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Abstract

Here we consider the issue of choice and how neural systems can be used to
investigate the processes of discrimination, as well as the evolution of different
kinds of choice-related behavior in animals.  We develop these ideas in the
context of three studies, among others.  The first study is on the evolution of
specialization in animals using locust feeding behavior as the leitmotif, where
decision making in individuals is modeled by a 3-layer-perceptron. In this study
the fitness of individuals depends on their response to signals from plants and
the density of individuals using those plants [1].  The second is a study that
investigates the evolution of species recognition in sympatric taxa using female
mate choice in frogs as the leitmotif [2].  Here individuals are modeled by
Elman nets (3-layered perceptrons with feedback) and their fitness is
determined by their ability to discriminate conspecifics from heterospecifics.
The third is a study of the response characteristics of a recurrent Hopfield-type
neural network to input that represents olfactory stimuli.  The connectivity of
this net reflects the basic architectural features of the neuron in the insect
antennal lobe, as typified by cockroaches or bees [3].

1 Introduction

Discrimination is the essence of behavior, no matter how rudimentary.  For
example, the sea hair (Aplysia, spp.), a naked mollusk, needs to discriminate
between various chemical and mechanical types of stimuli to appropriately and
reflexively withdraw its siphon into its mantel at times of danger. We may
reasonably believe that neural network models, which can be viewed as devices for
categorizing inputs into classes, provide us with insight into how Aplysia and other
organisms use reflexive behavior in discriminatory contexts.  Is it too far fetched to
believe that neural nets can also provide insights into more complex discriminatory
behaviors such as food selection by locusts, mate choice in frogs, or cockroaches
using odor plumes to find food?   In a sense, this is the same dilemma that ecologists
face when asking whether aggregated species models can be used to address



questions in community ecology.  In both cases, the plausibility of the models as
representations of real processes is stretched to the limit, and we are reduced to
convincing ourselves that playing with such models generates knowledge that
otherwise would be unavailable.  That models can generate hypotheses about how
real processes work, is true to be sure.  The success of the modeling enterprise,
however, rests on whether these hypotheses ultimately lead to uncovering some
truths that would, in the absence of models, remain buried forever.  In this mini-
expose, focusing on our own work and that of our collaborators, we review how
neural nets provide some insights into three processes that are very crude
abstractions of systems found in nature.  We hope to demonstrate that the value of
neural network models depends on how the hypotheses they generate are translated
into knowledge through a dialectical interplay of theory and empiricism.

2 Locust Gourmets

The first application we review is that of neural networks used to investigate the
evolution of generalist versus specialist strategies in consumers competing for
resources in a limited space.  The leitmotif used to carry out simulations in this study
[1] was how guilds of closely related species of herbivorous insects are able to
coexist while competing for several sympatric species of plants (e.g. see reviews
[4,5])  In the simulations, the decision making processes of individuals were
emulated by computations of 100 3-layer perceptrons (each consisting of 2 input, 3
hidden, and 1 output unit—see Fig. 1) which then produce 6 different scalar outputs
in response to one of 6 pairs of input stimuli.  Each pair of inputs represents one of
four plant resource types (Fig. 1). The relative fitness of each of the 100 individuals
(i.e., 100 perceptrons each with a different set of synaptic weights) was determined
by the following three factors: 1.) the size of its response to each of the four
resources, 2.) an intrinisic value for each of the four resources, 3). the decline in the
value of resources with the number of individuals competing to use them.

In general, neural networks can adapt to their environments through evolution or
through learning, although the two processes are only distinguishable in the way
networks are updated.  In this study [1], an evolutionary (e.g. genetic algorithm),
rather then a learning process (e.g. back-propagation), was used to update the
networks [6,7].  Specifically, this model addressed the question of why there are
more host plant specialist than generalist insect consumers when laboratory studies
indicate that generalists are able to use a much broader spectrum of plants than is
observed in nature.  It has been speculated that perceptual constraints coupled with
considerations of foraging efficiency play a role in the evolution of specialization
[4,5].

The results of these simulations [1] indicated that the probability of species
evolving particular host plant preferences depends on the different signals produced
by plants of different nutritive values.  Networks could evolve to exploit a single
plant type or to generalize across two or more plant types.  Evolutionary equilibria
typically involved guilds of complementary species that together constitute an ‘ideal
free distribution’ in terms of productivity of the different plants.



Figure 1. Each of four plant types is assumed to produce a unique response in the projection
neurons of the antennal lobe of an insect brain.  This response, modeled as a two unit input

layer of a 3-layer preceptron, is normalized so that it effectively produces the ratio of the two
inputs (S1/S2), which progressively increases from 1/4 in plant type 1, to 2/3 in plant type 2,

3/2 in plant type 3 and 4 in plant type 4.  These inputs S1 and S2 are then processesed in a
perceptual network in the mushroom bodies, modeled by three hidden units and one output

unit in our three-layer perceptron. The input signals are propagated through synaptic weights
wij to the three-unit hidden layer xj and from there through synaptic weights uij to the output

signal y.  The output y is a measure of the insect’s ability to discriminate the plant represented
by the corresponding input and is used in conjunction with a fitness value, based on the

number of insects using that host plant type, to generate a population index for the phenotype
represented by the synaptic weights wij and uij.  Modified from [1].

