
 

Disease Invasion and Control in Structured Populations: Bovine Tuberculosis in the 

Buffalo Population of the Kruger National Park 

 

by 

 

Paul Chafee Cross 

B.A. (University of Virginia) 1998 

 

A dissertation submitted in partial satisfaction of the requirements for the degree of 

 

Doctor of Philosophy 

in 

Environmental Science, Policy and Management 

in the 

GRADUATE DIVISION 

of the 

UNIVERSITY OF CALIFORNIA, BERKELEY 

 

Committee in charge: 

 

Professor Wayne M. Getz, Chair 

Professor Steven R. Beissinger 

Professor Cheryl J. Briggs 

Professor Johan T. du Toit 

 

May 2005 

 



 

 

 

 

 

 

Disease Invasion and Control in Structured Populations: Bovine Tuberculosis in the 

Buffalo Population of the Kruger National Park 

 

 

© 2005 

by 

Paul Chafee Cross 

 



Abstract 

 

Disease Invasion and Control in Structured Populations: Bovine Tuberculosis in the 

Buffalo Population of the Kruger National Park 

 

by  

 

Paul Chafee Cross 

 

Doctor of Philosophy in  

 

Environmental Science, Policy and Management 

 

University of California, Berkeley 

 

Professor Wayne M. Getz, Chair 

 

From 1991 to 2004, bovine tuberculosis (Mycobacterium bovis, BTB) moved north and 

increased in prevalence in the African buffalo (Syncerus caffer) population of the 

Kruger National Park, South Africa.  I use this epidemic as a case study to understand 

how host population structure affects disease dynamics.  Radio-tracking data indicated 

that all sex and age groups moved between herds, but males over eight years old had 

higher mortality and dispersal rates than any other sex or age category.  BTB appeared 

to have only minor effects upon survival.  Models incorporating these data suggest that 

the success of vaccination programs will depend strongly upon the duration that a 

vaccine grants protection, which is currently unknown.  Even with a lifelong vaccine, 
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however, eradication is unlikely unless vaccination is combined with other control 

strategies.  

To analyze the radio-tracking and association data, I proposed a new metric of 

association, the fission decision index (FDI) that significantly reduces the biases that 

exist in traditional association analyses in fission-fusion societies.  Adult female and 

juvenile buffalo made non-random fission decisions while adult male choices were 

indistinguishable from a random coin toss.  Incorporating the association data into a 

dynamic social network model suggested that the dynamic nature of the network has a 

strong influence on disease dynamics, particularly for diseases with shorter infectious 

periods.  Buffalo herds were more tightly associated in 2002 than 2003, perhaps due to 

drier conditions in 2003 prompting additional movement that would facilitate the spread 

of disease among herds. 

Using a metapopulation model, I illustrate how the group-level metric, , 

which is the average number of groups infected by the initial group, is a better predictor 

of disease invasion than the traditional individual-level R

*R

0 in structured host 

populations.   is a function of group size, movement rate, infection rate, and length of 

the infectious period.  Chronic diseases allow for more host mixing between groups; 

thus they ‘perceive’ a more well-mixed host population.  As a result, chronic diseases 

are more likely to invade structured populations than acute diseases, given the same R

*R

0, 

and it is more important to incorporate the spatial structure of the host population for 

acute diseases than chronic diseases.  
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Bovine tuberculosis (BTB), caused by Mycobacterium bovis, is an airborne bacterial 

pathogen that is re-emerging in wildlife and livestock worldwide. In the Kruger 

National Park (KNP) of South Africa, BTB is increasing in prevalence and moving 

northwards from its introduction from cattle along the southern border of the KNP in 

the early 1960s (Bengis et al. 1996, Bengis 1999, Rodwell et al. 2001).  African buffalo 

(Syncerus caffer caffer) are a reservoir host, maintaining the disease at high prevalence 

(over 50% in some herds), while predators such as lions and leopards appear to be spill-

over hosts (Keet et al. 1996, Rodwell et al. 2000).  It remains unclear how the effects of 

BTB, with its wide range of potential hosts, will ripple through the KNP ecosystem 

(Caron et al. 2003). Furthermore, Kruger National Park is the largest reserve in South 

Africa, covering over 20,000 km2 and is the source of many animal translocations.  

BTB may limit the ability of KNP managers to translocate animals from the KNP, 

thereby decreasing a potential source of revenue for South African National Parks and 

creating a conservation island.   

This dissertation is one component of a larger research program on BTB in the 

buffalo population of the KNP, the goal of which is to develop a better understanding of 

disease dynamics in wildlife systems as well as to evaluate potential management 

strategies.  Here I investigate the role of host social and spatial structure on the spread 

and control of disease by integrating empirical data with a number of different 

epidemiological models and using BTB in buffalo as a case study.  Early models of 

disease dynamics assumed a homogenous host population that was well-mixed 

(Kermack and McKendrick 1927, Anderson and May 1979, May and Anderson 1979, 

Anderson and May 1991). Recent studies have begun to investigate the role of spatial 
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and social structure to disease invasion or persistence (e.g. Hess 1996, Swinton et al. 

1998, Keeling 1999, Keeling and Gilligan 2000, Keeling and Grenfell 2000, Park et al. 

2001, Eames and Keeling 2002, Fulford et al. 2002, Keeling and Rohani 2002, Newman 

2002, Park et al. 2002, Read and Keeling 2003, Eames and Keeling 2004, Eubank et al. 

2004, Hagenaars et al. 2004).  In this dissertation, I investigate host structure in four 

different contexts.  First, I investigate the effect of age and sex structure within a single 

herd on the efficacy of a proposed BTB vaccination program.  Second, I illustrate how 

traditional association analyses may result in biased conclusions about host social 

structure in fission-fusion societies and propose a new metric of individual association 

that may be more appropriate in fission-fusion societies such as buffalo.  Third, I 

illustrate how an empirically-derived social network affects disease dynamics for 

diseases of different infectious periods.  Finally, I use a metapopulation model with 

explicit movement to illustrate how traditional metrics of disease invasion break down 

in structured populations.  

As an exotic disease, KNP managers would like to control or eradicate BTB via 

culling, vaccination, or some combination of the two. Previous modeling work on BTB 

in buffalo, however, suggests that BTB may persist even when the buffalo population is 

reduced to low densities, making random culling, for the purpose of eradication, 

problematic (Rodwell 2000). Thus, vaccination, or some combination of vaccination 

and culling, is a more attractive management option. Early action is likely to be the 

most effective, however there are many uncertainties surrounding the potential impacts 

(or lack thereof) of BTB on the buffalo population and spill-over hosts, the efficacy and 
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duration of the vaccine in buffalo, and the potential effectiveness of a vaccination or 

test-and-remove management strategy.  

In the second chapter, we use a sex and age structured epidemiological model to 

assess the potential efficacy a vaccination program on controlling or eradicating BTB in 

a single buffalo herd.  The model incorporates dispersal of individuals between the focal 

herd and a constant background population as well as the non-random mixing of sex 

and age categories within a herd.  The model is parameterized with survival and 

dispersal estimates from over 130 radio-collared buffalo that were intensively 

monitored over a three-year period.  We use the model to assess the importance of 

between-herd mixing, the potential effectiveness of a vaccination strategy, and whether 

a vaccination strategy can be improved by focusing on particular sex and age groups.   

Radio-tracking data indicated that all sex and age categories move between 

mixed herds, and males over eight years old had higher mortality and dispersal rates 

than any other sex or age category. In part due to the high dispersal rates of buffalo, 

sensitivity analyses indicate that disease prevalence in the background population 

accounts for the most variability in the BTB prevalence and quasi-eradication within the 

focal herd. Vaccination rate and the transmission coefficient were the second and third 

most important parameters of the sensitivity analyses. Further analyses of the model 

without dispersal suggest that the amount of vaccination necessary for quasi-eradication 

(i.e. prevalence < 5%) depends upon the duration that a vaccine grants protection. 

Vaccination programs are more efficient (i.e. fewer wasted doses) when they focus on 

younger individuals.  However, even with a lifelong vaccine and a closed population, 

the model suggests that >70% of the calf population would have to be vaccinated every 

    4



 
year to reduce the prevalence to less than 1%. If the half-life of the vaccine is less than 

five years, even vaccinating every calf for 50 years may not eradicate BTB.  Thus, 

although vaccination provides a means of controlling BTB prevalence it should be 

combined with other control measures if eradication is the objective. 

In the third chapter, we investigate the social structure of buffalo in greater 

depth and develop new techniques for analyzing association patterns in fission-fusion 

societies.  Previous studies of association patterns usually calculate an association index 

of the proportion of time or sightings that a pair of individuals is seen together.  Using a 

simulation model we show how this method can yield biased results in fission-fusion 

societies.  In particular, if sampling occurs more often than fission and fusion events, 

the proportion of time dyads spend together will show statistically significant clustering, 

even if individuals choose herds at random and independently of other individuals’ 

decisions.  This follows because multiple samples taken within the same inter-fission 

interval are autocorrelated with respect to individual choices.  Thus, we propose a new 

metric, the fission decision index (FDI), which is the number of times a pair of 

individuals chose to remain together when a group separates.  The FDI eliminates auto-

correlated data and presents an unbiased estimate of individual choices. 

Traditional association analyses suggested that the buffalo population we 

studied was spatially and temporally structured into four different groups that were 

statistically different from random.  The FDI approach, however, illustrated that the 

probability of a dyad remaining in the same group during a fission event was not closely 

correlated with the amount of time they spent together.  Therefore, the non-random 

group structure apparent in the traditional association analysis was due in small part to 
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non-random decisions made by individuals during all fission events, but in greater part 

to the variable lifetimes of the resulting fission groups.  Consideration of FDI scores 

thus helped us to understand the mechanisms underlying results of traditional 

association analysis.  

In the fourth chapter, we integrate the radio-tracking association data with a 

dynamic social network model of disease dynamics.  Association data are often 

collected but, to the author’s knowledge, this is the first use of empirical data in a 

network disease model in a wildlife population.  Although there are still aspects of this 

approach that need to be further developed before it can be applied more broadly, we 

believe it provides a flexible method of capturing the social structure of wildlife 

populations that are not well-described by more traditional methods such as meta-

population or cellular-automata models.  Using this method, we investigate the 

importance of network topology and the amount of switching between groups to disease 

spread.  We also analyze the effect of increasing the variance in association index.  In 

other words, for disease spread does it matter if the individuals associate equally with 

their neighbors or if individuals have a set of close friends and loose associates?   

The dynamic nature of the network had a strong influence on simulated disease 

dynamics.  Further, acute diseases with shorter infectious periods were less likely to 

invade the social network than chronic diseases with longer infectious periods, even 

after scaling the transmission rate appropriately.  This result is due to the fact that 

chronic diseases allow for more host mixing to occur, thus creating a more well-

connected network.  Cluster analyses of the association data demonstrated that buffalo 

herds were not as well defined as previously thought. Associations were more tightly 
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clustered in 2002 than 2003, perhaps due to drier conditions in 2003.  As a result, 

diseases may spread faster during drought conditions due to increased population 

mixing. 

In the fifth and final chapter, we generalize some of the patterns discovered 

during the analysis of the empirical social networks in chapter four using a stochastic, 

individually-based metapopulation model.  This model was not intended to represent 

any particular system, but rather to illustrate how the interactions of several parameters 

dictate the probability of disease invasion in a structured host population.  In particular, 

we show how the spread of disease in systems with small group sizes is largely a 

function of the ratio of dispersal and disease recovery rates. As a result, for a given 

movement and transmission rate, chronic diseases are more likely to invade structured 

populations than acute diseases. Further, acute diseases perceive a more structured host 

population, and it is more important to incorporate host social structure in models of 

these diseases. In systems with small groups, , which is related to the ratio of host 

movement and disease recovery as well as the average group size, is a better indicator 

of disease invasion than the traditional R

*R

0.  Finally, although the behavioral 

susceptibility of the host is a function of group size and movement rate, the probability 

of a pandemic is not a function of either the host or the disease independently, but an 

emergent property of their interaction.  
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Introduction 
 

Bovine tuberculosis (BTB, Mycobacterium bovis), an airborne bacterial pathogen, is re-

emerging in wildlife and livestock worldwide. In the Kruger National Park of South 

Africa, BTB is increasing in prevalence and moving northwards from its introduction 

from cattle along the southern border of the KNP in the early 1960s (Bengis et al. 1996, 

Bengis 1999, Rodwell et al. 2001). Buffalo are a reservoir host, maintaining the disease 

at high prevalence (over 60% in some herds), while predators such as lions and leopards 

appear to be spill-over hosts (Keet et al. 1996, Rodwell et al. 2000). BTB is a chronic 

and progressive bacterial disease with a wide host range, and there is no evidence that 

animals recover from infection (Bengis 1999).  As in cattle, most buffalo are infected 

with BTB via aerosol transmission (Bengis 1999). Vertical (intrauterine) and 

psuedovertical transmission (through infected milk) may occur but appear to be rare 

events (Bengis 1999). The pathology of BTB in lions suggests that they acquire the 

disease by consuming infected buffalo (Keet et al. 1996), and it remains unclear how 

the effects of BTB, with its wide range of potential hosts, will ripple through the KNP 

ecosystem.   

