 cm (Minnich et al. 2000).

Conifer forests in the SSPM, comprising approximately
40 000 ha, are similar to portions of the eastern Sierra Ne-
vada, Lake Tahoe Basin, and southern California mountains
(Minnich et al. 1995; Stephens 2001; Barbour et al. 2002;
Everett 2008). The most common forest types are P. jeffreyi,
P. jeffreyi – mixed conifer, and mixed white fir (Abies con-
color (Gord. & Glend.) Lindl. ex Hildebr.) forests (Minnich
and Franco 1998). Substrate in the SSPM is mostly granitic
with some areas of metamorphic rock. Soils in the study
area are derived from diorite parent materials and are shal-
low, well to excessively drained, and relatively acidic
(Franco-Vizcaı́no et al. 2002; Stephens and Gill 2005).
Chemical and textural properties of the soils are similar to
typical granite-derived soils in comparable forests in Cali-
fornia (Potter 1998).

The SSPM has experienced livestock grazing at varying
intensities over the last 200 years (Minnich and Franco
1998). Additionally, fire has been an important ecological
component in P. jeffreyi – mixed conifer forests, occurring
relatively frequently up through as recent as 1980 (fire re-
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turn interval of 5.7–14.5 years; Stephens et al. 2003). How-
ever, in many areas of the forest, fire has been absent for the
last several decades because of increasing suppression ef-
forts.

Methods
To examine spatial relationships at the stand scale, we

used data collected from a systematic square grid of 0.1 ha
circular forest inventory plots. The initial installation con-
sisted of 49 plots (7 � 7 grid) on a 200 m spacing and cov-
ered 144 ha. The starting point was chosen randomly in an
area with a north- to northwest-facing aspect ranging from
0% to 20% slope. Sampling was densified in a random
16 ha portion of the initial grid (3 � 3 grid) by installing
112 plots, which reduced the spacing between plots to 25 m
(Fig. 1). Plot locations were not precisely located at grid
points because of poor GPS equipment and reception; how-
ever, plot locations were installed without bias.

Fuel and forest structure variables were sampled in plots
following the methods described in Stephens (2004), Ste-
phens and Gill (2005), and Stephens et al. (2007). Surface
and ground fuels were sampled using the line intercept
method (Brown 1974) in all 161 plots. As a result of the
large number of zero observations in the 1–1000 h size
classes, a new variable was created and identified as wood:
the summation of all woody dead and downed fuels (1–
1000 h size classes). Percent canopy cover, measured using
a site tube (Stephens et al. 2007), was sampled in the nested
grid of 121 plots (25 m minimum plot spacing). Stand struc-
ture variables (live and dead tree density, basal area, and
species composition) were sampled in the original grid and
the nested, 100 m spacing grid for a total of 65 plots.

Analysis
Geostatistics provide a means for characterizing and pre-

dicting spatially explicit data. One commonly used method,
semivariance modeling, involves calculating the variance for
a pair of observations of a variable as a function of their
separation distance (Isaaks and Srivastava 1989). Formulat-
ing for multiple pairs at various distance classes (or lags)
provides a measure of spatial correlation of a variable across
the sampled area. A semivariogram (called variogram for
simplicity) graphically describes the spatial variability of a
variable by plotting semivariance as a function of lag dis-
tance classes. The semivariance values are estimated using
the formula

½1� bgðhÞ ¼ 1

2nðhÞ
X

Si�Sj¼h

ðyi � yjÞ2

where bgðhÞ is the semivariance estimator, h is the lag dis-
tance, n(h) is the number of pairs separated by h, si and sj
are the locations of points i and j, and yi and yj are the va-
lues of variable y at these locations. Spatial dependence is
evident when semivariance values increase with distance un-
til an asymptote is reached, identified as the partial sill (C).
The sill approximates the variance of the sample population;
beyond this point the data are no longer spatially correlated.
The apparent y-intercept of the variogram, the nugget effect
(or nugget variance, Co), is defined as the value at which
spatial variability is unaccounted for because of the lower

limits of the spatial sampling distance or random sampling
error. The ratio of the partial sill (C) to the total sill (C +
Co) is the structural variance and represents the amount that
can be considered spatially dependent (Rossi et al. 1992).
Semivariance modeling can be extended to pairing the va-
lues of two different variables (y and z) at different locations
to examine how they covary spatially. This is accomplished
through the cross-variogram estimated by the function

