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Abstract. Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their
inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and
spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface

fuel characteristics on a small scale (,0.05 ha). Within-stand differences in structure and composition would be expec-
ted to influence fuel bed characteristics, and thus affect fire behaviour and effects. We used intensive tree and fuel
measurements in a fire-excluded Sierra Nevadamixed conifer forest to assess relationships and build predictivemodels for
loads of duff, litter and four size classes of downed woody fuels to overstorey structure and composition. Overstorey

variables explained a significant but somewhat small percentage of variation in fuel load, with marginal R2 values for
predictive models ranging from 0.16 to 0.29. Canopy cover was a relatively important predictor for all fuel components,
although relationships varied with tree species. White fir abundance had a positive relationship with total fine woody fuel

load. Greater pine abundance was associated with lower load of fine woody fuels and greater load of litter. Duff load was
positively associated with total basal area and negatively associated with oak abundance. Knowledge of relationships
contributing to within-stand variation in fuel loads can increase our understanding of fuel accumulation and improve our

ability to anticipate fine-scale variability in fire behaviour and effects in heterogeneous mixed species stands.
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Introduction

Research and management in forests with altered fire regimes
often focus on understanding and manipulating fuels. Surface
fuels, consisting of flammable biomasswithin 2mof themineral

soil surface (Keane et al. 2012a; Keane 2013), are of interest
because these fuels drive fire behaviour and effects. Greater
surface fuel loads increase potential surface fire flame lengths
and can lead to canopy torching (Agee and Skinner 2005). In

addition, high radiative and convective heat produced by intense
surface fires is critical to the initiation andmaintenance of crown
fires (Wagner 1977; Scott and Reinhardt 2001). Surface fuels

also influence fire effects on soils and understorey vegetation
through their influence on fire severity and soil heating (Busse
et al. 2005; Thaxton and Platt 2006; Rocca 2009; Webster and

Halpern 2010). Smouldering combustion of duff may contribute
to tree mortality, increase smoke production and influence

post-fire regeneration (Hille and Stephens 2005). In addition,

knowledge of the rate of surface fuel accumulation is critical to
understanding effectiveness and longevity of fuel reduction
treatments (Stephens et al. 2012).

In mixed species forest types, small-scale (i.e. ,0.05 ha)
variation in species composition can have substantial effects on
surface fuel properties, leading to differences in fire behaviour
within a stand. Materials from different species may accumulate

(Keane 2008a) or decompose (Stohlgren 1988) at varying rates.
Needles of different species vary in burning characteristics such
as maximum flame height and burn duration (Fonda et al. 1998;

Fonda 2001). Needle morphology also leads to variation in fuel
bed density, with long-needled pine species having fascicled
needles accumulating a less dense litter layer that can contribute

to greater fire intensity and spread (Weatherspoon and Skinner
1995; vanWagtendonk et al. 1998; Stephens et al. 2004; Knapp
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and Keeley 2006). Locally dense accumulations of pine cones
can also influence fire behaviour (Fonda and Varner 2004), and
cones of different species and maturity levels can affect flame

length and time (Gabrielson et al. 2012). In addition, fuel bed
composition can influence the likelihood of secondary ignitions
from firebrands (Ganteaume et al. 2009).

Although the importance of surface fuels is widely recog-
nised, quantifying surface fuel loads can often be challenging
due to their high spatial and temporal variability and multifari-

ous nature (Arroyo et al. 2008; Keane et al. 2012b; Keane 2013).
Field surveys are the most accurate method for estimating fuel
loads, but they tend to be time consuming and expensive,
making it difficult to cover a large area (Arroyo et al. 2008).

Because of these limitations, it is often necessary to rely on
surrogates for direct measurements of fuel loads, such as remote
sensing or forest structure data. Remote sensing may be used to

directly characterise fuels in forests but can be difficult because
of the interference of vegetation canopies on measurements,
particularly for fine fuels (Keane et al. 2001; Jakubowksi et al.

2013). Studies have explored the relationship between forest
overstorey and fuel bed characteristics, with a focus on general
forest structural attributes such as basal area, cover type or stand

age (e.g. Brown and Bevins 1986; Fernandes 2009; Parresol
et al. 2012). Less information is available on within-stand
variation in fuel loads and how this may correlate with tree
overstorey structure and composition. These patterns can be

hard to infer, as components of surface fuels vary at different
scales (Fry and Stephens 2010; Keane et al. 2012b) and loads in
different size classes are generally uncorrelated (Brown and See

1981; Brown and Bevins 1986; Keane et al. 2012a). Inaccurate
inputs of fuel loading values due to lack of quantitative knowl-
edge of spatial variability, coupled with the inability of many

widely used fire behaviour models to incorporate finer scale
variability in surface fuels, can lead to considerable errors in
predictions of fire behaviour and spread (Keane et al. 2001;
Bachmann and Allgower 2002). New methods are needed to

provide better estimates of the variability in fuel loads on a
smaller scale (Ottmar et al. 2012).