Due to the potential effects of BTB on buffalo and alternative host species, KNP 

managers would like to control or eradicate BTB via culling, vaccination, or some 

combination of the two. Previous modeling work on BTB in buffalo suggests that BTB 

may persist even when the buffalo population is reduced to low densities, making 

random culling, for the purpose of eradication, problematic (Rodwell 2000).  Thus, 

vaccination, or some combination of vaccination and culling, is a more attractive 

management option. Early action is likely to be the most effective, however there are 
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many uncertainties surrounding the potential impacts (or lack thereof) of BTB on the 

buffalo population, the efficacy and duration of the vaccine in buffalo, and the logistic 

difficulties of a vaccination program. Here we use an epidemiological model to tackle 

some of these questions surrounding management of the disease using the best available 

data.  Analysis of the model provides the rapid answers required by managers and helps 

to focus further research projects. 

Vaccination trials with Bacille Calmette-Guérin (BCG) and buffalo are currently 

underway in the KNP as the vaccine has been shown to give protection to cattle, deer, 

brushtail possums , ferrets, and badgers (for a review see Suazo et al. 2003). In cattle, 

BCG has been used in a number of trials and the amount of protection has varied widely 

(e.g. Francis 1958, Berggren 1977, Rodrigues et al. 1993, Colditz et al. 1994, Buddle et 

al. 1995c). More recent BCG vaccination trials in New Zealand have demonstrated up 

to 70% protection in cattle (Buddle et al. 1995c), data on the longevity of protection of 

the BCG vaccine, however, are non-existent in buffalo and limited in cattle (Berggren 

1977). Here we use an SEI (Susceptible-Exposed-Infectious) epidemic model to assess 

the potential effectiveness of a buffalo vaccination program.   

Several models of BTB in wildlife and cattle have been published previously 

(for a review see Smith 2001), but this is the first study to assess the efficacy of a 

vaccination program fore African buffalo.  The effectiveness of control programs in 

African buffalo is likely to differ from other wildlife and cattle for several reasons.  

First, African buffalo tend to live longer than other wildlife species that are infected 

with BTB (e.g. badgers, possums, and deer).  Second, BTB appears to have only minor 

effects upon the survival of buffalo (Rodwell et al. 2001).  As a result, BTB can reach 
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high prevalence (60-92%) in buffalo herds (Bengis 1999, Rodwell et al. 2000, Jolles 

2004).  In contrast, a model of BTB transmission within cattle herds suggested that 

within-herd transmission alone was insufficient to maintain the infection (Barlow et al. 

1997).  In badgers and possums the prevalence of BTB has tended to be less than 20% 

(Smith 2001).  Due to these differences with previously analyzed systems and the 

current effort to evaluate and implement a vaccination program to control BTB in 

African buffalo, we combine field data and mathematical modeling techniques to assess 

the likely success of a vaccination program. 

Computer models exist along a continuum from detailed data-based models used 

for predictions about specific systems to models intended to improve understanding of 

general processes.  We attempt to balance the specific and the general by using the 

limited data available to draw conclusions about the likely efficacy of a vaccination 

program, and the degree to which our conclusions depend on specific model parameters.  

Since, there has been comparatively little research conducted on BTB in African buffalo 

we keep our model relatively simple, including a minimal amount of structure.  In 

contrast, research on BTB in badgers and possums has been ongoing for many years, 

and, as a result, the corresponding modeling analyses can be much more specific (e.g. 

Anderson and Trewhella 1985, Barlow 1991, Smith 2001).  The data to construct and 

support this model of BTB in buffalo come from cross-sectional surveys in the KNP 

(Rodwell 2000) and Hluhluwe-Umfolozi Park (Jolles 2004), our ongoing longitudinal 

study in the KNP (Cross et al. 2004, Cross et al. 2005), and what is understood about 

the biology of BTB in buffalo and cattle. Research and management strategies, 

however, may need to be implemented prior to the collection of additional data and a 
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general model of an SEI disease in a long-lived social host may help to frame the 

problem and guide management decisions prior to their implementation.  

We present preliminary analyses of field data to estimate dispersal and survival 

rates using data on over 130 radio-collared buffalo from November 2000 to December 

2003. These estimates are then supplemented with published information on cattle and 

buffalo.  The model is then used to assess the potential efficacy of a vaccination 

program and highlight the importance of several model parameters. For the model, we 

assume that the vaccine protects individuals in any sex and age category completely, but 

that protection may wane over time. Even though an effective vaccine with these 

characteristics is not yet available, our model can be used to assess what elements are 

necessary for a successful vaccination program.  

The technical part of this paper begins with a presentation of a discrete time SEI 

model.  This model builds upon previous models of bovine tuberculosis in cattle and 

wildlife (e.g. Bentil and Murray 1993, Ruxton 1996, Barlow et al. 1997, Kao and 

Roberts 1999, Smith et al. 2001) by incorporating dispersal, vaccination, sex, and age 

structure.  Next, we outline the parameter estimation procedures and conduct sensitivity 

analyses of the model to determine which parameters explain the most variability in 

disease prevalence and eradication. We then further investigate the model in a single 

herd context (i.e. without dispersal to a background population).  Finally, we assess the 

potential effectiveness of a vaccination program and whether it can be improved by 

focusing on different sex and age categories.  
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Methods 

Simulation Model 

The model presented here is an age- and sex-class elaboration of a discrete time SEI 

epidemic model for a focal buffalo herd in contact with a background population. We 

use a one-month time step to account for the annual reproduction and vaccination of 

buffalo and the within-year transmission dynamics of BTB. Let X, Y, Z and V represent 

the number of individuals respectively susceptible to infection, exposed but not yet 

infectious, infectious, and vaccinated, and let N=X+Y+Z+V represent the total number of 

individuals. We assume that exposed individuals (Y) become infectious at a constant 

“incubation rate” γ. A proportion ψ(t) of the population is vaccinated every June, and a 

constant proportion δ of the vaccinations fail in each month.  

Currently available vaccines require the use of a helicopter to dart or drive the 

buffalo into pens prior to vaccination. With either method, an individual’s disease status 

is unknown prior to capture. We account for this logistic difficulty by allowing for 

repeat vaccinations as well as the vaccination of already infectious individuals. Thus 

one measure of the efficiency of a vaccination program is the percentage of individuals 

captured that are successfully vaccinated for the first time (i.e. the percentage of 

individuals not infected nor previously vaccinated). We compare management strategies 

based on the ratio of successful to total vaccinations, assuming that vaccination protects 

only susceptible individuals. 

We assume that a fixed proportion ε of individuals emigrate from the focal herd 

to a pool of individuals outside the herd each month. We do not consider the herd 

structure or demographics of this background population, but assume that during each 
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month the same number of individuals, I, immigrate to as emigrate from our focal herd. 

Further, we assume a constant proportion of the immigrants are susceptible (px), 

exposed (py), infectious (pz), and vaccinated (pv) for the duration of each simulation. 

This would be equivalent to vaccinating a focal herd that is embedded in a background 

population that is either in equilibrium or being maintained at some reduced prevalence. 

The model can then be used to inform managers about the effects of reducing 

movement between the focal herd and background population as well as reducing the 

prevalence of infection in the background population.  

To incorporate sex and age structure, let j = 1, 2 represent the sex (1=male, 

2=female) and i = 1,...,18 the age class. We assume that a smaller proportion (sz) of 

infectious individuals (Z) survive each time period than healthy individuals and that the 

survival of calves depends upon the total population size. We control the relationship 

between annual and monthly time using the index r defined by the statement 

IF mod(t,12)=0, THEN r=1 ELSE r=0. 

Assuming events occur in the following order: vaccination (ψ), transmission (β), 

vaccine failure (δ) and disease incubation (γ), emigration and immigration (ε), and 

survival (sij), the monthly model equations conforming to the above assumptions are: 
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Annual reproduction is handled through the following statement that implicitly assumes 

an equal sex ratio at birth: IF mod(t,12)=0 THEN for j= 1 or 2, 
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where bi is the expected number of offspring per female each calving cycle 

(approximated to be in January each year).  Following Rodwell et al. (2001) in the 

KNP, we assume that BTB does not affect fecundity, although Jolles (2004) showed 

some effect of BTB on the fecundity of young and old buffalo, but not prime-aged 

buffalo from five to eight years old.  Disease transmission in the model depends on 

θN1 (Anderson and May 1992), which is frequency-dependent when θ =1and density 

dependent when θ =0. Population size in this model is relatively constant, so that 

selecting θ = 0 or 1 is essentially equivalent to rescaling the transmission coefficient β. 

Thus, the value of θ is not critical to our analysis and we present results only for the 

case θ = 1.    
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The model incorporates density-dependent survival in the first age-class (0-1 

year) because long-term studies of large herbivores suggest that survival of adults varies 

little compared to juveniles (Gaillard et al. 1998, but see Sinclair 1977). Density-

dependent juvenile survival is regulated by an abruptness parameter φ, a scaling 

parameter κ, and the maximum survival rate s0 (Getz 1996). 

( )( )
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1

0 ==
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= j   i     ,
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s
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This form of density dependence results in a stable age structure and relatively constant 

herd size, which allowed us to investigate different vaccination strategies in the absence 

of large population fluctuations. Since we restrict analyses to a relatively stable 

population size, the form of density dependence is unlikely to play a major role in these 

simulations. We decreased the maximum survival rate of infectious calves by a constant 

α0, where α0 < s0, to obtain the survival function 
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( )

1,21,00 ==

⎟
⎠
⎞

⎜
⎝
⎛+

−
= j   i     ,

tN1

αs
tNs z

ji, φ

κ

 

Finally, we assumed that adult survival is constant over time, but depended upon the 

age, sex, and disease status of the animal, whereby the survival of infectious individuals 

was reduced by α1. We assumed that all buffalo in the 18th age-class died at the end of 

each year. 
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Parameter Estimation 

We based estimates of buffalo survival and dispersal on preliminary analyses of 

over 130 radio-collared buffalo from ongoing research in the central region of the KNP 

(Caron et al. 2003, Cross et al. 2004, Cross et al. 2005). Depending upon the amount of 

herd fragmentation, the study area contained 4-12 buffalo herds and roughly 3000 

buffalo. The majority of individuals were collared in four helicopter sessions: 

November 2000 (N = 6), April 2001 (N = 27), August 2001 (N = 51) and November 

2001 (N = 12), while the remaining individuals were darted from ground vehicles 

throughout the study period. Animals were placed into age classes using incisor 

eruption patterns for those individuals under five years old (Pienaar 1969, Grimsdell 

1973, Sinclair 1977). For those animals over five years we used horn development and 

wear to subjectively place individuals into two categories: 5-7 yrs and 8+ yrs. We re-

sighted collared individuals, on foot and from vehicles, approximately 2-3 times per 

week throughout the study period. If an individual was missing for over one month we 

relocated them from fixed-wing aircraft. We tested buffalo for BTB using a modified 

gamma-interferon (IFNg) BOVIGAMTM assay (Wood and Jones 2001), which has 

similar sensitivity (82-100%) and specificity (~99%) to the intradermal skin test (Wood 

and Jones 2001, Grobler et al. 2002). Negative individuals were retested at six or 12-

month intervals. 

 

Survival 

We assumed that calf survival (s1j) was density dependent and the maximum possible 

calf survival (s0) was one (see above). Survival estimates for the other sex and age 
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categories were estimated from field data with known-fate models in program MARK 

using BTB-status, age, and gender as individual covariates (White and Burnham 1999). 

The dataset consisted of 132 radio-collared buffalo from May 2001 to November 2003. 

Twenty-two buffalo were BTB-positive on the first test. Thirteen animals that converted 

from BTB-negative to positive were reclassified as positive individuals at the time of 

their first positive test. We assumed buffalo were BTB-negative if they were a multiple, 

equal, or avian reactor on the gamma-interferon test. For model selection of the survival 

data, we used AICc, which is a modified version of Akaike’s Information Criterion 

(AIC) that corrects for small sample sizes relative to the number of parameters 

(Burnham and Anderson, 2002). The AIC approach is a method of comparing the 

goodness-of-fit of nested and non-nested models and discourages the use of models 

with too many parameters that overfit the data. The minimum and maximum values 

shown in Table 1 are the 95% confidence intervals for each parameter using the delta 

method (White and Burnham 1999). 

 
Dispersal (ε) 

Previous studies suggest that only adult males move between herds (Sinclair 1977, Prins 

1996). Using radio-tracking data of 120 buffalo in four herds from May 2001 to 

December 2003, we estimated the movement rate of buffalo between a focal herd and 

background population. We found lower cohesion amongst buffalo herds of the KNP 

than past studies (Cross et al. 2005). At the start of the study, the study area appeared to 

contain four herds that separated and re-fused over time. Three of those herds 

fragmented and fused with herds in other areas of the KNP, thus making it difficult to 

    18



 
define a dispersal event because the herd “dispersed” as a unit. As a minimum estimate 

of dispersal, we used the individuals in the remaining cohesive herd to estimate the 

probability of an individual moving from a focal herd to other herds in the background 

population.  Individuals were assigned a value of zero or one respectively for every 

month they were present in the focal herd and either dispersed to another herd or 

remained in the focal herd.  These data were then used in logistic regression analyses 

with sex and age as covariates. We excluded those dispersal events that lasted for less 

than one week because short duration events are unlikely to result in many disease 

transmission events. Animals were grouped into the following age categories: 1-2, 3-4, 

5-7, and 8+ yrs old.  