The mix in phenotypes within these guilds depends critically on the order of
appearance of the various combinations of specialist and generalist phenotypes, and
this order depends on the difficulty of the perceptual task faced by the phenotypes
(Fig. 2).  Any differences in the relative utilization by a generalist of different plant
species will lead to the emergence of one or more specialists that exploit the plants
most under-utilized by the generalist.  Evolutionary changes in guild structure are
less frequent than mutational rates would suggest but are saltatory when they occur.
The strategy to specialize may dominate for two reasons: specialization appears to
evolve more readily in complex environments and the ideal free distribution is more
easily matched in a population density context by a group of specialists or by
generalists in concert with specialists than by a generalist alone.

Earlier studies [8,9] used simple three-layer feed-forward perceptrons to test
whether the neural networks respond to stimuli in a similar way as animals. These
models have been very accurate at predicting stimulus-response characteristics,
including generalization, supernormality (peak shift) and stimulus intensity effects.
Such neural networks exhibit behavior predictive of the behavior of real consumers.
Leow [10] describes a series of increasingly complex neural networks each of which
allows a simulated creature to search for food and to evade danger by using
olfactory cues.  Behaviors such as obstacle avoidance and risk-taking emerge
naturally from the networks’ interaction with the environment.  More complex
systems of networks [11] have been used to model foraging behavior of egrets asked
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to choose between feeding in a flock or foraging individually.  Local enhancement
and flock foraging was preferred when resources were patchy, while individual
foraging was preferred when resources were evenly distributed.  Other simple neural
nets have been developed that learn to avoid aversive stimuli by trial and error or by
imitation [12].

Figure 2.  Population indices of six insect phenotypes (designated by ones and zeros to
indicate which plant types the network perceives maximally—e.g. 1111 is a generalist not
distinguishing between any of the plant types, 0100 is a specialist on plant type 2 able to

discriminate it from 1 and the lumped combination of  3 and 4, and 0110 is less specialized
able to discriminate the lumped combination of  2 and 3 from 1 and from 4) are plotted for

one of the simulations of a population evolving in an environment in which plant types 2 and
3 each have a carrying capacity for 50 individuals while plant types 1 and 4 are toxic and have
0 carrying capacity.  The values plotted are the relative population sizes of the six phenotypes

every generation up to 1000 and every 100 generations thereafter.  Modified from [1].

3 Toad Lovers

Neural networks have been used to model the response of animals to signals sent
by conspecifics or heterospecifics. In most of these models the evolution of the
phenotypes of the senders and receivers depends on the choices that the networks
make.  One such example is the study of the coevolution of a mimicry complex [13]
consisting of a palatable prey species that evolves to avoid predation by mimicking
the appearance of an unpalatable species.  The effectiveness of the mimicry is
determined by how difficult it becomes for the predator to discriminate between the
phenotypes of the two potential prey species.  Each of the individuals in the two
prey populations of senders and the one predator population of receivers was
represented by a 3-layer perceptron.  In this simulation it benefited both types of



senders, the original (i.e., the distasteful species) and the mimic (the tasty species),
to elicit the same response from the receiver (predator) and it benefited the receiver
to respond to only one sender (discriminating between original and mimic).  The
receiver was thus in conflict with one of the senders (as in Batesian mimicry).  The
most common response was for mimicry to develop due to the mimic evolving
toward the original faster than the original moved away.  As the two sender
phenotypes converged there was selection on the receiver to discriminate along a
stimulus dimension where the two senders were still distinguishable.  Even after
mimicry was established the model and the mimic were constantly changing in
appearance.

Another example of where network choice was important to an evolutionary
outcome used recurrent Elman nets (a three-layer perceptron with feedback from the
third layer to the second) to investigate the evolution of species recognition in
sympatric taxa [2].  In this study, mate selection by female frogs, based on the way
they process the calls of conspecific and heterospecific male frogs, was the leitmotif
for the specifics of the analysis.  The simulations addressed the effectiveness of
recognition mechanisms based on recognition of self only (Paterson’s specific mate
recognition model) versus those based on discrimination of self versus others
(Dobzhansky’s character displacement model).  They were also designed to help
determine the influence of interactions with other species (sound environment
hypothesis) and the relative variation of signals within the species (feature
invariance hypothesis) on the evolution of mating signals, as well as addressing the
controversial hypothesis that selection for species recognition generates sexual
selection.