This study examines relationships between overstorey forest

structure and composition and surface fuel loads in a Sierra
Nevada mixed conifer forest that was logged in the 1920s and
then recovered under fire exclusion. This management history is

typical for many mixed conifer forests of California, as well as
other forest types throughout the western US. Study objectives
were to identify overstorey characteristics associated with loads

of six surface and ground fuel components (1-, 10-, 100- and
1000-h woody fuels, litter and duff). We used mapped tree
locations and intensive surface fuel inventories to analyse these
potential associations at a small spatial scale (0.015 ha). Our

intent was to help managers better understand how forest
structure and composition influence variability in surface and
ground fuels, because such relationships are poorly understood

in Sierra Nevada mixed conifer forests. There are several
possible applications of these potential relationships. Because
overstorey measurements may be more readily available than

fuels data, relationships between overstorey and fuelsmay allow
for easier and more cost-effective fuel characterisations where
specific fuel measurements are lacking (Keane et al. 2012b).
A better anticipation of fine-scale variability in fuels could also

aid in prioritising areas for surface fuel reduction efforts based
on improved understanding of overstorey characteristics that
coincide with greater fuel loads or more reactive fuel com-

plexes. Relationships could also aid in the development of
thinning prescriptions that produce greater fuel discontinuity
within stands, assuming that moderating surface fire behaviour

and effects is a desired objective.

Methods

Study site

Sampling was done within 24 approximately 4-ha units estab-

lished in mixed conifer forest as part of a larger study within the
Stanislaus–Tuolumne Experimental Forest (Knapp et al. 2012).
The study area is located on the western slope of the central

Sierra Nevada in California at elevations ranging from 1585–
1890m.Annual precipitation averages 103 cmwith themajority
occurring from fall through spring and more than half falling as
snow. Soils are deep and well-drained loam to gravelly loam

derived from granite or tuff breccia (Wintoner–Inville families
complex) (Knapp et al. 2013). Site productivity is high (Site
Class I) (Dunning 1942). Dominant tree species are white fir

(Abies concolor (Gordon and Glend.) Lindl. ex Hildebr.), sugar
pine (Pinus lambertiana Douglas), incense cedar (Calocedrus
decurrens Torr. Florin) and ponderosa pine (P. ponderosa

Laws.). Jeffrey pine (P. jeffreyi Balf.) and black oak (Quercus
kelloggiiNewberry) are a less common component, and one live
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. men-
ziesii) tree was also present but its basal area was combined with

that of white fir in the data due to the rarity of this species.
The last widespread fire at the Stanislaus–Tuolumne Experi-

mental Forest occurred in 1889: prior to that the median fire

return interval was 6 years (Knapp et al. 2013). Most of the
merchantable timber was removed by logging operations in the
late 1920s (Knapp et al. 2012). This history of fire exclusion and

logging – two factors common to many mid-elevation forest
stands in the Sierra Nevada – contributed to a shift in forest
structure and composition,making the forestmore susceptible to

fires of uncharacteristic intensity and severity (Agee and Skin-
ner 2005). Shrub cover at the site was low, averaging 2.5%
(Knapp et al. 2013). Prior to data collection, no manipulation
(except fire suppression) had taken place in any of the units since

the 1928–29 logging.

Data collection

In each of the 24 units, a total of 240 m of fuel and canopy
transects were established in an east–west direction. Transects
were partitioned into 10-m sub-transects (Fig. 1). Ninemeasures

of canopy cover were taken at 1-m intervals along each sub-
transect with a sighting tube (densitometer), and covering
species (or no cover) was recorded for each point. A greater

number of readings may have given a more accurate measure of
canopy cover, but the density of our sampling is similar to that
used in other studies (e.g. Hall et al. 2006). Location (x- and

y-coordinates relative to transect starting point), species and
diameter at breast height (dbh) were measured for each tree and
snag$10 cm dbhwithin 7.5 m of the fuels transect (belt transect
of 10� 15 m for each sub-transect).
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Surface fuels were measured using the planar intercept
method (Brown 1974) along each 10-m sub-transect. Fuel
components measured included duff, litter and four size classes

of downed woody fuels: 1-h (0–0.6 cm diameter), 10-h (0.6–
2.5 cm), 100-h (2.5–7.6 cm) and 1000-h (.7.6 cm). Intersects
for the smaller woody fuel classes (1-, 10- and 100-h) were

tallied by size class between metres 4 and 7 of the sub-transect
(3-m sample length), and 1000-h fuels were measured by
diameter along the entire 10-m distance. Litter and duff depths

(cm) were sampled at points 2, 5 and 8 m from the beginning
of the sub-transect. We did not measure the bulk density, but
instead used equations quantifying relationships between depth
and weight of litter and duff for common conifer species of the

Sierra Nevada (van Wagtendonk et al. 1998). As our study site
contains a mix of species, fuel loading constants were weighted
by basal area of each species within each of the 24 units to

account for differences in fuel characteristics across the study
area (vanWagtendonk et al. 1996; vanWagtendonk et al. 1998).
Although shrubs and herbaceous plants can contribute substan-

tially to fuels in some forests, they were not included in this
study due to their low abundance.