 

Disease transmission (β) 

The transmission coefficient was estimated by fitting the model to the observed 1998 

BTB prevalence values for the KNP (Rodwell et al. 2000). The model was 

parameterized with the baseline values in Table 1 and started with a disease prevalence 

of either 0.04 or 0.29 to correspond to the prevalence of BTB in the central and southern 

regions of the KNP in 1991. The initial population size was 250, to match the average 

herd size of the KNP (Whyte, unpublished data), and distributed among age classes to 

correspond to the stable age distribution predicted by the demographic component of 

the model. The model was run for 7 years and β was adjusted to minimize the sum of 

squared residuals between the predicted and observed prevalence in 1998.  

Transmission coefficient values that resulted in predicted 1998 prevalence values within 

the empirical 95% confidence intervals for the south and central regions were used to 
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establish the minimum and maximum values in Table 1. Simulations assumed a closed 

population and no vaccination. Data from the northern region of the KNP were not used 

to parameterize β because no BTB-positive individuals were sampled in that area prior 

to 1998. 

 

Other Model Parameters 

The pathology of BTB in buffalo and cattle suggests that BTB lesions are not 

encapsulated by the immune system and individuals are probably infectious within a 

few months of infection (De Vos et al. 2001).  Neill et al. (1991) estimated the latency 

period of BTB in cattle to be 87 days, which translates to a monthly incubation rate γ of 

0.21 (Table 1). Due to the limited data available on incubation rate, γ, we chose a wide 

range of 0.056 to one for the sensitivity analyses.  Since φ is probably between two and 

six (see discussion in Getz 1996), we used a value of four and adjusted κ to yield a 

stable herd size of around 250 individuals. Given the limited data available on the 

duration of vaccine protection in buffalo and the indication in Berggren (1977) and 

Francis (1947) that protection wanes in vaccinated cattle between one and five years, 

we explored a wide range of vaccine failure rates from lifelong protection (i.e. δ=0) to a 

half-life of one year. 

 

Sensitivity Analyses 

Sensitivity analyses were conducted using Monte Carlo methods to assess the 

relative effects of several model parameters. Specifically, 10,000 random parameter sets 

were created by choosing ψ, δ, β, γ, εi,j, pz, si,j, α0 and α1 from uniform distributions 
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bounded by the minimum and maximum values shown in Table 1. We assumed that the 

vaccine was 100% protective for this analysis. . Each parameter set was used to run the 

deterministic model once. The prevalence at year 50 was recorded for each run and used 

as the dependent variable in multiple linear regressions where model parameters were 

the explanatory variables (Wisdom and Mills 1997, Wisdom et al. 2000, Cross and 

Beissinger 2001). To facilitate comparisons between parameters measured on different 

scales all model parameters were transformed to percentage difference from the mean 

(i.e. (xi – x ) / x , where xi is the value of the model parameter on run i and x  is the 

mean) prior to statistical analysis. Subsampling this dataset and evaluation of standard 

errors revealed that 10,000 runs were sufficient to solidify the ranking hierarchy of the 

top six model parameters in the statistical analyses. The other eight parameters in the 

sensitivity analysis explained little variability in either disease prevalence or quasi-

eradication, had large standard errors, and were omitted from Table 2. 

Model parameters were ranked according to the magnitude of their standardized 

coefficients (i.e. the regression coefficient divided by its standard error), which is a 

unitless quantity expressing the unique contribution of that variable scaled by the 

estimation uncertainty (Selvin 1995). Model parameters that are good predictors of 

disease prevalence may be different from those that are good predictors of disease 

eradication. Logistic regression was used to identify the latter parameters (McCarthy et 

al. 1995, Cross and Beissinger 2001). For the logistic regression analysis, disease 

prevalence at year 50 was converted to a binary variable of disease persistence or 

eradication. We used a prevalence of 5% as the quasi-eradication threshold because 

very few parameter sets resulted in quasi-eradication at lower threshold values making 
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maximum likelihood estimation difficult in the logistic regression analysis. As in the 

linear regression analysis, each model parameter was transformed to percentage 

difference from the mean and individually used to predict disease eradication at year 50. 

All simulations started with 250 individuals in a stable-age distribution and an initial 

prevalence of 0.05, evenly distributed amongst all sex- and age-classes. The 

epidemiological model was coded in Matlab 5.3 (Mathsoft™) and statistical analyses 

were conducted using S-Plus 6 (Insightful Corp 2001). 

 

Results 

Field Data Parameter Estimates 

Our survival data indicated that males and individuals over 8 yrs old had lower 

survival rates than females and those under 8 yrs old (Table 1).  Age category (1-7 vs. 

8+) and gender were statistically significant explanatory variables in likelihood ratio 

tests (LRT) where we included one variable at a time (p =0.004 and 0.001, respectively; 

df = 1) and were supported in AICc analyses. There was little statistical support for the 

inclusion of more refined age categories using either AIC or LRT methods. Our 

analyses did not indicate any additional mortality amongst the 35 BTB-positive animals 

(df = 1, p = 0.19). Even though this is based on only the first two years of data, this 

result, in combination with previous cross-sectional analyses, suggests that the annual 

disease induced mortality associated with BTB is probably between zero and 10 percent 

(Rodwell et al. 2000, Jolles 2004). Statistical model comparisons using AICc values and 

sex, age (1-7yrs, 8+), and BTB-status as explanatory variables indicated that the 

additive sex+age model provided the best fit to the survival data. A sex*age model was 
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the only other model that appeared to be supported by the data (∆AICc = 0.869). Using 

the sex+age model we estimated the survival rates shown in Table 1.  

In contrast to previous studies of buffalo, we found that all sex and age groups 

moved between herds, albeit adult males moved between herds more frequently than 

young males and females (Table 1, Fig. 1). Logistic regression analyses indicated a 

significant age*sex interaction (p = 0.02, df = 3, deviance = 9.88) whereby males over 8 

yrs old were more likely to disperse (Table 1, Fig. 1). Due to the similar dispersal rates 

of females and juvenile males we aggregated these sex and age categories and reran the 

logistic model before calculating the dispersal rates in Table 1. 

 

Sensitivity Analyses 

Sensitivity analyses of this model around the baseline set of parameter values 

indicate that for the model and parameter space presented, disease prevalence in the 

background population, pz, is the primary factor determining the BTB prevalence in the 

focal herd (Table 2, r2 = 0.95). Vaccination rate ψ and the transmission coefficient β 

were the second and third parameters in the ranking hierarchy, while survival rates 

explained very little variability in BTB prevalence or eradication. There were few 

differences in the ranking of the top five parameters between the linear and logistic 

regression results indicating that parameters that regulate prevalence also determine the 

probability of eradication. 
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Model Results Without Dispersal 

To assess the effects of other variables we analyzed the model in the context of a 

single herd without dispersal (such as a cattle herd or small reserve).  Using the baseline 

values in Table 1, the model predicts that BTB should reach an asymptotic prevalence 

of ~0.44 in a herd of ~250 individuals, and as would be expected of a chronic disease 

without recovery, the model does not exhibit any cyclical behavior (Fig. 2). Optimal 

vaccine strategies depend on the distribution of vaccinations to different sex and age 

categories and the duration of vaccine protection. Assuming that the vaccine grants 

lifelong protection, the model suggests that control programs should focus upon 

younger individuals. In particular, focusing the control strategy on younger individuals 

produces a higher ratio of successful to total vaccinations (i.e. less wasted vaccinations) 

than vaccinating individuals in proportion to the age structure of the population (Fig. 3). 

As vaccine duration decreases, however, the advantages of vaccinating juveniles 

decreases and the lines on Fig. 3 approach the efficiency of the calf-only vaccination 

strategy. In other words, when the vaccine lasts for shorter amounts of time there are 

fewer redundant vaccinations of older individuals. Few differences exist between the 

efficacy of male or female vaccination programs of a focal herd without dispersal (Fig. 

3). However, in model simulations with dispersal (data not shown) vaccination 

programs were more effective if they focused on females because vaccinations of 

dispersing males were, in effect, wasted with respect to reducing prevalence in the focal 

herd.  

In the best-case scenario of a 100% effective vaccine that provides life-long 

protection, a vaccination program focusing upon calves would require the vaccination 
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of around 70% of the calves every year to eradicate (i.e. prevalence < 1%) BTB by year 

50 (Fig. 4a). A program focused on the entire population would require a vaccination 

rate of less than 30% for eradication (Fig. 4a). However, 70% of the calf population 

translates into ~1300 vaccinations over a 50-year period; whereas, 30% of the total 

population translates into ~3100 vaccinations over the same time period in a herd of 

approximately 250 individuals. Thus a calf-only policy requires higher coverage of that 

age-class but fewer vaccinations in total. This is not surprising given that calves are 

approximately 16% of the total population and we have assumed lifelong vaccine 

protection. 

Given that vaccination rate ψ and vaccine failure rate (also expressible in terms 

of the half-life of the vaccine) δ are two parameters that may be altered by managers or 

scientists, we calculated BTB prevalence at year 50 for different combinations of these 

parameters and calf-only vaccination program (Fig. 5). Model results suggest that if 

70% of the calf population is vaccinated every year BTB would may be eradicated by 

year 50 assuming the vaccine granted lifelong protection and no migration between the 

focal herd and background population. If the half-life of the vaccine was less than five 

years, however, a vaccination program is unlikely to eradicate the disease by year 50 

(Fig. 5). 

 

Discussion 

The management issues surrounding bovine tuberculosis in the Kruger National 

Park of South Africa are typical of many invasive species and emerging infectious 

diseases. Immediate actions are more likely to be effective, but limited data are 
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available upon which to base management and research decisions. We used field data to 

bound the range of possible parameter values and simulated an SEI disease model to 

assess the importance of different model parameters and the effectiveness of 

vaccination as a control strategy. Our results, based upon the first analysis of a dynamic 

epidemiological model of BTB in a buffalo population, indicate that vaccination alone 

is unlikely to be an effective management tool to eradicate BTB.  The literature on 

modeling BTB in other species is extensive and conclusions vary, but, in general, our 

conclusions about the utility of vaccination is in contrast with more encouraging 

modeling studies on vaccination of BTB in possums, badgers, and cattle (Barlow 1991, 

White and Harris 1995, Roberts 1996, Kao et al. 1997, Tuyttens and MacDonald 1998, 

Smith 2001, Smith and Cheeseman 2002, Wilkinson et al. 2004).  This difference may 

be due to the high prevalence of BTB in African buffalo (>50%; Rodwell et al., 2000) 

compared to <20% for badgers and possums (Krebs et al. 1997, Woodroffe et al. 1999, 

Coleman and Cooke 2001). 

Our model predicts that BTB should reach an asymptotic prevalence of around 

44% assuming a closed population and a relatively constant herd size of 250 individuals 

(Fig. 2). Data from one herd in the southeastern corner of the KNP suggests that this 

estimate of asymptotic prevalence may be low. The Mpanamana herd of the KNP had a 

stable prevalence of 67% in 1992 and 1996 (De Vos et al. 2001). In addition, Jolles 

(2004) estimated the asymptotic BTB prevalence to be 53% (95% CI = [49-58%]) in 

Hluhluwe-Umfolozi Park. Additional data on BTB prevalence and transmission rates 

would help discern whether our parameter estimates or model structure should be 

modified to match the higher prevalence seen in these two herds. If this is the case, then 
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our model results may represent conservative estimates of the vaccination effort 

necessary to control and eradicate BTB. 

Assuming frequency-dependent transmission and a vaccine that is equally 

effective and protective across all sex- and age-classes, vaccination programs will be 

most effective in reducing prevalence in the focal population if they focus on calves 

(Figs. 3 and 4). Younger individuals are unlikely to be infected or previously 

vaccinated, thus increasing the ratio of successful to total vaccinations (Fig. 3). Also, 

younger individuals will, on average, remain longer in the population than older 

individuals. Therefore, vaccinated calves will contribute more to herd immunity than 

vaccinated adults. The BCG vaccine has been the most comprehensively tested BTB 

vaccine in wildlife and cattle (e.g. Ellwood and Waddington 1972, Waddington and 

Ellwood 1972, Berggren 1977, Aldwell et al. 1995, Buddle et al. 1995a, Buddle et al. 

1995b, Buddle et al. 1995c, Buddle et al. 1997). Due to the fact that the efficacy of the 

BCG vaccine may be reduced by prior exposure to environmental mycobacteria 

(Buddle et al. 1995a, Fine 1998), BCG vaccination may also be most effective in the 

younger age groups. Thus the vaccination of younger rather than older individuals is 

supported for both biological and mathematical reasons (Fig. 3). 

Even in the best-case scenario of a 100% effective vaccine with lifelong 

protection, a management program focused on calves would need to vaccinate around 

70% of calves every year to eradicate BTB by year 50 (Fig. 4a). In a herd of 250 buffalo 

this translates to around 1500 vaccinations over a 50-year period (Fig. 4b). Our 

predictions may be overly optimistic since we assumed that all vaccinated individuals 

were protected against infection and our estimated asymptotic herd prevalence may be 
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lower than that observed in the field. Given that: (1) the current BCG vaccine is very 

unlikely to be 100% effective in buffalo, (2) that protection probably wanes over time 

(Berggren 1977, Buddle et al. 2000), (3) that drug and labor costs for vaccinating a 

buffalo are over $100 (US) per individual, and (4) a high percentage of individuals must 

be vaccinated to eradicate the disease, the eradication of BTB via vaccination alone is 

probably not an effective management strategy.  Vaccination may be useful to control 

BTB at lower prevalence levels, but then the question arises as to whether the cost of an 

indefinite control program outweighs the benefit in reduced prevalence.  At this point, 

we cannot answer this question because it rests upon the effect of BTB on lion 

populations and the relationship between the prevalence of BTB in lions and buffaloes.  