½2� bg yzðhÞ ¼
1

2nðhÞ
X

Si�Sj¼h

ðyi � yjÞðzi � zjÞ

where bg yzðhÞ is the cross-variance estimator of the two vari-
ables y and z. Contrary to univariate variograms, cross-var-
iogram values can be negative when the correlation
between the two variables is negative. Variogram plots
were fitted with three theoretical models: exponential, Gaus-
sian, and spherical; determination of the best model fit was
based on minimizing the residual sum of squares. For com-
parative purposes, parameters used in the variogram model-
ing (minimum and maximum lag distance, lag tolerance)
were the same for all variables (canopy cover, fuels, percent
composition of P. jeffreyi and A. concolor, live tree and
snag density, density of P. jeffreyi and A. concolor, live tree
and snag basal area) analyzed at the particular spatial resolu-
tion. Furthermore, to allow for comparisons at a common
scale, all variograms were standardized by dividing the uni-
variate semivariance (eq. 1) by the overall sample variance
(Rossi et al. 1992) and the bivariate semivariance (eq. 2) by
the product of the square root of the semivariance of each
variable (Xu et al. 2004). However, in the bivariate analysis,
standardized cross-variograms range between –1 and 1. Po-
sitive values indicate positive correlations and negative va-
lues indicate negative correlations between y and z and 0
means no correlation (Xu et al. 2004).

Analysis was performed using the gstat spatial package
(Pebesma 2004) in R statistical computing software (R De-
velopment Core Team 2005). A requirement in semivariance
modeling is the assumption of stationarity, the expectation
that variance is due to separation distance only. Although
normality of the data is not strictly required, serious viola-
tions such as high skewness or large outliers can violate the
assumption and impair the variogram structure invalidating
the results (Rossi et al. 1992; Basu et al. 1997). Environ-
mental data are often observed to be lognormal or otherwise
skewed and a transformation is needed to stabilize variance.
Exploratory analyses (i.e., directional variograms, variogram
cloud and squared difference box plots) were run to evaluate
the distribution of the data and to detect spatial trends, de-
fined as large-scale variation. Where trend was present, re-
siduals from least squares regression were used in further
analyses.

Results

Univariate spatial patterns
This forest is dominated by P. jeffreyi and as a result, for-

est structure attributes sampled for less common tree species
(Pinus contorta Dougl. ex Loud. and Pinus lambertiana
Dougl.) contained many zero observations, prohibiting spa-
tial analysis. The range in observations varied greatly for
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the variables analyzed (Table 1). As expected, many fre-
quency distributions were skewed with outliers; the number
of plots with zero observations for a variable ranged from
0% to 40%. Canopy cover and live basal area exhibited
near normal distributions and were not transformed. For
most of the other forest structure variables, a logarithmic
transformation sufficed in inducing normality and reducing
the magnitude of the outliers. Owing to the large number of
plots that were purely P. jeffreyi, the distribution of percent
composition for this species was left skewed; however,
transformations did not improve the stationarity assumptions
in the exploratory analysis and, therefore, the untransformed
data was used. Except for litter, all of the fuels variables
were strongly right skewed with one to several outliers. Dis-
tributions for fine fuels and wood were near normal after a
logarithmic transformation except for small spikes represent-
ing plots where no fuels were present. The larger fuels vari-
ables (100 and 1000 h) exhibited strong bimodal
distributions because of the high number of plots in which
fuel transects intersected no large fuels.

For the fuels variables that could be modeled at the 25 m
minimum plot spacing, only litter exhibited a spatial struc-
ture using residuals from a linear model (Table 2; Fig. 2).
Variograms for the woody fuel components (1–1000 h),
which were absent in many of the plots, indicated a lack of
spatial structure, i.e., a constant semivariance over all distan-
ces. Percent canopy cover had the overall smallest range
(62.2 m) of all variables analyzed with 59.2% of the varia-
bility spatially dependent (Fig. 2). Analyzed at the larger
100 m minimum plot spacing, variograms for snag basal
area and snag density were not spatially structured and the