Statistical analyses

We used multiple linear regression with mixed models in SAS
9.3 (SAS Institute Inc. 2011) to examine relationships between
overstorey variables and loads of duff and fine fuels (1-h, 10-h,

sum of 1–100-h and litter). Due to the large number of

sub-transects with no 1000-h fuel loads, linear regressions were
not done on this fuel class.We used the 10-m sub-transects as the
measurement unit of interest because our intent was to look at

small-scale variation of fuel loads and forest structure. Although
we converted measures of forest structure and composition to
average values within this 10� 15-m area, presenting these

measures at this scale provides some degree of spatial forest
structure. To avoid the issue of pseudoreplication (Hurlbert
1984), sub-transects were not treated as independent replicates

in analyses. Spatial autocorrelation of sub-transects was
accounted for using a power spatial covariance structure based
on the linear distance between sub-transects, and transect was
included in the model as a random effect. Logarithmic and

power transformations were applied to improve fit of the data to
model assumptions of normality of residuals and equal var-
iances. Transformations were chosen based on visual inspection

of the distribution of residuals and the residual–quantile plots,
with transformations chosen so that residuals were normally
distributed (see Supplementary Material available online only).

For each fuel component, we assessed models of all possible
combinations of overstorey predictor variables up to a maxi-
mum of three variables per model. We compared the corrected

Akaike information criterion (AICc) value for each model to
assess the relative goodness of fit (Hurvich and Tsai 1989) and
determine the best model for each fuel component. We also ran
the model selection including all two-way interactions. All

models including interactions were ranked very poorly by AICc

Sampling transects

Experimental forest boundary

Study units

(a)

(b)

(c)

0 200 400 800 m

0 200 400 km100 0
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Fig. 1. Study site showing (a) location in California; (b) layout of study units (light grey polygons), with black lines showing location

of all sample transects (240 m total in each unit) and (c) close up of one unit. Tick marks on transects delineate divisions between 10-m

sub-transects (larger ticks are 30 m).
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(AICc weight ,0.02, see equation (1) below), so we did not
include models with interactions in our assessment of relative
variable importance (below). Because high levels of collinearity

among predictor variables can complicate model interpretation
(Freckleton 2011), we checked for collinearity among the pre-
dictor variables included in the best model for each fuel com-

ponent. Correlations among covariates tended to be very low.
Only three pairs of predictor variables had a coefficient of
determination (R2) value .0.05: total canopy cover and total

live basal area (BA) (0.15), white fir canopy cover and white fir
live BA (0.19), and pine live BA and total live BA (0.38).

Using the best model (as determined by AICc) for each fuel
component, we generated predictions and 95% confidence

intervals of the mean fuel load when predictor variables are at
their average value.We assessed the variance explained by fixed
effects using the marginal R2 developed by Nakagawa and

Schielzeth (2013). We examined the covariance parameters to
assess the variance attributable to error and the random effects
and covariance structure specified in the model.Wald tests were

used to assess significance of covariance parameter estimates,
and t-tests were used to assess significance ofmodel coefficients
and predicted values of fuel load. Estimates were considered

significant for P-values ,0.05.
We assessed the importance of predictor variables in two

ways. First, we used AICc weights from all possible models to
calculate an importance factor for each overstorey variable,

representing its relative usefulness in predicting fuel loads
(Burnham and Anderson 2002). AICc weights are calculated
by normalising the likelihood of a given model m across all M

models, and represent the relative likelihood of a model
(Johnson and Omland 2004):

AICcWtðmÞ ¼ expð�0:5�DAICcmÞ
PM

i¼m

expð�0:5�DAICcmÞ
ð1Þ

where DAICcm is equal to the difference in AICc values for
model m and the minimum AICc value among M models.
A higher AICc weight results when this difference is small.

The importance factor (IF) for a variable X is then calculated by
summing the AICc weights from all models in which that
variable appears:

IFX ¼
X

m2M
AICcWtðmÞ � IðX 2 mÞ ð2Þ

where I(X2m)¼ 1 ifX is contained inmodelm and 0 otherwise.
Hence variables that appear in models with lower AICc values

(and higher AICc weights) will have higher IF values. We also
looked at the range of influence of the predictor variables
included in the best model as assessed by AICc for each fuel
component. This assessment of predictor variable importance is

calculated by inserting the minimum and maximum value of a
given covariate into the model regression equation, while
holding each other covariate in the model at its mean value, to

get a minimum and maximum predicted value of fuel load for
that covariate. A greater range of influence indicates that a
variable has an influence over a wider range of predicted values

of a fuel component. This range of influence analysis was
performed in R version 3.0.0 (R Core Team 2013).

We examined relationships between large woody fuels
(1000-h) and overstorey variables with conditional inference
tree analysis using the party package in R. This recursive

partitioning method avoids the problem of overfitting without
the need for tree pruning and prevents biased selection among
covariates (Hothorn et al. 2006).We used a significance level of

0.05 for each split.