Additional work on the interaction of lions, buffaloes, and BTB, and the degree to 

which lions select for BTB-positive individuals would be enlightening.  Further, 

additional modeling work is necessary to assess the potential effectiveness of 

vaccination, in combination with other control measures such as a test-and-remove 

program, in a spatial context. 

Sensitivity analyses suggest that disease incubation (γ) and buffalo survival rates 

were relatively unimportant model parameters (i.e. they explained very little variability 

in the prevalence or probability of eradication of BTB).  Surprisingly, the dispersal rate 

was also relatively unimportant in the sensitivity analyses.  The importance of dispersal, 

however, is reflected in the importance of the background prevalence, whereby higher 

dispersal rates increase the importance of the background prevalence (data not shown).  

Vaccination rate and the transmission coefficient are a distant second and third in the 

ranking hierarchy compared to the disease prevalence in the background population 
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(Table 2). This result is obvious in hindsight given the model structure presented here 

and the high dispersal rates of buffalo in the KNP (Table 1, Fig. 1). It is important to 

note, however, that other studies of African buffalo indicate a more stable herd structure 

with less movement between herds in other areas (Sinclair 1977, Prins 1996).  If these 

differences reflect real differences rather than an artifact of sampling intensity it would 

suggest that disease control is likely to be more effective in these populations.   

We parameterized the epidemiological model using previously published 

parameter estimates as well as data from a longitudinal study of radio-collared 

individuals in the central region of the KNP. The dispersal and survival rate estimates 

presented here are the first estimates based upon longitudinal studies of known radio-

collared individuals. Previous estimates were based upon cross-sectional life-table 

analyses and/or a few known, but unmarked individuals (Sinclair 1977, Prins 1996, 

Jolles 2004). Analysis of the longitudinal dataset of known individuals indicated that 

dispersal rate varied by sex and age, whereby males over eight years old were the most 

likely to disperse from the focal herd (Table 1, Fig. 1). In contrast to previous studies, 

we found females and juvenile males also moved between mixed herds via splinter 

groups when herds split and later fused with other herds (Cross et al. 2004, Cross et al. 

2005). We began the study with four herds in the study area. Since 2001 these four 

herds have splintered into as many as 13 herds and only one of the original herds 

remained as a cohesive unit within the study region. As a result it is difficult to define 

dispersal events when the herd itself is changing. We used the one cohesive herd to 

estimate dispersal rates, which, given the fluid and mobile nature of the other herds, 
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should be seen as minimum estimates and highlights the importance of developing 

spatial models of disease spread.   

Survival analyses indicated that survival was a function of both age and sex.  

Age categories could be collapsed to 1-7 vs 8+ yrs and females survived better than 

males (Table 1).  Comparing models, both the additive (sex+age) and interactive 

(sex*age) survival models were supported by the data based upon AIC values and 

likelihood ratio tests. We did not find any increased mortality of BTB-positive 

individuals during the first two years of the study. Previous research by Rodwell et al. 

(2001), Jolles (2004), and Caron et al. (2003) suggests that the additional mortality due 

to BTB infection is around 11% or less. With our sample of 35 BTB-positive and 97 

BTB-negative individuals, we would be unlikely to detect small differences in survival 

rates in a two-year timeframe. The low mortality rate of infected individuals and the 

lack of any known recovery suggest that buffalo will maintain BTB at high levels (Fig. 

2). This conclusion, in combination with the difficulty of eradicating this disease with a 

vaccination or culling program, and the ability of BTB to spill-over into other hosts 

(Bengis et al. 1996) presents a worrying scenario. Since lions are the dominant predator 

of adult buffalo, and BTB can infect lions via the gastrointestinal tract (Keet et al. 

1996), the largest effects of BTB may be in altering the competitive dynamics of the 

large predator guild in the KNP.  

The model presented here is based upon best empirical data currently available 

and provides an objective view of the likely effectiveness of a vaccination strategy as 

well as highlights important research and management issues. The importance of the 

background population in the sensitivity analysis suggests that managers should view 
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herds, or parks, as open systems and incorporate the surrounding populations into their 

control strategies, and the degree to which such invasions must be controlled depends 

on the background prevalence of the disease. Further, researchers should focus on 

spatial disease models to incorporate individuals’ movement patterns. The inclusion of 

spatial complexity into our model, and more data on transmission rates and the inter-

herd movement patterns of individuals are needed to assess the likely efficacy of a 

combined vaccination and selective removal of infected individuals in containing the 

spread of BTB in African buffalo. Nonetheless, the model presented here suggests that 

even in the best case scenario, vaccination alone is unlikely to be an effective control 

strategy for BTB in buffalo, and thus research and managers should focus on other 

possible methods to control the spread of this exotic disease.   

(Funston 1999) 
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Parameter Symbol Minimum Baseline Maximum Source
Annual buffalo survival

Maximum calf survival s 1, 1-2 0.95 1.00 1.00 1
Young males s 2-8,1 0.74 0.84 0.90 1
Old males s 9-18,1 0.20 0.59 0.86 1
Young females s 2-8,2 0.83 0.95 0.99 1
Old females s 9-18,2 0.35 0.86 0.98 1
Scaling parameter κ -- 400 -- see text
Abruptness parameter φ 2 4 6 2

Annual buffalo reproduction
Cows 3-4 r 3 -- 0.51 -- 3
Cows 4-5 r 4 -- 0.64 -- 3
Cows  5+ r 5+ -- 0.68 -- 3

Monthly dispersal
Immature males ε 1-6,1 0.01 0.02 0.04 1
Mature males ε 7-9,1 0.24 0.09 0.03 1
Old males ε 10+,1 0.45 0.26 0.13 1
Females ε 1+,2 0.04 0.02 0.01 1

Monthly disease parameters
Transmission coefficient β 0.034 0.043 0.053 1
Incubation rate γ 0.056 0.21 1 4
Reduction in maximum juvenile surviva α 0 0 0.0043 0.0084 5
Reduction in adult survival α 1 0 0.0043 0.0084 5
Transmission exponent θ 0 -- 1 see text

Vaccination rate ψ 0 -- 1 see text
Vaccine failure rate δ 0 -- 0.056 6
Background prevalence p z 0 -- 0.7 see text

1) this study; 2) Getz 1996; 3) Funston 1999; 4) Neill et al.1991, de Vos et al. 2001; 5) Rodwell et 
al. 2001, Caron et al 2003, Jolles 2003; 6) unknown, but see Berggren 1977.

Table 1.  Parameter estimates used in the buffalo vaccination model.
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Figure 1. Buffalo emigration rates between a focal herd and the background population 
varied by sex and age in the Central Region of the Kruger National Park. Estimates 
were based on logistic regression analyses of the probability of dispersal per month. 
Bars represent the 95% confidence intervals. 
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and baseline values of the transmission coefficient (β = 0.034, 0.043, 0.053). 
Simulations assume a closed population and no vaccination effort. 
and baseline values of the transmission coefficient (β = 0.034, 0.043, 0.053). 
Simulations assume a closed population and no vaccination effort. 
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Figure 3. The number of successful vaccinations for the indicated vaccination strategies 
(i.e. focusing on calves, juveniles, males, females or the entire population) plotted as a 
function of the total vaccinations in a herd by year 50. “Successful” is defined as the 
vaccination of uninfected and previously unvaccinated individuals. “All” indicates a 
management strategy that vaccinates all individuals in proportion to their abundance in 
the population.  Simulations assume a closed population and lifelong vaccine 
protection. 
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Figure 4. Prevalence of BTB at year 50 plotted as a function of (a) vaccination rate and 
(b) cumulative vaccinations to demonstrate the importance of focusing vaccination 
effort on calves.  Simulations assume a closed population, vaccination in proportion to 
abundance in the focal population, and lifelong vaccine protection. 
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Figure 5. Prevalence isopleths at year 50 as a function of vaccination rate and vaccine 
half-life. Simulations assume a closed population and an annual calf-only vaccination 
program. Vaccine half-life refers to the amount of time before half of the vaccinated 
individuals are susceptible again. 
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Introduction 

A description of the social network of a population aids us in understanding dispersal, 

the spread of disease, and genetic structure in that population. Many animal populations 

can be classified as fission-fusion societies, whereby groups form and separate over 

time. Examples discussed in the literature include ungulates, primates, and cetaceans 

(Lott and Minta 1983, Whitehead et al. 1991, Henzi et al. 1997, Christal et al. 1998, 

Chilvers and Corkeron 2002). In this study, we use a heuristic simulation model to 

illustrate potential problems in applying traditional techniques of association analysis to 

fission-fusion societies and propose a new index of association: the fission-decision 

index (FDI). We compare the conclusions resulting from traditional methods with those 

of the FDI using data from African Buffalo (Syncerus caffer) in the Kruger National 

Park (KNP).  The traditional approach suggested that the buffalo population was 

spatially and temporally structured into four different “herds” with adult males only 

peripherally associated with mixed herds.  Our FDI method indicated that association 

decisions of adult males appeared random but those of other sex and age categories 

were non-random, particularly when we included the fission events associated with 

adult males.  Further, the amount of time individuals spent together was only weakly 

correlated with their propensity to remain together during fission events.  We conclude 

with a discussion of the applicability of the FDI to other studies. 

Researchers attempting to quantify individual association patterns in fission-

fusion societies often use group membership as an indicator of association, calculating 

an index of association for all pairs of individuals (or dyads) based on the proportion of 

time spent in the same group (Cairns and Schwager 1987, Ginsberg and Young 1992, 
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Whitehead and DuFault 1999). Traditional association indices that are based upon the 

proportion of time together, however, may be the product of two underlying processes: 

the fission and fusion of groups, and the choices of individuals as to which subgroup to 

join during a fission event. Most studies calculate association indices using the entire 

dataset–without paying attention to the timing of fission events. While these indices 

represent the proportion of time two individuals spend together, they may be poor 

estimates of the propensity for dyads to remain together during future fission events.  

Each fission event provides only one data point on a pair’s likelihood of remaining 

together when the group separates, and additional samples within a fission-fusion event 

are auto-correlated with samples occurring on the same interval between fission and 

fusion events.  

We define a fission event as when one group of individuals separates into two or 

more distinct subgroups.  For our study system, distinct groups are readily identified 

spatially:  in KNP, African buffalo exist in herds of ~200-1200 individuals, and 

individuals within herds are usually separated by a few meters.  Herds are typically 

separated by one to 40 kilometers and are rarely within visual contact of one another.  

Thus, we defined a group as the set of individuals that were within ~1km of one 

another.  This definition was only problematic when groups were relatively close (e.g. 

within a diameter of the group size itself), which occurred rarely; and when groups were 

close to one another they were either in the process of splitting apart or rejoining. More 

generally, we might define groups as distinct if they are sufficiently separated for 

individuals to incur significant cost (e.g. greater exposure to predation) if they were to 

move between groups.  Very mobile species, or those that can communicate over large 
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distances, may perceive groups at a larger spatial scales than species that use groups as 

a form of predator defense.  Ultimately, the definition of a group will vary between 

study systems and the appropriate definition may depend on the questions being 

addressed.  

The distinction between the fission-fusion of groups and individual decisions 

during fission events has not been made in traditional association analyses, and each 

measurement of group membership is assumed implicitly to be the result of independent 

individual choices. For many species, however, dispersal between fission groups may 

be limited by predation, reduced foraging efficiency, and/or hostility from conspecifics 

(e.g. Waser et al. 1994, Alberts and Altmann 1995, Isbell and Van Vauren 1996, 

Ferreras et al. 2004).  Thus, an individual’s association with other individuals may be 

constrained because it is unable to independently move between groups.  Factors 

influencing the fission and fusion of groups are often not well understood.  In the 

absence of information, one might assume that either individuals have no control over 

the timing of group fission events or group fission events are the product of individuals’ 

dissatisfaction with their associates.   

Here we consider the case in which the timing of fission and fusion events are 

beyond any individual’s control.  From this viewpoint, traditional association indices 

are a function of both individual choices during a fission event and the duration that a 

splinter group remains separate after the fission event. We propose a modified pair-wise 

association index, the fission-decision index (FDI), which is the proportion of fission 

events involving both individuals in which they choose the same post-fission subgroup. 

This limits sampling to only one point during the interval between fission and any 
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subsequent fusion events. Let Tij be the number of times individuals i and j were 

together after fission events, and Aij be the number of times i and j separated during 

fission events. The FDI, which we denote by δij, is given by the formula: 

ijij

ij
ij AT

T
+

=δ . 

Note that the symmetry in the roles of individuals i and j implies that δij=δji. 

In this study, we use simulation models in two contexts. First we use a heuristic 

model to illustrate some of the deficiencies of traditional analyses by generating 

simulated association data for particular fission-fusion processes and sampling regimes. 