range was beyond the scale of the study area, respectively.
For live tree density, there was no spatial structure using re-
siduals from a linear model; however, exploratory analysis
identified one large outlier plot (plot A; Figs. 1 and 3),
which had a density that that was 71% larger than the aver-
age of the surrounding eight plots on the grid, which inflated
the first lag in the variogram (Fig. 2). After removing plot
A, 16% of the variation was spatial dependent using a spher-
ical model (range = 342.9 m, nugget = 0.87, sill = 1.03).
Percent composition of P. jeffreyi was spatially dependent
at the largest range for all univariate analysis. The range in
the variogram for P. jeffreyi density extended beyond the
study area; however, exploratory analysis identified two
large outlier plots (plots A and B; Fig. 1) that were 50%–
71% larger than the average of the surrounding eight plots
on the grid (Fig. 3). Upon removal of plots A and B, the
model structure increased to 32.9% (range = 326.4 m, nug-
get = 0.73, partial sill = 1.08). For A. concolor, 25.5% and
30.9% of the sample variance for percent composition and
live density, respectively, was spatially dependent at smaller
ranges compared with P. jeffreyi composition (Table 2;
Fig. 2).

Bivariate spatial patterns
Cross-variograms indicated that canopy cover, analyzed at

the 25 m minimum plot spacing, was weakly correlated with
fuels (litter, 1 and 10 h fuels, and wood), ranging from 37 to
162.7 m (Tables 3 and 4; Figs. 4 and 5). At the 100 m mini-
mum plot spacing, litter was positively correlated with live
tree density, snag density, and live basal area. However, the
correlation with live tree density was slightly negative at the

Fig. 1. Location (in metres) of forest inventory plots used in the analysis of spatial dependence in an old-growth Pinus jeffreyi – mixed
conifer forest. The study area (144 ha) was located in the Sierra San Pedro Mártir National Park, northern Baja California, Mexico. Fuels
were measured in all plots (open squares) and forest structure variables were measured in the solid squares.
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first lag. After removing plot A (Fig. 3), the litter – live tree
density cross-variogram model structure increased by 6.4%
(range = 233.5 m, nugget = –0.19, sill = 0.30), and the semi-
variance at the first lag increased to a positive value (Fig. 3).
Comparing litter with the composition and density of A. con-
color, cross-variograms showed a weak positive correlation
with 51.9% of the variation spatially dependent. Conversely,
density of P. jeffreyi was negatively correlated with litter but
only at the first lag. Removing plots A and B only slightly
modified the spatial structure (range = 163.8 m, nugget =
–0.46, sill = 0.03, model structure = 52%).

The variation in 1 h fuels was spatially dependent with
species composition, but the correlation was positive with
A. concolor and negative with P. jeffreyi within ranges of

117.6 m (Table 3; Fig. 4). Similar to litter, 1 h fuels were
positively correlated with live tree density except for the
first lag. Removing the large outlier plot (A) in live tree
density resulted in a positive nugget value (0.14) and a
much larger range (273 m) (sill = 0.17, model structure =
19.1). Snag variables showed a similar negative relationship
to 1 h fuels.

For both species density variables, cross-variograms
showed negative correlations with 10 h fuels, although the
range was slightly larger for P. jeffreyi (Table 4; Fig. 5). Re-
moving plots A and B from P. jeffreyi density resulted in no
spatial structure. For 10 h fuels and live tree density, remov-
ing plot A decreased the model structure 48.9% (range =
422.9 m, nugget = –0.30, sill = –0.15).

Table 1. Fuels and forest structure characteristics in an old-growth Pinus jeffreyi – mixed conifer forest in the Sierra San
Pedro Mártir, northern Baja California, Mexico.