Results

Overstorey structure was highly variable between sub-transects,
as shown by the ranges and standard deviations of the overstorey
variables (Table 1). For example, total live BA and stem density

ranged from 0 to 271 and 0 to 2333, and standard deviations for
individual species BA were close to or higher than the mean for
all species. Excluding two sub-transects that had no live trees, the

average percentage of shade-intolerant species (pine species and
black oak) was 9.8% by stem density (trees .10 cm dbh) and
16.7%byBAacross all transects. The dominant specieswaswhite

fir, comprising on average 51% of stems and 49% of BA within
sub-transects. Dead BA (0–143.4) and snag density (0–933.0)
were also particularly variable, with large standard deviations

Table 1. Observed values for fuel loads and overstorey variables

Averages and standard deviations were calculated using values from 10-m

sub-transects (N¼ 576); QMD is quadratic mean dbh of live stems

Average Standard

deviation

Range

Fuel component (Mg ha�1)

Duff 29.7 25.8 0–197.6

Litter 29.5 20.4 0–138.7

1-h 1.1 1 0–5.8

10-h 3.9 4.1 0–28.2

100-h 4.1 7 0–99.3

1–100-h 9.1 9.8 0–123.8

1000-h 23.7 43.3 0–374.3

Live basal area (m2 ha�1)

Total 67.5 39.4 0–271.4

Fir speciesA 33.8 30.2 0–186.5

Incense cedar 19.6 19 0–108.0

Pine species 14.0 24.7 0–140.3

Black oak 0.18 1.4 0–24.0

Dead basal area (m2 ha�1)

Total 12.2 17.6 0–143.4

White fir 8.9 15.7 0–143.4

Incense cedar 0.7 1.8 0–13.1

Pine species 2.5 8.1 0–128.2

Black oak 0.014 0.2 0–4.7

Stem density (ha�1)

Live trees 713.9 344.7 0–2333.3

Snags 146.0 152.7 0–933.3

QMD (cm) 35.4 11.1 12.3–87.5B

Canopy cover (%)

Total 79.6 25.3 0–100.0

White fir 41.8 36.3 0–100.0

Incense cedar 21.1 28.5 0–100.0

Pine species 16.0 27.9 0–100.0

Black oak 0.68 7.0 0–88.9

AIncludes data from one live Douglas-fir.
BExcludes data from two sub-transects that contained no live trees.
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(Table 1).However,most (423 out of 576) sub-transects contained
at least one snag. For snags, the average percentage of shade-
intolerant species was 23.9% by stem density and 22.8% by BA.

Fuel load was similarly variable across the study site, with

large ranges and high standard deviations for all fuel compo-
nents (Table 1, Fig. 2). Fuel levels were mostly clustered
towards the lower end of the distribution, with few plots having

high values. Sub-transects with no 100-h or 1000-h fuels

recorded were common (46 and 47% of sub-transects), whereas
duff and litter values tended to have somewhat less of a skewed
or truncated distribution (Fig. 2). Duff and litter loads were high,
with average depths of 1.9 and 3.1 cm.

Marginal R2 values for the predictive models were fairly low
(0.235 on average), indicating that around one-quarter of varia-
tion in fuel loads could be attributed to overstorey structure at

our study site (Table 2). Duff had the highest R2 value (0.287)
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Fig. 2. Violin plots showing median (white diamond), interquartile range (black bar) and probability density (grey shaded area) of (a) 1- and 10-h,

(b) 100- and 1–100-h, and (c) 1000-h, duff and litter. Note that the scales are different for the three figure sections. The grey shaded area is constructed

from two vertically rotated kernel density plots. Data shown are for all sub-transects (N¼ 576).

Table 2. Estimate and standard error for coefficients of overstorey variables included in the best model for each fuel component

Standard error shown is for the model coefficients; CI is the 95% confidence interval for the mean predicted fuel loads (lower–upper); predicted fuel loads are

calculated at the average values of overstorey variables included in the model; BA is basal area; all coefficients and prediction estimates are statistically

significant (P, 0.05)

Coefficient Standard error Transformation Prediction (Mgha�1) 95% CI R2

1–100-h

Total dead BA (m2 ha�1) 0.0050 0.0009 y0.25 6.34 5.7–7.1 0.204

Fir live BA (m2 ha�1) 0.0032 0.0006

White fir canopy cover (%) 0.0028 0.0005

Intercept 1.3000 0.0337

1-h

Total live BA (m2 ha�1) 0.0087 0.0010 log(yþ 0.1) 0.74 0.7–0.8 0.273

Pine live BA (m2 ha�1) �0.0123 0.0016

White fir canopy cover (%) 0.0052 0.0009

Intercept �0.8077 0.0758

10-h

Total live BA (m2 ha�1) 0.0061 0.0009 y0.4 2.87 2.5–3.3 0.251

Pine live BA (m2 ha�1) �0.0101 0.0013

Total canopy cover (%) 0.0049 0.0011

Intercept 0.8598 0.0935

Duff

Total canopy cover (%) 0.0363 0.0057 y0.58 23.69 21.2–26.3 0.287

Total live BA (m2 ha�1) 0.0305 0.0036

Total dead BA (m2 ha�1) 0.0238 0.0075

Intercept 1.0358 0.4836

Litter

Total canopy cover (%) 0.0081 0.0016 y0.4 25.72 23.8–27.8 0.159

Pine canopy cover (%) 0.0070 0.0015

Total dead BA (m2 ha�1) 0.0141 0.0023

Intercept 2.7374 0.1432
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and litter had the lowest (0.159). We found a high spatial
dependence of measurements based on covariance parameters