In these simulations, individuals choose to join post-fission subgroups at random.  We 

analyze the simulated data using standard methods and show that auto-correlated data 

lead to statistically significant association patterns that do not reflect the random 

individual choices made during fission events. Repeating the analysis using the FDI 

reveals the random structure of the data. In the second section we apply our FDI method 

to an empirical dataset of 123 radio-collared buffalo, and use a simulation model to 

generate the expected distribution of FDI values for the observed fission-fusion history 

if all buffalo had chosen subgroups at random. We then compare the conclusions that 

are drawn from the traditional and FDI approaches. We conclude with a discussion of 

scenarios where the FDI should be used in conjunction with traditional methods of 

analysis to gain a more comprehensive understanding of animal associations.  

 

Methods 

Heuristic Simulation Model  
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Our first simulation model is intended to clarify conceptually the need for, and 

utility of, the FDI. The model generates simulated association data for particular fission-

fusion histories, subject to the rule that individuals choose subgroups at random. Using 

this model, we assessed how conclusions about social structure depend on the 

association index used and on sampling protocol and intensity. We analyzed the 

simplest possible fission-fusion society: one group, which sometimes separates into two 

groups and later fuses back together. This simplification is intended to expose potential 

bias with a minimal level of complexity rather than quantify the bias present in more 

complicated field situations. 

To make the model, we first generated fission-fusion histories (e.g. Fig. 1a) that 

described when the group splits apart and regroups. Fission and fusion were treated as 

Poisson processes, occurring randomly with a constant probability per unit time. This is 

a simple way of modeling the fission process, which agrees with the roughly negative 

exponential distribution of group lifetimes for African buffalo in the KNP (Cross, 

unpublished data; i.e. the probability of a group ceasing to exist remains constant and 

independent of how long it has existed in the past). Fission and fusion rates were set 

equal, so groups spent half of their time apart, on average. For a given fission-fusion 

history we simulated the movements of 20 individuals as they randomly chose 

subgroups during fission events. We sampled group membership at different intensities 

to generate data from which association indices could be calculated for all dyads. 

Sampling events occurred at regular intervals (or once following each fission event, for 

the FDI; Fig. 1a), and all individuals were recorded during a sampling event.  
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African Buffalo in the KNP: Field Methods 

Field data were collected during an ongoing study of bovine tuberculosis in the Satara 

Region of the Kruger National Park from November 2000 to November 2003 (Caron et 

al. 2003). The study area contained 4-12 buffalo herds, depending upon the amount of 

herd fragmentation, and roughly 3000 buffalo. The majority of study individuals were 

fitted with radio-collars in four helicopter sessions: November 2000 (N = 6), April 2001 

(N = 27), August (N = 51) and November 2001 (N = 12).  The remaining individuals 

were darted from ground vehicles throughout the study period. Animals were placed 

into age classes using incisor eruption patterns (Pienaar 1969, Grimsdell 1973, Sinclair 

1977).  All individuals over 5 years old were classified as adult.  Although data for 

some individuals were available from November 2000, we restricted the dataset to 

sightings of 123 radio-collared individuals that were seen more than five times from 

January 2002 through October 2003.  During this period we had relatively complete 

information about the fission-fusion process.  We monitored the buffalo herds 

approximately 2-3 times per week (917 herd sightings on 351 days) from distances 

ranging from 50 to 1000m. If an individual was missing for over one month we located 

it from aircraft. Group membership was recorded only once per day per individual.  

Since all marked individuals had radio-collars and herds were usually separated by 

several kilometers, we could determine which individuals were in a herd without 

visually sighting all individuals.   

Although fission events occurred when groups of individuals separated, we 

identified fission events in the buffalo dataset as any time two radio-collared individuals 

were together on one sighting and then recorded in different groups, separated by 
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several kilometres, in their next sighting.  Individuals other than adult males only 

separated as a result of a larger group-level fission event.  Adult males, however, often 

moved to smaller bachelor groups (~2-30 individuals) from mixed groups (Sinclair 

1977, Prins 1996), and thus the definition of a fission event can be made dependent on 

the class of animals being considered (in our case adult males versus females and 

juveniles). By analysing datasets with or without adult males included we show how the 

FDI approach accurately captures this aspect of buffalo biology, whereby females are 

rarely seen moving with males into bachelor groups.   

On some occasions single radio-collared individuals were absent from the 

dataset for a short period of time and then returned to the same herd where they were 

last seen.  These data records may occur due to actual fission events that involved only 

one marked individual, or due to data-entry errors.  We required that an individual be 

absent for at least two successive observations of its last-known herd before we 

considered it a fission event.  According to this definition, fission events involving only 

one marked individual occurred 16 times out of a total of 185 fission events for the 

dataset excluding adult males, and 38 times out of 375 fission events when adult males 

were included. We analyzed the FDI values for all dyads that were involved in two or 

more fission events together (N = 1093 and 834 with and without male fission events, 

respectively). 

 

Buffalo Data Randomization 

We compared the results of the buffalo FDI analysis to 1000 simulated random datasets. 

To generate these we collected the following data from the real dataset: identification of 
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individuals involved in each fission event, the number of fragments sighted after the 

fission event, and the number of individuals in each fragment. To simulate random 

decisions, we conserved the number and size of post-fission fragments but distributed 

the individuals at random between them. This eliminated the variability associated with 

different herd sizes and isolated the variability associated with individual fission-

decisions. We simulated fissions on an event-by-event basis, so that each simulated 

fission event was begun with the same individuals on-hand as in the buffalo data. This 

served to maintain the same number of fission events per dyad in the simulated and 

buffalo datasets, which has important implications for the distribution and variance of 

FDI values.  

We encountered one problem when comparing the simulated and real FDI 

values.  In real datasets, dyads will either separate from one another during their last 

shared fission event or the dyad will still be together when one animal dies or the study 

ends.  Because fission events were frequent, the FDI values for dyads with only two 

events were either 0 or 0.5 (since their final event must have been a separation, or else 

they would have been involved in further fission events). However, the simulated FDI 

values could equal 0, 0.5 or 1 for dyads with only two events, because the individuals 

could randomly choose to remain together both times (and yet not undergo further 

shared fissions, since simulated fission events used the on-hand individuals from the 

real data). Taking this approach, simulated FDI values would be biased upward relative 

to the data-based FDI values for these two-event dyads. The same reasoning applies to 

dyads with greater numbers of fission events. To correct for this bias and to make the 
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simulated and real datasets comparable, we did not include the last decision of each 

dyad in the analysis of either the buffalo or simulated datasets.  

 

Statistical Analysis 

Following Whitehead and DuFault (1999), we considered two individuals to be 

associating if they were located in the same group. This one-zero metric of association 

was used to calculate the proportion of samples in which two individuals were seen 

together (i.e. the simple ratio index). For the case presented here, where all individuals 

have radio-collars, the probability of locating a pair of animals is unlikely to be related 

to whether they are together or apart, and as a result the simple ratio index yields an 

unbiased estimate of the proportion of time they spent together (Cairns and Schwager 

1987, Ginsberg and Young 1992). To test the statistical significance of the traditional 

simple ratio we applied the permutation methods described by Bejder et al. (1998), 

using programs modified from the SOCPROG 1.3 package 

(http://is.dal.ca/~hwhitehe/social.htm) to shuffle individuals within samples to test the 

null hypothesis that no preferred companions exist between sampling periods. We 

considered the null hypothesis rejected if fewer than 5% of the permuted datasets had a 

standard deviation greater than that of the original dataset. The standard deviation of the 

distribution of all pair-wise association indices is expected to be higher when certain 

individuals preferentially associate with others (Whitehead 1999). For datasets 

generated by our heuristic simulations, we found that p-values stabilized around 40,000 

permutations. Statistical significance of the buffalo FDI values was determined using a 

χ2 goodness-of-fit test to compare the empirical distribution of FDI values to that of the 
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mean of 1000 simulations (see Buffalo Data Randomization above). Dendrograms were 

generated using the unpaired group averaging method (UPGMA), which had the highest 

cophenetic correlation coefficient compared to other cluster analysis methods 

(Romesburg 1984). Simulations were coded in MATLAB 6.1, while cluster analyses 

were conducted using the MATLAB 6.1 Statistics Toolbox (MathWorks, Inc.). 

 

Results 

Heuristic Simulations 

To demonstrate how the method of analysis can affect conclusions about social 

structure, we analyzed data from the same fission-fusion history (shown in Fig. 1a) 

using standard methods and the FDI. With 50 regularly spaced sampling events, the 

simple ratio index appears to show non-random population structure (Fig. 1b) even 

though the model separated individuals at random during each fission event. This 

apparent structure arises because groupings that lasted longer were sampled more times. 

Specifically, the main division in the population (the top node of the dendrogram in Fig. 

1b) is defined by the second fission event because it lasts for the longest period of time. 

The next two nodes of the dendrogram (at linkage distance ~0.2) are defined by the 

sixth fission event, which produces the next longest-lived subgroups. The Monte Carlo 

randomization procedure indicates that the association indices that led to Fig 1b are 

highly unlikely to occur at random (p < 0.0001), even though individual decisions were 

simulated to be random.  In contrast, the FDI analysis did not show any spurious non-

random structure (Fig. 1c, p = 0.71). 
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The above results show that association patterns derived from the traditional 

simple ratio index (or other association indices based on proportion of time spent 

together) can be biased toward non-randomness, due to over-sampling of longer-lived 

fission subgroups. To assess the effects of study design on this bias, we next simulated 

the model for a range of sampling and fission rates and analyzed the results using the 

simple ratio index. For ratios of sampling rate to fission rate between 0.5 and 3, the 

reported non-random structure gains significance (i.e. the p-value decreases) as the 

sampling to fission ratio increases (Fig. 1d). Thus, if sampling events occur more 

frequently than fission events then the simple ratio index tends to be significantly non-

random. The apparent non-random structure of the simple ratio indices is not influenced 

as much by the number of fission events observed as by the ratio of sampling to fission 

events (Fig. 1d).  

 

Buffalo Association Patterns 

Analysis using the simple ratio index indicated that the association patterns of buffalo in 

the Satara region were significantly non-random according to the permutation methods 

described by Bejder et al (1998, p < 0.001). UPGMA cluster analysis (Fig. 2) suggests 

four main buffalo groups, with adult males less tightly clustered both among themselves 

and to other sex and age categories.  Cluster analyses of the FDI results did not show 

the same structuring of the sampled population into four groups as in figure 2 (data not 

shown).  

For dyads involving females and juveniles, the FDI and the traditional 

association index were not closely correlated, indicating that the proportion of time 
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spent together may not be a good predictor of the probability of remaining in the same 

group during a fission event (Fig. 3).  The mean FDI score for females and juveniles 

was significantly higher when adult male fission events were included (0.805 ± SE 

0.005) than when they were excluded (0.603 ± SE 0.006; Fig 3).  Further, the 

distribution of FDI values was further from random with the inclusion of adult male 

fission events compared to when only those events associated with females and 

juveniles were used (χ2 =  2040 compared to χ2 = 151 for df = 6 and p < 0.001 for both; 

Fig 4a and b).  The fission-decisions of adult male dyads were not significantly different 

from what would be expected given random decisions (χ2 = 10.5, df = 6, p = 0.11, Fig 

4c). 

 

Discussion 

Fission-fusion societies lie on a spectrum. At one end of the spectrum 

individuals are free to move between groups at any time. At the other end, individuals 

only move between groups when subgroups separate from one group and join another, 

and individuals do not control the fission-fusion process. Traditional association indices 

and the fission-decision index apply best to opposite extremes of this spectrum, but in 

many situations they offer complementary information. Traditional association indices 

assume that the proportion of time a pair of individuals spends together indicates the 

strength of their association. In some species or ecosystems, however, individuals may 

be reluctant to switch between groups on their own and the proportion of time 

individuals spend together may reflect aspects of the group-level fission-fusion history 

rather than individual-level preferences. Our results demonstrate that traditional 
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association indices are poor descriptors of individual choices in such settings, and 

suggest our FDI as a more appropriate index to study individual choices.  

Our simulations illustrate that, if sampling occurs faster than fission and fusion 

events, the proportion of time dyads spend together may show statistically significant 

clustering (Fig. 1b), even if individuals choose herds at random and independently of 

other individuals’ decisions. This follows because multiple samples taken within the 

same inter-fission interval are autocorrelated with respect to individual choices. Further, 

the statistical significance of this effect is dependent upon the ratio of sampling and 

fission events rather than the absolute number of fission events. The FDI eliminates 

auto-correlated data and presents an unbiased estimate of individual choices. In this 

study we used the simple ratio index as the traditional metric of association. The 

potential biases shown in this study, however, apply to other association indices that are 

based upon the total number of samples taken (e.g. twice-weight, half-weight, simple 

ratio, square-root) rather than the number of fission events.  

Traditional association analyses suggest that the buffalo population we studied 

was spatially and temporally structured into four different groups (Fig. 2). This result 

matches our intuition from collecting the field data, because (like the association 

indices) our intuition places greater weight on group compositions with longer lifetimes.  

Since it is based on association indices that incorporate all observations from the entire 

study period, the cluster analysis shows the hierarchical structure of the population 

integrated over time.  On the other hand, an aerial survey representing a snapshot in 

time typically would show,, anywhere between 4-12 herds in our study area. As one 

would expect from previous research, adult males were less tightly clustered than other 
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sex and age groups because they often moved between mixed herds and bachelor 

groups (Fig. 2). 