Variable No. of plots Average (1 SE) Median Range (m)
Zero observations
(%)

Litter (trees�ha–1) 161 10.6 (0.7) 8.7 0.9–40.2 0
1 h fuels (trees�ha–1) 161 0.1 (0.0) 0 0–1 17.5
10 h fuels (trees�ha–1) 161 0.7 (0.1) 0.4 0–7 12.5
100 h fuels (trees�ha–1) 161 1.5 (0.2) 0.7 0–11.7 40.0
1000h fuels (trees�ha–1) 161 17.9 (2.6) 3.1 0–210.8 38.1
Wood (trees�ha–1)* 161 20.1 (2.7) 6.1 0–213.4 1.9
Canopy cover (%) 121 26.8 (1.1) 26.0 0–56 2.5
Pinus jeffreyi composition (%) 65 73.0 (3.2) 77.8 0–100 1.5
Abies concolor composition (%) 65 19.3 (2.5) 14.3 0–68.4 30.8
Pinus jeffreyi density (trees�ha–1) 65 106.3 (8.6) 80 0–290 1.5
Abies concolor density (trees�ha–1) 65 31.7 (4.9) 20 0–160 30.8
Live density (trees�ha–1) 65 151.9 (10.1) 150 30–450 0
Snag density (snags�ha–1) 65 4.8 (0.7) 2.5 0–22.5 28.1
Live basal area (m2�ha–1) 65 20.1 (1.1) 18.7 5.7–50.7 0
Snag basal area (m2�ha–1) 65 1.6 (0.2) 1.1 0–5.9 28.1

Note: Variables were measured in a nested grid of plots covering 144 ha where the minimum separation distance (spacing) between plots
ranged from 25 to 200 m (see Fig. 1). 1 SE, 1 standard error of the average.

*Wood is the sum of all woody dead and downed fuels (1–1000 h size classes).

Table 2. Standardized variogram model parameters for fuels and forest structure in an old-growth Pinus jeffreyi – mixed conifer forest.

Variable Variable transformation Model Range (m) Nugget (Co) Sill (C)
Model structure
C/(C + Co)

Litter Residual log(x + 1) Spherical 392.7 0.80 1.06 24.6
1 h fuels *
10 h fuels *
100 h fuels *
1000 h fuels *
Wood *
Canopy cover na Spherical 62.2 0.41 1.00 59.2
Pinus jeffreyi composition na Spherical 572.1 0.73 1.21 39.8
Abies concolor composition log(x + 1) Spherical 390.5 0.75 1.01 25.5
Pinus jeffreyi density {

Abies concolor density Residual log(x + 1) Spherical 404.3 0.75 1.09 30.9
Live tree density *
Snag density {

Live basal area na Exponential 367.9 0.65 1.19 45.3
Snag basal area *

Note: Variograms are given in Fig. 2. na, not applicable.
*Horizontal line; pure nugget effect indicating no spatial structure detected.
{No asymptote; range beyond the scale of study or trend present.
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Wood was positively correlated with snag density and
snag basal area. There was no notable change in the wood –
live tree density spatial structure after removing the high-
density outlier plot A (Fig. 5). Canopy cover also showed a
positive relationship with wood but only for the first lag.
Cross-variograms of wood with live basal area and species
variables either showed a lack of spatial structure or the re-
lationship was beyond the range of the study area (Table 4).

Variables of larger fuel components (100 and 1000 h)
contained a large number of zero observations at the 100 m
spacing, which prohibited analysis.

Discussion
Fuels and forest structural attributes exhibited either vari-

ous levels of spatial dependence over a wide range of spatial
scales, no correlation suggesting a random pattern, or a spa-
tial structure that was larger than the study area. This sug-
gests that patch heterogeneity is a characteristic feature of

Jeffrey pine – mixed conifer forests in the SSPM. It should
be noted that whereas the spatial structure within the identi-
fied distance is implied to be continuous within the stand,
patterns described here were generated using data from dis-
crete circular forest inventory plots. Correlations at scales
smaller than those analyzed in this study are one explanation
for the proportion of sample variance not spatially structured
(Isaaks and Srivastava 1989). Indeed, several (cross-) vario-
grams identified spatial correlations at only the first or sec-
ond lags. In a fuels-limited system such as this (Stephens
2004), line-intercept transects that are used to quantify fuels
need to be relatively long to capture the variation in surface
and ground fuels (Brown 1974). Our line transects were
13 m long, so a spacing of 25 m was the smallest plot grid
that we could install to avoid overlap. Additional study areas
that examine spatial forest characteristics will allow general-
ities to be developed and comparisons of vegetation mosaics
in similar forests elsewhere.