for sub-transects, with values close to one indicating high
correlation between nearby sub-transects (Table 3). Variance
within transects was also significant for all fuel components,
indicating that measurements were significantly correlated

within transects.
High loads of fine woody fuels (1–100-h) were most strongly

associated with total dead BA, live fir BA and white fir canopy

cover (Tables 2 and 4). Live fir BA was the most important
covariate, followed by canopy cover of white fir and snag BA
(Table 4). Canopy cover of white fir influenced the predicted

value of fine fuels over a relatively narrow range of values,
whereas live BA of fir and total dead BA had an influence over a
wider range of fine fuel levels (Fig. 3).

The highest 1-h fuel loadswere associated with highwhite fir

cover (Tables 2 and 4). The range of influence for white fire
cover was small and focussed around the mean predicted fuel
value, similar to the result for 1–100-h fuel load (Fig. 3). Live

pine BA had a negative relationship with 1-h fuel load (Table 2)
and also had a relatively small range of influence, mainly in the
range of predicted values below themean, whereas total live BA

had a wider range of influence (Fig. 3). In addition to these three
variables, live BA of fir had moderate influence (Table 4).

Ten-h fuel loads were associated with many of the same

overstorey variables as 1-h fuels and the best predictive models
for these two fuel components were very similar, with total and
pine live BA and a measure of canopy cover included. For 10-h
fuels, live pineBAagain had a negative relationshipwith fuel load

and influence in the lower range of fuel values, whereas total live
BA had an effect over a wider range of values (Table 2, Fig. 3).
One difference was that total canopy cover, rather than white fir

cover, was associated with greater loads of 10-h fuel (Table 2).
In addition, total snag BA was moderately important (Table 4).

Both duff and litter were positively related to total dead BA

and total canopy cover (Table 2). In both cases, dead BA
influenced the fuel level mainly above its mean predicted value,
whereas total canopy cover had most of its influence below the
mean predicted fuel load (Fig. 3). Greater litter load was also

found in sub-transects with greater cover of pine (Table 2). In
addition, live BA of pine species and canopy cover of white fir
had some influence on litter loads (Table 4).Whereas for litter,

total dead BA had the widest range of influence, for duff it did

not influence the predicted value at the highest part of its range,
and total live BA had the widest range of influence (Fig. 3).

Duff load was also somewhat associated with live and dead BA
of black oak (Table 4).

Greater 1000-h surface fuel loads were associated with

greater total snag density (all species combined). The regression
tree of 1000-h fuels had only one split (P, 0.001, data not
shown), dividing sub-transects based on snag density. Among

sub-transects with ,333 snags ha�1 (N¼ 527), the level of
1000-h fuel load averaged 21.1Mg ha�1, whereas those with
greater snag densities (N¼ 49), averaged 51.0Mg ha�1 of large
fuels.

Discussion

Establishing robust linkages between overstorey forest structure
and surface fuel loads can be problematic because canopy and
surface fuels can vary at different spatial scales (Keane et al.

2012a). In this study we demonstrate significant relationships
between overstorey variables and surface and ground fuel loads,
but only around 23% of the observed variation in fuel loads

could be explained by the overstorey variables included in our
analysis. Here we use these relationships to examine the relative
influence of different overstorey variables on fuel loads, and
discuss potential mechanisms. These relationships may enhance

our understanding of fuel loads in forests with a history of
logging and fire suppression.

Even though relationships between overstorey structure and

fuel loadcomponentswere statistically significant, each explained

Table 3. Covariance parameters for the best model for each fuel

component

The values shown for sub-transect are correlation coefficients reflecting

spatial dependence of sub-transects. Values closer to 1 indicate spatial

autocorrelation, whereas values closer to 0 would indicate no spatial

relationship. Values for transect reflect the variance within transects, and

values for residual show variation due to random error

Fuel component Sub-transect Transect Residual

1–100-h 0.710 0.012 0.140

1-h 0.777 0.077 0.463

10-h 0.736 0.089 0.327

Duff 0.738 1.167 9.198

Litter 0.828 0.074 0.877

Table 4. Importance factors for all overstorey variables for each fuel

component

The shading corresponds to the importance factor value with darker

highlighting for greater values. QMD is quadratic mean dbh (cm) of live

stems

1–100-h 1-h 10-h Duff Litter

Live basal area

Total 0.070 0.854 0.989 1.000 0.055

Fir speciesA 0.924 0.146 0.011 0.002 0.001

Incense cedar 0.015 0.023 0.010 0.002 0.000

Pine species 0.050 0.854 0.989 0.002 0.135

Black oak 0.000 0.000 0.001 0.275 0.002

Snag basal area

Total 0.826 0.000 0.171 0.306 0.999

White fir 0.049 0.000 0.009 0.045 0.001

Incense cedar 0.000 0.000 0.001 0.025 0.000

Pine species 0.000 0.000 0.001 0.031 0.000

Black oak 0.000 0.000 0.003 0.172 0.002

Stem density

Live per ha 0.000 0.000 0.000 0.000 0.000

Snags per ha 0.091 0.000 0.068 0.001 0.000

QMD 0.001 0.000 0.000 0.007 0.060

Canopy cover

Total 0.078 0.055 0.707 1.000 0.755

White fir 0.895 0.945 0.029 0.002 0.196

Incense cedar 0.000 0.076 0.000 0.029 0.007

Pine species 0.000 0.047 0.000 0.012 0.842

Black oak 0.000 0.000 0.000 0.011 0.000

AIncludes data from one live Douglas-fir.
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only approximately a quarter of the variation in fuel loads at our
study site. The rest of the variation is presumably due to factors