Not surprisingly, dyads that had high association indices (e.g. > 0.8) also had 

high FDI values because, in order for a pair to spend all of their time together, they 

would have to choose to remain in the same groups during fission events (Fig 3).  For 

dyads with lower association indices, however, the probability of a dyad remaining in 

the same group during a fission event was not closely correlated with the amount of 

time they spent together (Fig. 3).  Therefore, the non-random group structure apparent 

in the traditional association analysis (Fig. 2) is due in small part to non-random 

decisions made by individuals during all fission events (the weak effect in Fig. 3), but in 

greater part to the variable lifetimes of the resulting fission groups.  Consideration of 

FDI scores has thus helped us to understand the mechanisms underlying results of 

traditional association analysis. 

FDI scores reflected the qualitatively different fission-fusion behaviour of adult 

male buffalo versus females and juveniles.  Mean FDI scores of dyads involving 

females and juveniles were significantly higher when fission events associated with 

adult males were included (Fig. 3 and Fig. 4a).  This arises from the frequent occasions 

when a few adult males leave a mixed group (constituting a fission event)—all other 

pairs of individuals are counted as having stayed together, thus increasing their FDI.  

The distribution of FDI values of female and juvenile pairs was significantly different 

from what would be expected given random decisions (Fig. 4).  This difference was 

magnified when adult male fission events were included in the analysis (Fig. 4a), 
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compared to when they were excluded (Fig 4b).  Finally, the fission-decisions of adult 

males were not statistically different from random decisions (Fig. 4c).    

While this distinct behaviour of females and juveniles versus adult males 

confirms and elaborates earlier results, some of our findings differ from the previous 

studies of African buffalo by Sinclair (1977), Mloszewski (1983), and Prins (1996).  

First, fission events seem to happen frequently in the KNP (185 female and juvenile 

fission events over a 2-year period), whereas in previous studies it is not clear how often 

herds were splitting apart, perhaps due to the smaller number of marked individuals in 

those studies.  During this study we saw only 36 groups in the study area that did not 

have radio-collars (compared to 917 sightings of collared groups) due to the high 

density of marked individuals (~90 radio-collars in 4 to 12 groups). Secondly, both 

Mloszewski (1983), and Prins (1996) suggested that certain individuals always remain 

together in fission events due to either dominance and intra-herd competition (Prins 

1996) or family-group structure within herds (Mloszewski 1983).  In this study, we 

showed that although there were some non-random patterns in the FDI of female and 

juvenile pairs (Fig 4b) the pattern is not as strong as what might be expected from 

previous studies.  Further work on how fission-decisions may be affected by body 

condition, reproductive status, and genetic relatedness would be enlightening.   

 

Application of the FDI 

The fission-decision index may not be applicable to all studies. The FDI is best 

applied when individuals choose between subgroups only during fission events. This 

may be reasonable for species that incur high dispersal costs, perhaps due to high 
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predation rates or lowered foraging efficiency, but if individuals are highly mobile and 

move often between subgroups then traditional indices reflecting the proportion of time 

dyads spend together are reasonable measures of association. The study of Szykman et 

al. (2001) on hyenas is an example where individuals may be relatively unconstrained in 

their choice of subgroups: as top predators, the cost of dispersing short distances 

between subgroups within a clan may be minimal for hyenas.  The necessity of 

observing multiple fission events per dyad may also limit application of the FDI 

method.  Finally, the lifetime of fission subgroups may reflect the degree of satisfaction 

with that group composition.  In this case, our initial assumption that group fission and 

fusion dynamics are not controlled by individuals no longer applies, and thus the greater 

weight that is assigned to longer-lived groupings in traditional association indices may 

be more appropriate. 

The FDI requires rich data regarding the underlying fission-fusion process, and 

the probability of detecting fission events is related to the proportion of individuals that 

are marked. Studies with fewer marked individuals will have downwardly biased FDI 

values because they are more likely to miss fission events when all the marked animals 

stay together, which would increase their FDI.  This presents difficulties if individuals 

choose differently in short-duration fission events, as these are most likely to be missed. 

It also presents difficulties when comparing across studies. However, if a researcher has 

a random sample of fission events, then the FDI should represent an unbiased estimate 

of the probability that two individuals will remain together during a fission event.  

Further, one could structure the data according to the duration a splinter group existed 

to investigate whether the FDI was more random during short-term splits (which may 
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be unintentional and due to predation and/or lack of communication) than long-term 

splits (which may be due to intra-group competition).  Previous studies may not have 

had the data resolution necessary for our FDI approach. We believe, however, that this 

technique will become increasingly valuable as improved technology facilitates the 

tracking of more individuals with greater spatial and temporal resolution.  

Analysis of an aggregate parameter (e.g. proportion of time spent together by a 

pair) that is the product of two underlying processes limits our ability to understand 

those underlying processes. We believe that separating the process of individual choice 

from the process of group fission or fusion leads to an improved understanding of the 

mechanisms of association. In addition, this separation helps avoid apparently arbitrary 

definitions of classes of companionship based upon the amount of time individuals 

spend together (e.g. Weinrich 1991, Whitehead et al. 1991). Analyses using traditional 

association indices implicitly combine the effects of the fission-fusion process and the 

choices made by individuals, and although their conclusions about the proportion of 

time individuals spend with one another remain valid, they may not accurately reflect 

individual preferences. 
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Figure 2. UPGMA cluster diagram of the traditional simple ratio index for 123 radio-
collared buffalo using data from January 2002 through October 2003. Adult males are 
represented by dotted lines. Statistical significance was determined using the 
randomization procedure described in the methods. 
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Figure 3. The relationship between the traditional simple ratio association index and the 
FDI for all pairs of radio-collared buffalo that had two or more fission events together 
and were not adult males.  Filled circles indicate indices calculated from data that 
included fission events involving only adult males (1093 pairs), while open triangles did 
not include adult male fission events (834 pairs).  
.
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Figure 4. FDI values calculated from the buffalo data and from simulations assuming 
random fission-decisions, using (a) female and juvenile dyads with all fission events (b) 
female and juvenile dyads without adult male fission events and (c) dyads involving 
adult males only.  Bars represent the standard deviations from 1000 simulations of 
random decisions. 
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Introduction 

Group structure is the hallmark of social species.  The size and integrity of groups 

reflects their function, which may include vigilance against predators, sequestration and 

protection of resources, and alloparenting (for review see Dugatkin 1997).  Increased 

susceptibility to disease is generally believed to be a cost of sociality (Alcock 1998).  If 

the movement between groups is limited, however, group structure can act to contain 

disease spread. Here we investigate how the movement of individuals between groups 

affects disease spread using data on African buffalo (Syncerus caffer) and relatively 

simple models of disease processes.   

African buffalo exist in a fission-fusion society where groups often separate and 

rejoin (Prins 1996, Cross et al. In press).  The ability to recognize others is a 

prerequisite for non-random association patterns in fission-fusion societies (Cross et al. 

In press).  In this context we do not differentiate between the evaluator and cue-bearer 

in the recognition process, but analyze the proportion of time individuals spend together 

and assume that it is a function of individuals perceiving and acting upon the cues 

expressed by one another.  We use pair-wise association data that we have collected 

over a two-year period in the Kruger National Park, South Africa, to characterize 

buffalo population structure.  These data are then combined with disease models to 

illustrate how association patterns affect disease dynamics. Behavioral researchers often 

collect data on the association between individuals, but these data are seldom used in 

disease models.  We illustrate the importance of incorporating behavioral data to 

disease dynamics, and discuss several of the unresolved questions which limit our 

ability to integrate data on recognition and association with disease models. 
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Models of disease dynamics have become increasingly important to 

understanding and managing disease invasion (e.g. Ferguson et al. 2001, Keeling et al. 

2003, Lloyd-Smith et al. 2003).  They reduce the complexity of a system and allow for 

the investigation of specific factors in ways that would not be possible using 

experimental methods.  A tradeoff exists between realism and generality of models, 

however, and factors that are omitted for the sake of simplicity may play important 

roles in the real system. Traditionally, the network of connections between individuals 

has not been included in disease models (e.g. Anderson and May 1991).  Modelers 

assumed that association was random, i.e. that every individual was equally likely to 

contact every other individual. More recent studies suggest, however, that the way 

individuals contact one another (i.e. the network structure and topology) plays an 

important role in determining the probability of disease invasion, the total number 

infected, and the speed of disease spread (Keeling 1999, Watts 1999, Newman 2002).  

Both traditional disease models that assume random mixing and spatial disease models 

that assume limited dispersal between fixed groups poorly characterize some socially 

structured populations, such as the African buffalo.  Dynamic network models more 

accurately reflect connections within and between groups and the spread of disease 

between associating individuals. In this paper, we attempt to narrow the gap between 

the fields of behavior, recognition, and disease ecology by illustrating the importance of 

non-random association to the spread of disease using empirical data from an ongoing 

study of African buffalo and integrating them with simulation models of disease spread.  

 Social networks have been visualized in a number of different ways.  Network 

graphs depict individuals as points and their contacts as connecting lines (Fig. 1).  In the 
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behavioral literature of animal association patterns, researchers often use cluster 

analyses, such as the Ward’s or UPGMA methods, to describe the network (e.g. 

Whitehead 1999). Underlying these visual techniques is a contact or association matrix 

A where each matrix element aij describes the amount or type of contact between 

individuals i and j.  Several properties of this matrix will affect the overall rate of 

disease spread as well as each individual’s risk of infection.  Most obvious are the 

average number of connections per individual and the strength of those connections. 

Less obvious, and the focus of recent work, is the way that the topology of connections 

(i.e. who is connected to whom) affects disease processes (e.g. Anderson et al. 1990, 

Kretzschmar and Morris 1996, Morris and Kretzschmar 1997, Boots and Sasaki 1999, 

Keeling 1999, Watts 1999, Kretzschmar 2000, Newman 2002, Eames and Keeling 

2003, Meyers et al. 2003, Read and Keeling 2003). 

More traditional disease models assume that an individual’s risk of infection 

depends upon the global state of the population.  From a network perspective, however, 

an individual’s risk of infection depends on the number of connections they have and 

which of those connected individuals are infected. Network models of disease have 

largely focused on sexually transmitted diseases (STDs), often simulated on static 

networks with uniform connection strengths (e.g. Kretzschmar and Morris 1996, 

Keeling 1999, Watts 1999), though recent work has included analytic approximations 

(Ferguson and Garnett 2000, Bauch and Rand 2001, Eames and Keeling 2002), exact 

solutions (Newman 2002), non-sexually transmitted diseases (Meyers et al. 2003), an 

STD network with changing connections (Eames and Keeling In press), and an 

empirically-derived urban social network (Eubank et al. 2004).  However, our extension 
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of this network approach to cover airborne diseases in animal systems, with a network 

based on empirical data, raises two novel issues. Is variance in the connection strengths 

an important factor?  How does the dynamic nature of the network affect disease 

spread? 

Early attempts to model stochastic disease dynamics in networks were probably 

limited by computational power. Current efforts are impeded by scarcity of empirical 

data on the structure of human and animal networks and the limited communication 

between behavioral researchers and epidemiologists. In practice, several critical issues 

make it difficult to determine the network structure of a population: (1) contacts may be 

difficult to define and differ between diseases, (2) people are usually bad at estimating 

their contacts while animals are often difficult to observe, (3) large populations require 

researchers to choose a sample of individuals or a small portion of the network and then 

extrapolate, (4) connections between individuals change over time, and (5) on longer 

time scales individuals enter and leave the network due to birth and death processes or 

migration.  All of these issues affect our ability to produce an unbiased estimate of the 

network structure and none of them are easily solved.  For this reason, relatively few 

empirically-based social networks exist in the disease ecology literature (but see, 

Woodhouse et al. 1994, Edmunds et al. 1997, Wallinga et al. 1999, Liljeros et al. 2001, 

Jolly and Wylie 2002).  In this study, we address issues two and four above, in the 

context of data that we have collected on associations among individuals in an African 

buffalo (Syncerus caffer) population in Kruger National Park that is in the midst of a 

bovine tuberculosis (BTB) epidemic (Rodwell et al. 2000). More importantly, though, 
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we demonstrate that association data collected routinely by behavioral researchers are 

applicable and valuable to studies of disease dynamics. 

African buffalo typically occur in breeding herds of approximately 30 to 1000 

individuals, and adult males move between breeding herds in bachelor groups of 2--30 

individuals.  Previous researchers concluded that buffalo herds were relatively stable 

units, and although herds sometimes separated they did not associate with neighboring 

groups (Sinclair 1977, Mloszewski 1983, Prins 1996) .  Furthermore, females, 

subadults, and juveniles were assumed not to move between herds (Sinclair 1977, 

Mloszewski 1983, Prins 1996) .  Recent studies based upon larger sample sizes of radio-

collared individuals, however, suggest that females and subadults do move between 

groups and the structure of herds may not be stable (Halley et al. 2002, Cross et al. In 

press).  Radio-tracking data from our study in the KNP of over 123 radio-collared 

individuals since November 2000 indicate that herds frequently separate and reunite, 

and females move to different areas via splinter groups.  Further, because herd 

membership changes, the definition of a herd becomes more nebulous over time.  The 

framework developed in this study presents a rigorous definition of a herd based upon 

association data.  