Several live forest structure variables exhibited spatial de-
pendence, ranging from 62.2 m for canopy cover (measured
at the 25 m plot spacing) to 342.9–572.1 m for species com-
position, species density, and basal area (measured at the
100 m plot spacing). Relatively short-range seed dispersal
in Jeffrey pines as well as post-dispersal seed caching from
small mammals (Vander Wall and Joyner 1998) promotes
spatial patches in forest structure (Stephens and Fry 2005).
Stand dynamics in this arid environment are regulated by
periodic environmental disturbances such as fire, occurring
relatively frequently in low to moderate intensities (Minnich
et al. 2000; Stephens et al. 2003). Fires tend to vary in be-
havior; spreading according to the arrangement and avail-
ability of fuels, resulting in an irregular, convoluted burn
pattern, which, in turn, further perpetuates a patchy fuel and
forest structure pattern (Miller and Urban 1999; Collins et
al. 2007; Stephens et al. 2008; van Mantgem and Schwilk
2009). Although these results support our initial hypothesis
of a patchy forest pattern across the study area, spatial infor-
mation in other old-growth Jeffrey pine – mixed conifer for-

Fig. 2. Standardized sample and modeled variograms for fuels and forest structure variables in an old-growth Pinus jeffreyi – mixed conifer
forest. Model parameters are given in Table 2.

Fig. 3. Density (trees�ha–1) of outlier plots (A and B) identified in
semivariance analysis compared with the average density of the
surrounding eight plots in the grid and the overall average density
for the study area (N = 65).
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ests is lacking. Although described using different analytic
methods, aggregation of live trees in patches of 0.02–
0.30 ha were found in old-growth ponderosa pine forests in

Washington (Harrod et al. 1999), Oregon and California
(Getis and Franklin 1987; Youngblood et al. 2004), and Ari-
zona (White 1985; Biondi et al. 1994; Sánchez Meador et al.

Table 3. Standardized cross-variogram model parameters of fuels and forest structure in reference to litter
and 1 h fuels in an old-growth Pinus jeffreyi – mixed conifer forest.

Variable Model Range (m) Nugget (Co) Sill (C)
Model structure
C/(C + Co)

Litter
Canopy cover Spherical 162.7 0.15 0.29 48.8
Pinus jeffreyi composition *
Abies concolor composition Gaussian 435.8 0.20 0.28 28.4
Pinus jeffreyi density Spherical 160.0 –0.97 0.04 52.0
Abies concolor density Gaussian 311.4 0.16 0.33 51.9
Live tree density Exponential 56.7 –0.96 0.25 55.1
Snag density Spherical 144.2 0.87 0.09 46.5
Live basal area Gaussian 260.8 0.10 0.40 75.9
Snag basal area Spherical 191.3 0.89 –0.04 50.7

1 h fuels
Canopy cover Gaussian 60.6 0.25 0.07 70.4
Pinus jeffreyi composition Exponential 58.7 0.63 –0.33 60.3
Abies concolor composition Exponential 117.6 –0.31 0.37 54.7
Pinus jeffreyi density Spherical 484.2 0.03 0.09 65.8
Abies concolor density Exponential 63.5 –0.88 0.34 27.7
Live tree density Exponential 144.4 –0.61 0.17 21.8
Snag density Exponential 141.8 –0.46 –0.04 93.9
Live basal area Exponential 116.6 –0.64 0.67 50.9
Snag basal area Gaussian 408.7 –0.23 –0.04 54.0

Note: Cross-variograms are given in Fig. 4.
*No asymptote; range beyond the scale of study or trend present.

Table 4. Standardized cross-variogram model parameters of fuels and forest structure in reference to 10 h
fuels and wood (1–1000 h fuels) in an old-growth Pinus jeffreyi – mixed conifer forest.