  Results presented in this study [2] indicated that call decoding strategies based
only on self-recognition do not result in accurate species recognition while those
based on discrimination of self versus others are more effective. The neural network
weighted signal features in a manner suggesting that the total sound environment as
opposed to the relative variation of signals within a species is more important in the
evolution of recognition mechanisms.  Finally, selection for species recognition
generated substantial variation in the relative attractiveness of signals within the
species and thus could result in sexual selection.

A similar study [14] showed that Elman nets selected to recognize or
discriminate simple patterns may possess emergent biases towards pattern size or
symmetry components, preferences often exhibited by real females, and investigated
how these biases shape signal evolution.  This study also induced the Elman nets to
evolve toward responses to an actual mate recognition signal, the call of the tungara
frog Physalaemus pustulosus.  The Elman net was capable of recognizing the call of
the tungara frog and made remarkably accurate quantitative predictions about how
well females generalize to novel calls.  These predictions were stable over several
network architectures.  The authors concluded that the degree to which female
tungara frogs respond to a call may be an incidental by-product of a sensory system
selected simply for species recognition.

Other recent studies have shown that neural networks predict signal phenotypes
that have been observed in real animals. Examinations of the conflicts between
sender and receiver confirm that a receiver bias for costly signals insures honest



senders, a concept well supported by studies of behavioral ecology [15,16].
Network based models often predict the evolution of preference for symmetrical
signals [17,18].  Gradient interaction models, yet another form of network based
species recognition models, demonstrate clearly how generalization can generate a
preference for symmetrical variants of a display [19, but see 20].

4 Roach Enophiles

One of the most common uses of neural networks is in modeling the processing
of sensory information in the brain.  The scope of these models ranges from
investigations of neural coding of simple stimuli to experiments generating realistic
behavior in artificial organisms.  One recent study investigated how odors are
represented in the olfactory sensory system of insects [3].  The relatively simple
neural network model was inspired by our current knowledge of the first synaptic
layer of the cockroach olfactory system, the antennal lobes (Fig. 3). This network
was used to investigate how elements of the network, such as synaptic strengths,
feedback circuits and neural activation functions, influence the formation of an
olfactory code in neurons that project from the antennal lobes to the mushroom
bodies, the higher association area of the insect brain.

Figure 3.  A schematic of the architecture underlying the neural system modeled by Getz and
Lutz [3].  The arrows represent the four types of synapses: receptor neuron (RN) excitatory

feed-forward onto interneurons; interneuron (IN) inhibitory feed-forward onto other
interneurons; IN inhibitory feed-forward onto projection neurons (PN); and PN excitatory

feedback onto IN.  Projection neurons fire through disinhibition.  Modified from [3].

Simulation studies of the antennal lobe network demonstrated that the network is
able to produce codes independent or virtually independent of odor concentration
over a given range.  This concentration range is moderately dependent on the time
required for voltage to decay to its resting potential in an activated neuron, strongly
dependent on the strength of excitatory feedback from projection neurons onto
antennal lobe intrinsic interneurons, and overwhelmingly dependent on the slope of
the activation function that transforms the voltage of depolarized neurons into the
rate at which spikes are produced.  When excitatory feedback from the projection
neurons to the intrinsic interneurons is strong, the activity in the projection neurons



undergoes transitions from initial states to stimulus specific equilibrium states that
are maintained once the stimulus is removed.  When the projection neuron-intrinsic
interneuron feedback is weak the projection neurons are more likely to relax back to
a stimulus independent equilibrium state in which case the code is not maintained
beyond the application of the stimulus.

Neural networks have been used to model other sensory systems such as a three-
layer, two-pathway version of on-off cells of the optic chiasm of the fly visual
system [21].  This network generated a realistic three component response to on and
off stimulation.  At the other end of the spectrum, a phototactic network and a robot
used to simulate chemotaxis by the flatworm Caenorhabditis elegans produced
reliable phototaxis regardless of the locomotory parameters of the robot [22].  An
interesting model of sensory processing and behavioral control examined prey
orientation behavior of waterstriders [23].  This model had six input units
representing the legs of the waterstriders detecting water vibrations and two output
units controlling left turns and right turns.  The model accurately predicted
orientation toward disturbances in the water caused by prey.  Simulated lesions in
the input units produced results matching those observed in real animals.

5 Conclusions

From the studies discussed above, it is clear that neural networks models
provided a powerful tool for elucidating the dynamic complexities of discriminatory
processing in behavioral and evolutionary contexts.  In some studies, the plausibility
of existing hypotheses about choice and discrimination were examined. In most
studies, new hypotheses were generated and these are now open for testing.  The
intellectual payoff of any particular study can only be assessed in the course of time,
but the neural network paradigm has certainly become pervasive in our analyses of
discriminatory processes in biology.  As with all modeling paradigms in population
biology, the value of applying neural networks to problems in ethology and
evolution depends more on the craftsman than on the tool.
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