such as sampling error, weather (e.g. wind dispersion) and
topographic influence on decomposition. Also, random effects
of mortality and weather can substantially affect fuel patterns

(Brown and See 1981). The low explanatory value of ourmodels
could also be due to a mismatch of sampling scale between
overstorey and fuels (Keane et al. 2012b) and that a 10� 15-m

belt of mapped trees may be too narrow to adequately capture
fuels dropped by tall trees. Overstorey structure and composi-
tion had the least influence on litter load (R2 of 0.16), indicating

that these other factors may play a greater role in distribution of
litter. This differs from the results of Hall et al. (2006), who
found that among pools of downed fuels in ponderosa pine
forests only litter was correlated with overstorey structure, with

over 70% of the variability in litter pools being explained by
canopy cover and BA.

Our field measurements were taken after many decades of
fire exclusion. The average fuel loads in this study were similar

to those typically reported for Sierra Nevada mixed conifer
forests with a history of fire suppression (e.g. Stephens and
Finney 2002; Innes et al. 2006). Different relationships and

perhaps stronger correlations between overstorey and fuel loads
may have been detected if sampling had occurred after a recent
fire. Duff and litter loads in particular are typically strongly

associated with time since past fire (Parresol et al. 2012), and
burn conditions can additionally influence the pattern of fuel
consumption in relation to the overstorey (Hille and Stephens

2005). In the absence of fire, fuels in Sierra Nevada mixed
conifer forests reach a saturation point where accumulation rates
equal decay rates after about 30 years (Kittredge 1955; van
Wagtendonk and Sydoriak 1987; Keifer et al. 2006), although

accumulation of large woody debris may continue after other
fuel classes have reached equilibrium (Stohlgren 1988).

1–100 h 1 h

10 h

Litter

Duff

Total dead BA

Fir live BA

White fir CC

Total live BA

Pine live BA

White fir CC

Total live BATotal live BA

Total dead BA

Pine CC

Total CC

Total dead BAPine live BA

Total CC Total CC

5 10 15 20

Prediction (Mg ha�1) Prediction (Mg ha�1)

Prediction (Mg ha�1)Prediction (Mg ha�1)

Prediction (Mg ha�1)

25 0 1 2 3 4

10

20 30 40 50 60 70

0 2 4 6 8 10 12 30 50 70

Fig. 3. Range of influence of overstorey variables on fuel components, including all sub-

transects (N¼ 576). A greater range of influence indicates that a variable has an influence over a

wider range of predicted values of a fuel component. Predicted fuel loads are shown for the best

model (byAICc) for each fuel component. The vertical bar represents themean predicted value of

the fuel component. CC refers to canopy cover.
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However, fuel decomposition rates may depend on temperature
and relative humidity (Keane 2008b), which are also influenced
by overstorey structure. Therefore, within-stand variation in fuel

load could occur due to microclimate effects as well as species-
specific inputs in forests with a long fire-free interval such as our
study site.

The skewed distribution of fuels found in this study, indica-
tive of a heterogeneous rather than uniform fuel bed, is typical of
forest fuels (e.g. Brown and See 1981; Brown and Bevins 1986;

Keane et al. 2012a). Fuels in the 100- and 1000-h classes had
particularly skewed distributions, evident by the long and thin
tail of the distribution relative to the interquartile range (Fig. 2),
suggesting patchy loads across the study area. Perhaps longer

sampling transects would have allowed for greater detection of
large woody fuels and thus better relationships with overstorey
variables. Our findings are similar to those of Fry and Stephens

(2010) for an old-growth Jeffrey pinemixed conifer forest. They
demonstrated that large fuels were infrequent, but tended to
occur with high loads when present (up to 210Mg ha�1); that is,

highly clumped spatially. In our study, the finding that higher
1000-h fuel loads corresponded to greater total snag density
suggests that tree mortality, which is often spatially clumped