Variable Model Range (m) Nugget (Co) Sill (C)
Model structure
C/(C + Co)

10 h fuels
Canopy cover Spherical 37.0 –0.17 0.39 70.0
Pinus jeffreyi composition *
Abies concolor composition Spherical 144.0 –0.17 –0.07 60.0
Pinus jeffreyi density Exponential 159.2 –0.68 –0.14 91.0
Abies concolor density Spherical 144.0 –0.42 –0.28 68.4
Live tree density Spherical 250.1 –0.67 –0.16 76.0
Snag density Spherical 197.2 0.58 0.11 81.0
Live basal area *
Snag basal area Spherical 214.1 0.61 0.04 93.4

Wood
Canopy cover Spherical 47.8 0.43 –0.14 56.0
Pinus jeffreyi composition {

Abies concolor composition *
Pinus jeffreyi density *
Abies concolor density *
Live tree density Spherical 312.5 –0.12 0.19 61.8
Snag density Spherical 311.9 –0.07 0.09 55.4
Live basal area *
Snag basal area Spherical 160.0 –0.16 0.06 57.9

Note: Cross-variograms are given in Fig.5.
*No asymptote; range beyond the scale of study or trend present.
{Horizontal line; pure nugget effect indicating no spatial structure detected.
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2009). However, a random pattern was found in Colorado
(Boyden et al. 2005).

For live tree density, the exclusion of one or two outlier
plots modified the amount of variation that was spatially de-
pendent. Although there would be no justification for elimi-
nating these outliers in the analysis of a designed
experiment, noting the effect of their removal demonstrates
the influence that outliers have on spatial structure (Basu et
al. 1997) and emphasizes the fact that uncommon forest
structural conditions may mask underlying forest spatial pat-
terns. After removing two plots (density = 220–450
trees�ha–1) located in what may be considered a regeneration
patch (see Stephens and Fry 2005), variograms for live tree
density and P. jeffreyi density were positively correlated.
Although regeneration patches occupy a relatively small
fraction of the total area (Stephens and Fry 2005), they are

of mixed age and size and therefore contribute to the spatial
variation in tree density in this forest.

Conversely, both snag variables showed no detectable
spatial structure within the study area. Snags are relatively
sparse in this forest and may be too rare to identify spatial
patterns. Low snag density is a characteristic pattern in
some old-growth ponderosa pine forests (Barbour et al.
2002; Youngblood et al. 2004; Boyden et al. 2005) and
they can exhibit a clumped spatial pattern (Boyden et al.
2005). Given the multiyear drought the SSPM has been ex-
periencing since 1999 (Stephens 2004), the low numbers of
snags is surprising. Maloney and Rizzo (2002) found tree
mortality caused by insects to be weakly density dependent.
Although insects may show spatial patterns of activity re-
sulting in localized clumps of mortality (Boyden et al.
2005), tree survivorship, species diversity, and distribution

Fig. 4. Standardized sample and modeled cross-variograms for litter and 1 h fuels with forest structure variables in an old-growth Pinus
jeffreyi – mixed conifer forest. Model parameters are given in Table 3.
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in the SSPM (Stephens and Gill 2005) may promote a heter-
ogeneous pattern of mortality.

The univariate variogram for litter was spatially depend-
ent within a range of 392.7 m but 1 h fuels showed no spa-
tial structure. Abundance of litter and 1 h fuels was
positively correlated with A. concolor and negatively corre-
lated with P. jeffreyi at much smaller scales. Average loads
for litter and 1 h fuels were 18% and 48% lower in plots
dominated (>50% composition) by P. jeffreyi compared
with plots dominated by A. concolor, respectively. Whereas
a patchy fuel structure is a characteristic feature of SSPM
forests (Stephens et al. 2004), correlations with species-spe-
cific variables were not expected. These patterns are likely a
result of species differences in the following factors: fuel ac-
cumulation and decomposition rates, fuel consumption dur-
ing fires, needle and branch morphology (van Wagtendonk
et al. 1998), and productivity (Fonda et al. 1998; Stephens
2001; Stephens et al. 2004).

The paucity of large, woody fuels in the SSPM resulted in
no discernible spatial structure, which corresponds to the
finding in potential standing woody debris in the form of
snags. Our initial hypothesis was that various disturbance
events (fire, insects, diseases, drought, wind; Lundquist and
Beatty 2002) would create small, sparsely scattered patches
of high fuel loads. The large number of plots with no fuels
and the few plots with an abundance of large fuels supports
this hypothesis. However, the overall range in cover of
coarse wood (0%–8.4%; Stephens et al. 2007) would suggest

that a smaller measurement scale (<100 m spacing) may be
needed to detect finer scale patterns.