In this study, we begin by describing the association pattern and network 

structure of 64 radio-tracked buffalo from November 2001 to October 2003.  We then 

use the association data in a stochastic disease model to investigate three questions: (1) 

How does the incorporation of non-random association data affect our predictions about 

the speed and intensity of a disease outbreak in the buffalo population in Kruger 

National Park? (2) Does the variance in the frequency of contact between individuals 
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affect disease dynamics?, and (3) How does duration of infectiousness affect the degree 

of population structure experienced by the disease process?  At the moment, we do not 

have empirical disease data to compare with the model predictions, but work on this 

aspect is ongoing. To the authors’ knowledge, this study is the first application of a 

network disease model to a wildlife population using empirical data to create the social 

network.  

 

Methods 

Association data 

Field data were collected during an ongoing study in the Satara Region of the Kruger 

National Park. The study area contained 4--12 buffalo herds, depending upon the 

amount of herd fragmentation, and roughly 3000 buffalo. Buffalo were darted from 

helicopters and fitted with radio-collars in four sessions: November 2000 (N = 6), April 

2001 (N = 27), August (N = 51) and November 2001 (N = 12).  To simplify the analysis, 

we restricted the data to sightings of 64 radio-collared buffalo that survived from 

November 2001 to October 2003.  This restriction allowed for a ‘complete’ dataset 

where individuals were present for the duration of the study period.  

We monitored buffalo herds, on foot and from vehicles, approximately 2--3 

times per week throughout the year from distances ranging from 50--1000m. If an 

individual was missing for over one month, we located it from an aircraft. If a herd split 

during the day, only the first sighting was used for that day. Since all marked 

individuals had radio-collars and herds were usually separated by several kilometers, we 
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could determine which individuals were in a herd without visually sighting all 

individuals. 

Following Whitehead and DuFault (1999), we considered two individuals to be 

associating if they were located in the same herd. This one/zero metric of association 

was used to calculate the proportion of samples in which two individuals were seen 

together (i.e. the simple ratio index).  Ideally, when using association data in disease 

models the distance cutoff used to determine whether two individuals are in the same 

group should depend on how infectivity decreases with increasing distance. We 

assumed that buffalo were associating when they were in the same herd and the 

probability of infection between a particular susceptible-infected dyad was proportional 

to the time they spent in the same herd.  This definition implicitly assumes that herds 

are sufficiently well mixed that within-herd transmission is equal between all dyads and 

sufficiently separated that between-herd transmission is nonexistent.  Non-random 

association, however, may also play a role within herds when herds are large and 

diseases are transmitted only over very short distances.  Unpublished data suggest that 

buffalo frequently move between the front, middle, and back portions of the herd, but it 

remains to be determined whether this is sufficient for our assumption of a well-mixed 

herd to be valid.  Recognition and its role in determining association patterns may be 

important both within and between herds depending upon the distance over which 

individuals are infectious.  In this study, however, we investigate the role of different 

association patterns at the herd-level only.    

We constructed association indices between all possible dyads using the simple-

ratio association index calculated from varying windows of time.  Except where noted 
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otherwise, association indices were calculated using monthly data or all the data from 

November 2001 through October 2003.  Over the 24-month study period, there were 16 

occasions when a pair of individuals was not seen during a month.  In these cases, we 

assumed that the individuals were not associating during this time period.  Since this is 

less than 0.04% of the association indices used, this assumption probably had a 

negligible effect on our numerical simulations.  When yearly estimates for 2002 and 

2003 were calculated they were based upon data from November 2001 through October 

2002 and November 2002 through October 2003, respectively, to coincide with the 

onset of the wet season.   

We analyzed the association data in three ways, independent of the disease 

model.  First we constructed dendrograms of the association matrices using the unpaired 

group averaging method (UPGMA), which had the highest cophenetic correlation 

coefficient compared with dendrograms that we constructed using Ward’s weighted, 

complete linkage, and single linkage clustering methods (Romesburg 1984).  Second, 

we calculated a measure of the network clustering using the following metric, proposed 

by Keeling (1999):   

From the association matrix the total number of connected triples (three 

individuals sharing at least two connections) is calculated.  Some proportion of 

these triples will be closed loops, or triangles, where all three individuals are 

connected.   

Keeling’s clustering coefficient, φ, is the ratio of triangles to triples in the network.  

When φ equals one then all triples form closed loops and one’s neighbor’s neighbor is 

always one’s own neighbor as well.  When φ is small individuals have few associates in 
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common.  We calculated φ by first converting the association matrix to a matrix of zeros 

and ones where all non-zero associations were changed to one. Finally, we calculated 

the percentage of connections between individuals that changed from one month to the 

next, where a connection was defined as any association index greater than zero.  All 

cluster analyses were coded in MATLAB 6.1 (MathWorks, Inc.). 

 

Disease Modelling 

The model presented here is a stochastic individually-based elaboration of a discrete 

time Susceptible-Infected-Recovered (SIR) epidemic model (Anderson and May 1991, 

Kermack and McKendrick 1991), with time-steps of one month.  A variable xi(t)  is 

used to represent the state of an individual i at time t and equals zero when the 

individual is susceptible and one when the individual is infected. We assume that the 

probability for the disease to be transmitted between an infected individual i and a 

susceptible individual j is a function of the transmission coefficient β and the 

association coefficient aij(t), where aij(t) equals the proportion of time individuals i and j 

spent together over the period [t −1,t].  Additionally, we assume that infected 

individuals recover with constant probability γ per time-step and do not become 

susceptible again.  Under these assumptions, our model takes the form: 
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where T is the length of the simulation in months and n is the total number of 

individuals in the population. In all simulations, we calculated aij(t) values using the 

radio-tracking association data from the 64 buffalo for which we had a complete dataset 
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during the study period. We started each simulation with one infected individual.  

Qualitative results were insensitive to the choice of this individual, except for a few 

individuals who were isolated from the others during the initial phase of the study 

period.  In most cases, we simulated the model for 24 months to match the amount of 

radio-tracking data that was available.  For those cases where we simulated the model 

for longer periods of time, we used the same association data repeatedly. We compared 

the results of this model to a mean-field equivalent to highlight the importance of 

incorporating the association data. The mean-field model assumed that all individuals 

were associated according to the grand mean of the association matrix for that month, 

so the overall force of infection for the mean-field model equaled that of the models 

using association data.  

Using the buffalo association data and SIR model described above we 

investigated the impact on disease dynamics of two aspects of association patterns: 

topology (i.e. who is connected to whom) and variation in the frequency of connections.  

Further, we investigated how the effects of association patterns depended on disease 

characteristics by varying the transmission coefficient β and probability of recovery γ to 

simulate “fast” versus “slow” diseases, while holding the basic reproductive number 

(R0) constant.  The basic reproductive number is the expected number of infections 

caused by the first case in a completely susceptible population, and is a measure of the 

growth potential of an epidemic (Anderson and May 1991).  

We investigated the importance of topology by randomly rewiring connections 

in both static and dynamic network simulations, using the following algorithm.  Let δ 

represent the proportion of network connections that were randomly re-assigned, such 
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that δ=0 corresponds to the original network structure and δ=1 corresponds to a network 

with all connections randomly reassigned.  Both the static and dynamic simulations 

started with the association matrix from November 2001. In the static network 

simulations, a proportion δ of the connections were rewired at the beginning of the 

simulation, then associations between individuals were assumed to be constant over 

time.  In the dynamic network simulations, a proportion δ of the connections were 

rewired before every time-step.  

 Next, we investigated the importance of variation in connection frequency or 

strength.  Previous research on network disease models typically assumed that the 

strengths of connections between individuals are equal (i.e. an ‘unweighted’ network) 

and thus the variance of connection strengths is zero.  The variance in the amount of 

time spent together, however, may be biologically meaningful and have important 

consequences for disease dynamics.  In dynamic networks, connection strength may 

vary within a dyad over time or among dyads.  Assuming that individuals contact one 

another with a constant probability that is related to their time-averaged association 

index ija , then the variance in contact frequency within the dyad is related to a binomial 

probability density function and decreases as ija approaches zero or one. We investigate 

the effects of increasing the variance of the time-averaged association indices ija among 

dyads, which results in lower variance within dyads.  High variance among dyads 

would be analogous to some individuals having two sets of associates, those that they 

spend time with often and those that they do not.  One might hypothesize that weak 

connections are less significant for disease transmission, and hence that systems with a 

high variance in connection strength may be less permeable to disease spread.  On the 
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other hand, the disease may spread more rapidly amongst those individuals that are 

tightly associated. 

Let At represent the matrix of association coefficients aij that is based on data 

from the period [t −1,t] and Aavg equal the time-average of At over the study period.  

Elements of Aavg between (but not including) zero and one indicate that a pair of 

individuals spent only a portion of the study period together.  We introduced a 

parameter α to represent the relative amount to increase or decrease the time-averaged 

connection strength for each pair of individuals.  For each matrix element ija  in Aavg, 

we drew a random variable z from a uniform distribution between zero and one, and 

calculated a new element ija ′  as:  
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Thus, we randomly increased or decreased each element of Aavg some proportion α of 

the distance between ija  and zero or one.  Specifically, when α=0 the time-averaged 

connection strength has its original value, and when α=1 all connections in the time-

averaged association matrix are either zero or one.  Using this algorithm we could 

increase the variance in time-averaged connection strengths while maintaining the 

expected mean connection strength.  We also preserved the topology of connections 

from the original matrix Aavg, except when α equals one and some connections were 

removed entirely.  We applied this algorithm once to Aavg at the beginning of each 

simulation to create A′avg. Then for each timestep of the simulation we created an 
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association matrix At′ of zeros or ones, using ija ′  in the altered association matrix A′avg 

as the probability that each connection exists.   

Thus we reconstructed an association history for the population in which pairs of 

individuals were assumed to be completely associated or isolated within time-steps, but 

the time-averaged association strength for each pair was determined by A′avg. High 

values of α corresponded to increased variance among pairs in time-averaged 

connection strength, but decreased variability in the existence of particular connections 

through time.  Low values of α, which yielded more intermediate values of ija ′  in the 

altered association matrix A′avg, corresponded to lower variation between pairs but 

higher temporal variation for each pair. Note that this approach is distinct from altering 

the variation in association indices within each time-step.  To explore the role of 

variance in connection strength, we experimented with different Aavg matrices (e.g. 

using all data or just the data from particular months).  All simulations were conducted 

in MATLAB 6.1 (MathWorks, Inc.). 

 

Results  

Association data 

The time frame used to calculate association indices has a large effect on the apparent 

structure of the system and thus conclusions about the ability of a disease to spread 

through that system.  We visualize the network structure using 3-D network graphs and 

dendrograms (Figs. 1 and 2). The network graph of May 2002 (Fig. 1A) indicates two 

distinct groups and two outlying individuals all of whom become well connected when 

considering contacts over the whole period from November 2001 to October 2003 (Fig. 

    74



 
1B).  In general, association networks become more connected over longer time frames 

due to the movement of individuals between groups, thereby allowing diseases to 

spread among groups. Dendrograms illustrate the hierarchy of associations in the 

buffalo network (Fig. 2).  Individuals that are more often together, similar to highly 

related species on a phylogeny, are joined at lower linkage distances on the 

dendrogram.  As in the network graphs, dendrograms based upon a month of data were 

generally more tightly clustered than those based upon a year of data (Fig. 2).   

Buffalo appeared more highly clustered in 2002 than 2003 (cf. Fig. 2B and C).  

In 2002, three groups are apparent, but two of these appeared to have merged in 2003.  

Further, in 2003 a lower proportion of nodes (where two individuals/groups are joined 

in the dendrogram) were included for a given linkage distance compared to 2002, 

indicating looser associations between individuals and groups (Fig. 2D).  Also, 

considerable variation exists between months, with May 2002 and January 2003 

respectively representing the low and high connectivity extremes of monthly association 

data (Fig. 2A, D).  Although the network graph for May 2002 (Fig. 1A) shows only two 

groups, the dendrogram, which accounts for the relative strength of associations, 

appears to show three groups (Fig. 1A). Over the entire study period the frequency of 

mixing events between herds resulted in a well-connected network (Fig. 1B). 

 

Simulation Results 

To show the effects of the clustering patterns in Fig. 2, we simulated SIR disease 

dynamics (β = 0.3, γ = 0.1) using monthly association matrices from either the entire 

dataset, one year of data, or a mean-field model (Fig. 3).  The mean-field model where 
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all individuals were connected predicts much faster spread of disease even though the 

force of infection was the same as the model using all the association data (cf. closed 

circles to open circles; Fig. 3).  When we used only November 2001 through October 

2002 (i.e. year 2002), then repeated the same values to simulate months 13 through 24, 

the disease was limited to only one herd and did not infect as many individuals 

compared to using data from 2003 (Fig. 3).  Thus, the tighter clustering of buffalo in 

2002 compared to 2003 (Fig. 2) translated into a population that is less permeable to 

disease invasion.  When we used the monthly data for the whole period, there was a 

second pulse of infections starting around month 14, presumably due to the disease 

moving into a new herd (Fig. 3).  Coincident with the second pulse of infections was a 

wet season with below-average rainfall (November 2002 to February 2003).  This also 

coincided with a marked decrease in the clustering of the association data in November 

2002 as indicated by Keeling’s clustering coefficient φ (Fig. 4). 