(Lundquist 2007), is a possible mechanism driving the patchy
occurrence of pockets of high coarse fuel loads. Greater mortal-
ity can occur in areas of high tree density, and is generally due to
a combination of factors including diseases, insects and envi-

ronmental stressors (Smith et al. 2005).
Fine fuels tended to have a comparatively less skewed

distribution across our study area (Fig. 2). This is likely due to

the inputs for fine fuels (small branch wood) being more
constant than that of coarse fuel (large branches, tree boles)
(Keane 2008b) and greater dispersion when falling through the

air thanwith the larger and heavier fuels. Additionally, as Keane
et al. (2012b) demonstrated, surface fuels in smaller size classes
tend to be more strongly correlated at smaller spatial scales
compared with larger fuels; thus it would bemore likely to find a

uniform distribution at the scale of our sampling (0.015 ha).
This study found that measures of total BA and canopy cover

were relatively important covariates for predicting fuel loads,

with the best model for each fuel component containing either
total live or dead BA or total canopy cover, but including
variables pertaining to individual species improved model fit

for all surface fuel components. Associations between within-
stand species composition and fuel load characteristics have
been previously found in both a dry mixed conifer forest (Fry

and Stephens 2010) and a eucalyptus woodland (Duff et al.
2013). In addition, differences in deposition rates for different
species and size classes of Sierra Nevada trees have been
demonstrated (van Wagtendonk and Moore 2010). This sug-

gests that although the influence of overstorey composition may
bemodest, as at our study site, within-stand species composition
is worthy of consideration.

In this study, live and dead stem density were not important
predictive factors for any fuel component. Instead, measures of
total or individual species BAoften had high importance factors.

BA is a better indicator of aboveground biomass and, therefore,
potential fuel load. As BA tends to be more reflective of the
presence of large rather than small trees, this finding suggests
that large trees have a disproportionate influence on surface fuel

accumulation (Collins and Stephens 2007; vanWagtendonk and
Moore 2010). BA of individual species was also assessed, and
BA of pine or oak was among the important predictive factors

for several fuel components (e.g. 1-h, 10-h, litter and duff). This
suggests that even the less abundant species may play a role in
predicting fuel loads (Fry and Stephens 2010).

The negative relationship between 1-h fuel loads and pine
BA found in this study (Table 2) is consistent with findings of
others evaluating the effect of cover type (Brown and Bevins

1986), within-stand species dominance (Fry and Stephens 2010)
and species-specific inputs (van Wagtendonk and Moore 2010)
on fuel bed characteristics. Pines drop fewer woody fuels in the
smallest size class, as they may lack branches of sufficiently

small size (particularly true for ponderosa pine) (Brown and
Bevins 1986; van Wagtendonk and Moore 2010). Although our
results for small woody fuels were in agreement with those of

Fry and Stephens (2010), their finding that pine-dominated plots
in amixed conifer forest also had a lower litter load is contrary to
the positive association between pine canopy cover and litter

load in this study (Table 2). This difference could be due to
differences in fire history or site productivity between study
areas. Their site (Sierra San Pedro Martir) has a much more

intact fire regime, with fires occurring until at least the early
1970s, and is generally less productive (Stephens andGill 2005).
Both of these factors would lead to lower litter accumulation
and perhaps different relationships between stand structure and

surface fuels. Our results more closely relate to fuel deposition
studies in Yosemite National Park, in which fuel samples
collected under ponderosa and sugar pines generally had higher

litter and lower 1-h fuel inputs and loads than samples collected
under white fir and incense cedar (van Wagtendonk et al. 1998;
van Wagtendonk and Moore 2010).

Duff was negatively associated with black oak BA, but
positively associated with measures of total BA and cover. Other
species-specific variables were not important predictors for duff
(Table 4). As all of the conifer species at our study site tend to

accumulate large quantities of duff in the absence of fire (van
Wagtendonk et al. 1998), they may have been more similar in
their associations with duff load. Hardwood litter tends to decom-

pose more quickly than conifer litter (Harmon et al. 1990),
potentially contributing to the pattern of lower duff accumulation
near oaks. In addition, oaks tend to occur on drier and rockier sites

that may be less conducive to conifer establishment (McDonald
1969) and are expected to have lower productivity.

Despite the inclusion of either total or white fir canopy cover

in the top predictivemodel for all fuel components, both of these
variables generally had a relatively small range of predictive
influence (Fig. 3). A large proportion (45%) of plots had 100%
canopy cover, so this likely reflects the additional increases in

fuel load that occur due to other structural attributes such as
higher BA within a closed canopy area. Total canopy cover
tended to influence the level of fuel load below its mean value,

whereas white fir canopy cover had more of its influence above
themean prediction level. Thismay reflect that overall degree of
canopy openness influences fuel loads in their lower range of

values, but a greater proportion of white fir can contribute to
additional fuel load for fine woody fuels.

Live pine BA also had a relatively small range of influence
(Fig. 3), despite its high importance for predicting both 1- and
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10-h fuels, and it tended to influence fuel loads below their mean
value. This implies that the role of pine is most significant when
loads of 1- and 10-h fuels are low, and the influence of pine is

lost when greater fuel loads are present. In contrast, BA of live
fir and total live and dead BA had wide ranges of influence on
predicted fuel loads, indicating that these variables are good

general predictors of fuel load, even at high values. For example,
within the range of values observed for live pine BA, the
maximum predicted 1-h fuel load (holding total live BA and

white fir CC at their average values) was around 1Mg ha�1,
close to the average predicted 1-h fuel load. Conversely,
increasing total live BA to its maximum (holding white fir CC
and live pine BA at their average values) gives a predicted 1-h

fuel load of around 5Mg ha�1, close to the maximum of 5.8
observed in the dataset (Fig. 3).