The spatial distribution of fuels attributes are highly vari-
able, dependent upon numerous environmental variables in-
cluding stand history, and not necessarily correlated with
vegetation type (Keane et al. 2001; Falkowski et al. 2005).
Although we found some patterns in fuels that were related
to species composition, much more research on factors that
influence fuels – forest structure relationships are needed.
Including a measure of spatial dependence that explains
some of the variation in the characterization of forest struc-
ture and fuels should improve ecosystem models. Coupling
spatial models of environmental data with imagery has pro-
ven successful in characterizing and mapping of fuels across
landscapes (Keane et al. 2001; Reich et al. 2004; Falkowski
et al. 2005). Although these methods have many limitations
including site-specific descriptions, parameterization, applic-
ability to other methods, and short temporal use (Arroyo et
al. 2008), it is apparent that fuels and forest structure classi-
fications and modeling will be improved with a combination
of technology (i.e., better image resolution) and statistical
methods and a greater understanding of ecological relation-
ships.

Management implications
Spatial relationships vary temporally, especially as stands

develop and are exposed to various disturbances (Biondi et
al. 1994; Youngblood et al. 2004; Boyden et al. 2005;

Fig. 5. Standardized sample and modeled cross-variograms for woody fuels and 10 h fuels with forest structure variables in an old-growth
Pinus jeffreyi – mixed conifer forest. Model parameters are given in Table 4.
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Sánchez Meador et al. 2009); thus, these data provide a
baseline for monitoring changes (Hessburg et al. 1999). Pat-
terns described here are from a relatively intact forest eco-
system, and although wildfires are still occurring in conifer
forests within the SSPM National Park (e.g., Stephens et al.
2008), enhanced fire suppression efforts may adversely
change the trajectory of stand dynamics.

Further research examining spatiotemporal relationships
will increase our understanding of ecosystem processes and
provide structural information for forests that are in need of
restoration (Youngblood et al. 2004; Sánchez Meador et al.
2009). Forest managers are often supplied with empirical
data on forest structure in the form of averages and standard
errors, which may be used to develop management guide-
lines as targets for future forest conditions. As the ranges in
the variability of spatial relationships are increasingly recog-
nized and adequately described (e.g., near neighbor distan-
ces, patch size, and abundance; Sánchez Meador et al.
2009) as important components of forest structure and bio-
logical diversity (Landres et al. 1999), incorporation of the
spatial structure should improve guidelines so that forests
can be modified to conditions that can incorporate future en-
vironmental disturbances. Methods that portray the natural
range in spatial patterns (Landres et al. 1999), including un-
common forest structures that contribute to spatial heteroge-
neity (e.g., high tree density patches found in this study),
will help to convey important stand characteristic informa-
tion to managers. Although simply recreating spatial patterns
will not necessarily promote ecosystem resiliency (Millar et
al. 2007), knowledge of these patterns and future research
into the mechanisms that cause changes (Swetnam et al.
1999) will provide insight as to how processes may be al-
lowed to function through the patterns created. Given the al-
tered conditions of the majority of conifer forests in the
western United States as a result of past fire suppression
and (or) exclusion, timber harvesting, livestock grazing, and
active fuel and forest structure management are considered
necessary (Stephens and Ruth 2005), especially in forests
that once burned frequently under low- to moderate-intensity
fire regimes. While restoration treatments have been per-
formed often with the aid of reference conditions (Hessburg
et al. 1999; Stephens and Fulé 2005; Sánchez Meador et al.
2010), one challenge is how to communicate spatial varia-
bility to managers and incorporate the observed patterns at
the appropriate management scale.

Conclusion
The use of geostatistical tools can aid in the quantification

of the degree and scale of correlations of fuels and forest
structure variables that may not be identified with traditional
statistical methods. Many variables were spatially autocorre-
lated at various scales, and both positive and negative bi-
variate correlations were identified, providing information
on stand-level patterns that are applicable to management
and restoration efforts of old-growth forests. Some spatial
patterns likely occur at larger scales than those in this study,
as identified by variograms with sloped lines and evidence
of periodicity. In a few cases, outliers strongly influenced
the spatial pattern, demonstrating the affect of uncommon
stand structures on depictions of forest conditions. Semivar-
iance modeling is a useful tool for characterizing the spatial

variability of forest attributes, providing information that can
supplement models of forest and fuels attributes.
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