There are a few limitations in our study that are worth

mentioning due to their potential effect on the results reported
and their applicability elsewhere. The length of sampling
transects may not be optimal for capturing all the variability in

surface fuels. Sample length was 3m for 1–100-h fuels and 10m
for 1000-h fuels. Several studies have found that substantially
longer transects are better for adequately characterising fuel

loads, particularly for larger size classes (e.g. Sikkink andKeane
2008; Keane and Gray 2013). However, the extent of sampling
was similar to or slightly greater than that in other studies using
the planar intercept method in Sierra Nevada mixed conifer

forests, which typically ranged from 0.01 to 0.06 m of transect
per square metre (Innes et al. 2006; Webster and Halpern 2010;
Stephens et al. 2012). Our study used 0.07 m of transect per

square metre of plot. Greater transect length would likely have
decreased the variability in our measurements and resulted in
fewer occurrences of zeroes for the larger fuel classes. Second,

all transects were oriented in one direction (east–west). If fuels
are not randomly oriented with respect to slope or predominant
wind direction this can cause bias in measurements (Batschelet
1981). However, we believe this likely had a minimal effect on

our data as sample transects occurred on a variety of slopes and
aspects. And last, our findings are from one relatively small
(100 ha) study site in the central Sierra Nevada. One of the

advantages of the relatively small geographic scope of this study
is that we were able to isolate some key within-stand overstorey
composition and structure variables that were linked to surface

fuel loads, without confounding by factors such as time since
past disturbance or site productivity. Although the broader
applicability of our findings from this site is unclear, our study

site has a management history that is similar to much of the
mixed conifer forest in the Sierra Nevada, and is of particular
interest for fuels management and restoration. Development of
robust predictive linkages applicable across broader geographic

scales will require considerable additional sampling in different
forest settings, with varying disturbance histories.

Management implications

Forest surface fuels have high inherent variability, which, as our

analyses indicate, are partially tied to small-scale variability in
forest overstorey structure and composition. A better under-
standing of factors associated with variation in fuel loads can be
used to help anticipate variation in fire behaviour and effects in

heterogeneous forest environments. For example, we found a
positive association between abundance of white fir and greater
total fine surface fuel loads. Given that fine fuels are often what

drive surface fire behaviour (Rothermel 1972; Albini 1976),
pockets of greater fir abundance may experience higher surface
fire intensities, and thus more severe fire effects, particularly

when burning in mid–late summer when fuel moistures are
uniformly low (Bigelow and North 2012). Fuel beds in dense
patches with higher overall canopy cover and total BAs would

be expected to follow similar trajectories. In areas with very
high proportions of white fir, this effect on fire severity may be
compounded by its greater sensitivity to fire (Stephens and
Finney 2002) and the presence of ladder fuels, a structure that

often coincides with white fir dominance. In contrast, breaks in
canopy cover were associated with lower fuel loads and may
serve to reduce the continuity of surface fuels, thereby affecting

the rate and pattern of fire spread.
Another potential application of these study results is to aid in

prioritising areas for surface fuel reduction treatments. Altering

the overstorey can lead to an immediate input of surface fuels
if these are not also removed by the treatment, but resulting
changes in overstorey could be expected to alter the fuel inputs

and microclimate and thereby alter future fuel accumulation.
Our findings highlight structural characteristics with the greatest
potential effect on fuel loading, and therefore illustrate forest
characteristics that might be manipulated to maximise future

fuel heterogeneity and discontinuity. This knowledge could be
applied in the design of more heterogeneous fuel treatments.
Forest managers are increasingly emphasising restoration of

resilient forest conditions that also provide habitat for multiple
species of concern with diverse habitat requirements (North
et al. 2009; North 2012). Management actions that increase

overstorey heterogeneity may also lead to greater diversity in
surface fuels within stands, which could help to perpetuate a
heterogeneous forest structure under the influence of fire. For
example, stands that have clustered associations of tree species

as opposed to being distributed more uniformly may produce
greater diversity in fuel bed characteristics in the future, and
would therefore be expected to experience a greater variety of

fire effects.
Duff and litter combined comprised nearly two-thirds of the

total fuel load sampled (Table 1). Given their magnitude, these

duff and litter loads have the potential to disproportionately
influence fire behaviour (e.g. intensity, rate of spread [litter])
and effects (e.g. emissions, soil heating [duff], vegetation

injury or mortality [both]). Therefore, manipulation of vari-
ables associated with these fuel components might be expected
to have a greater influence on fuel trajectories, especially since
variables that weremore strongly associatedwith duff and litter

also had relationships with other fuel components, such as total
live BA (high importance values for duff, 1-h, 10-h) and total
dead BA (high importance values for 1–100-h fuels and litter).

Continued management of a stand following treatment may
also have an effect on its future trajectory. Although we do
not have post-burn fuel data, we suspect that the relationships

we identified with overstorey structure/composition may be
more pronounced following low- to moderate-severity fire
(i.e. where overstorey trees survive) than those observed after
decades of fire exclusion.
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