Using all the monthly association data we simulated two SIR-type diseases with 

the same basic reproductive number (R0 = β/γ ) but different infectious periods.  A 

faster-moving disease, with high infectiousness and rapid recovery (β = 0.4, γ = 0.3), is 

more likely to fade out in populations where the frequency of movement between 

groups is low, because it may burn out in the local population before sufficient 

connections to other groups are made (Fig. 5).  A slower-moving disease with the same 

R0 (β = 0.04, γ = 0.03) is less infectious but persists longer, increasing the probability of 

transmission to other groups of individuals(Fig. 5).  Thus, slower diseases effectively 

integrate over a longer time period and the network becomes more fully connected (Fig. 

1). 
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Next, to assess the impact of network structure on the spread of disease, we 

analyzed the system using only particular months of association data and either 

randomly rearranging network connections or increasing the variance in connection 

strengths. Random rearrangement (or “rewiring”) of the network connections  involves 

establishing a new contact between two randomly chosen individuals and removing a 

contact between two other individuals.  Random rewiring had a non-linear effect upon 

disease dynamics (Fig. 6).  Only a small amount of rewiring (δ < 0.2) creates a network 

that behaves like a randomly wired network (δ = 1.0).  Furthermore, because only a 

small amount of rewiring had a large impact the static simulations (i.e. rewiring the 

matrix once at the beginning of the simulation) yielded similar results to the dynamic 

simulations (i.e. cumulative random rewiring of the matrix over time), though for very 

small δ the dynamic rewiring showed greater effects as expected (Fig. 6).  Other output 

variables, such as the number of susceptible individuals remaining at the end of the 

simulation, showed results similar to those in Fig. 6. 

To place these random rewiring simulations into context, we plot the percentage 

of the topology that remains the same over increasing time lags for the monthly 

empirical data and dynamic rewiring simulations (Fig. 7). The % similar topology of the 

empirical data appears to be similar to randomly rewiring 10% of the connections (i.e. 

δ 0.1) in the November 2001 data (i.e. about 10% of the buffalo network changed per 

month; Fig. 7). However, for reasons we discuss later, the disease dynamics of 

simulations using δ = 0.1 differ greatly from those based on the actual association data, 

which yield results more similar to runs with δ 

≈

≤  0.01 runs (Fig. 6).  
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 The variance in the connection strength among dyads was only important under 

certain circumstances.  Using data from September 2003 and a fast SIR disease (β = 0.3, 

γ = 0.1) as an example, Fig. 8 illustrates how the total number of individuals infected 

over the entire epidemic was a function of α (a proxy for the variance in connection 

strength; see Methods) and the connectivity of the network. We conducted the same 

analysis as in Fig. 8 for other disease characteristics and found that α had less effect 

upon disease dynamics for slower diseases (e.g. β = 0.03, γ = 0.01).  Further, α had little 

effect when we used data from months where buffalo herds were either very well 

connected or very weakly connected (data not shown).  Finally, dropping a certain 

proportion of network connections had a much larger impact than increasing α (Fig. 8).   

 

Discussion 

Early work on disease modeling assumed instantaneous random mixing between all 

individuals.  More recently researchers have begun to account for non-random host 

mixing patterns, often using a static network (e.g. Watts 1999, Newman 2003) although 

one recent study incorporated changing connections within a background network that 

is static (Eames and Keeling 2004).  Pair-formation models of sexually transmitted 

diseases include dynamic contacts but usually not the fully non-random mixing of 

network structure (Dietz and Hadeler 1988, Kretzschmar and Morris 1996, Morris and 

Kretzschmar 1997, Lloyd-Smith et al. 2004).  To the authors’ knowledge, empirically-

derived, fully dynamic contact networks have not been used as a substrate for 

investigating disease dynamics for STDs or non-sexually transmitted diseases.  Our 

analysis shows how disease dynamics depend on the topology of connections between 
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individuals, the dynamic nature of these connections, and the variance in the frequency 

of contacts between individuals.  Association data similar to those presented here are 

often collected by behavioral researchers (e.g. Myers 1983, Smolker et al. 1992, Brager 

et al. 1994, Whitehead 1999, Szykman et al. 2001), but have not been combined with 

models of disease dynamics even though they may have important impacts upon the 

spread of disease (Fig. 3).   

Analysis of the association data suggests that the buffalo population was more 

tightly clustered in 2002, but with more connections between groups in 2003 (Fig. 2).  

From the perspective of a disease, this translates into a more permeable population in 

2003 (Fig. 3).  More specifically, many buffalo were moving to new areas and groups in 

November 2002, which resulted in a less tightly clustered population at the same time 

when rainfall was well below average (Fig. 4).  Rainfall totals for November 2002 

through January 2003 were only 34% of the long-term average for those months.  

Results from the model then present a testable prediction that dry conditions facilitate 

more rapid spatial spread of disease in the buffalo population due to increased herd-

switching. 

This presents a worrying scenario for southern Africa, where precipitation is predicted 

to remain stable or decline while temperatures are likely to increase due to global 

climate change (Hulme et al. 2001).   As a result, vegetation conditions are likely to 

decline, which may result in an increase in the amount of population mixing as wildlife 

is forced out of previously habitable areas. Many studies have linked climate change 

with altered disease distributions or dynamics (e.g. Epstein 2002, Patz and Khaliq 
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2002).  However, evidence for the impact of climate change on animal behavior, which 

in turn affects disease dynamics, is rare.  

Previous studies of African buffalo have suggested that herds are relatively 

static (Sinclair 1977, Prins 1996). We show, however, that buffalo herds are very 

dynamic in the KNP and that over time the population becomes well-connected (Fig. 1). 

As a result, over time it becomes difficult to define what is a herd.  As suggested by a 

reviewer, we propose a definition of a herd based upon the association data, such that a 

herd is defined as the set of maximal complete subgraphs of the network where all 

individuals, or vertices, are associated with aij greater than some threshold (for a 

particular time period). Here a complete subgraph is defined as a subset of the vertices 

of the network such that for every pair of vertices in the subset, there is an edge 

connecting them and the set of those edges and vertices are a complete network and a 

subset of the original network. We will explore the implications of this definition for 

our buffalo data in a future publication. 

In considering effects of association patterns on disease, one issue of critical 

importance is accounting for the relative time scales of the disease and host mixing 

patterns.  This interplay has important implications for the spread of disease, the way 

association data should be collected, and the evolution of both host and parasite. Fast 

diseases, such as rabies, measles, and Ebola hemorrhagic fever, with a short duration of 

infectivity encounter a more structured population because the amount of mixing 

between groups decreases as the time frame decreases (Fig. 2D, 5). Thus, association 

data should have higher time resolution if they are intended to give insight into the 

spread of diseases with fast dynamics.  More specifically, association data should be 
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collected at least as frequently as the duration of infection for the disease of interest, to 

capture population mixing on timescales relevant to the disease.  Furthermore, 

association data should not be averaged over too long a period.  If association matrices 

are constructed using data from a time frame longer than the duration of infection 

within an individual, then the network is biased in favor of too many connections 

between individuals.  As an extreme example compare the connectivity of the networks 

based upon one or 24 months of data (Fig. 1). 

Similar to Watts’s work on static networks (1999) we found that only a small 

amount of random rewiring is necessary to make the empirical buffalo network behave 

as a randomly wired network.  Further, there was little difference between rewiring the 

network once at the beginning of the simulation or once each time-step (Fig. 6).  This is 

probably due to limited number of groups in the network. Only a small number of 

connections are necessary to make it a ‘small-world’ graph where there are very few 

degrees of separation between any two individuals and additional changes to the 

network have little additional impact (Fig. 6).  Interestingly, the model predicts that 

fewer individuals would be infected when using empirical association data compared to 

simulated data that approximates the amount of change in the association matrix (δ ≈  

0.1) seen in the empirical dataset (Fig. 6).  This suggests that although the empirical 

network is changing every time step (Fig. 4), these changes are not random and a 

proportion of the population remains inaccessible to the disease (Fig. 6B).  Thus the 

population is less permeable to disease invasion than one would expect if movement of 

individuals between groups was random.  This amount of movement is higher than what 

might have been expected from previous studies of African buffalo (Sinclair 1977, Prins 
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1996), however, given the intensive radio-tracking conducted in this study probably 

more accurately describes the fluid structure of the population in the KNP (Cross et al. 

In press).    

Somewhat surprisingly, we found that increasing the variance in connection 

strength among dyads had only minor effects upon disease dynamics in this system 

(Fig. 8).  This suggests that for the range of networks we investigated, disease dynamics 

are very similar in a system where individuals spend their time equally with all 

associates or spend a large portion of their time with only a few individuals and a little 

time with many others.  This conclusion, however, may be limited to well-connected 

networks with a limited number of groups.  Further, we did not investigate the effects of 

increasing the variation in contact frequency within a pair of individuals.  More work is 

necessary to determine the generality of these results and in what contexts networks of 

weighted connections behave differently than unweighted networks.    

 

Future directions 

Despite the known importance of association patterns to disease dynamics, empirical 

data are lacking, especially for airborne diseases. First of all, disease ecology is a 

relatively new field, and although a number of studies have investigated how 

association patterns may affect disease dynamics (e.g. Keeling 1999, Eames and 

Keeling 2003, Boots et al. 2004), few studies have attempted to integrate empirical data 

and disease models.  Secondly, an accurate depiction of a social network is very 

difficult to generate.  We believe that future research should focus on the following 

questions, which currently limit our ability to apply empirical data to disease models: 
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(1) What defines a contact for airborne diseases? (2) What are the appropriate time and 

spatial scales to sample a network of animals? (3) How does one scale-up a sample of a 

network to represent an entire population?, and (4) Given that population dynamics are 

an important factor in disease dynamics, how does one allow for births, deaths and 

changes of association patterns while maintaining the overall properties of a network?  

Studies on the tradeoffs faced by individuals in social systems with regard to disease 

and behavior could also be enlightening (e.g. Adamo et al. 2001, Boots and Knell 

2002).  In particular, individuals may modify their behavior to decrease their contact 

with others when they are at higher disease risk.  If empirical data were available, they 

could be incorporated into the network model framework by adjusting the association 

indices between infectious and susceptible individuals.    

In conclusion, the way that individuals associate with one another has a large 

effect upon the spread and dynamics of a disease.  Although there are a few questions 

that need to be answered before empirically-derived social networks can be widely 

applied, the methods presented here provide a flexible framework for combining 

behavioral data with models of disease dynamics.  Finally, our results suggest that a 

critical interplay exists between the time scales over which social interactions take place 

and those associated with a particular disease. An assessment of how likely it is that a 

given disease become an epidemic requires that we pay attention to social interaction 

and disease time scales, which then determines the appropriate temporal resolution for 

the collection of data determining the structure of social networks.  
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b) 

a) 

Figure 1. Network graphs of the buffalo association data for May 2002 (A) and 
November 2001 through October 2003 (B).  Balls represent individual buffalo and the 
lines represent all non-zero association values.  Individuals are distributed vertically 
according to herd membership. Herd membership was determined by cluster analysis 
(e.g. the solid, dotted and dot-dashed lines in Fig. 2A refer to the black, grey and light 
grey, vertices respectively in Fig. 1A). 
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Figure 2.  UPGMA cluster analyses of 64 radio-collared buffalo in the Kruger National 
Park for different periods of data collection: May 2002 (A), Nov 2001 through Oct. 
2002 (B), and Nov. 2002 through Oct. 2003 (C). Buffalo with higher association indices 
are linked at lower linkage distances.  In panel A the solid, dashed, and dot-dashed lines 
show three distinct herds present in May 2002.  Panel D compares the overall structure 
of the dendrograms by showing the linkage distance required to include a given 
proportion of nodes (see text). 
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Figure 3. Mean and standard deviations of the number of infected individuals for 50 
runs of the disease model using monthly association data from the entire study period 
(closed circles), 2002 (closed triangles), 2003 (open squares), or a mean-field model 
(open circles) where all individuals were connected but the force of infection per month 
was the same. All simulations used a transmission coefficient β of 0.3 and recovery 
probability γ of 0.1.  For simulations using one year of data, the same association 
matrices were used again the second year.   
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Figure 4. Monthly rainfall (mm) and Keeling’s clustering coefficient φ  of the 
association data during the course of the study.  Mean and standard deviations of the 
monthly rainfall was calculated using four rainfall stations in the Satara region of the 
Kruger National Park. Rainfall data from 2000 to 2001 are shown to contrast the below-
average wet season in 2002-03.  
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Figure 5. The number of individuals infected as a function of the speed of the disease.  
Slow diseases (dotted line and ×’s; β = 0.04, γ = 0.03) allow for more switching of 
infectious individuals between groups than faster diseases (solid line and +’s; β = 0.4, γ 
= 0.3), and hence for greater overall disease spread.  Simulations used monthly 
association values from November 2001 to October 2003.  Symbols show particular 
model runs, and lines represent the mean of 50 runs. 
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Figure 6. The maximum number of individuals infected at any point in time after 50 
time steps depends upon the amount δ of random rewiring of the association network at 
the beginning of each simulation (static) or cumulatively every time-step (dynamic).  
Dynamic and static simulations started with association data from November 2001; the 
buffalo system data point was based on all of the association data (i.e. unmanipulated).  
Disease parameters were β = 0.3, γ = 0.2.  Error bars represent the standard deviations 
from 50 stochastic simulations. (For clarity, δ values of the static simulations were 
increased slightly before plotting.) 
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Figure 7. Random rewiring of a proportion of connections δ in the association matrix 
each time-step decreases the similarity between association matrices over time. Buffalo 
data (squares) represent the mean and SD of the similarity between all available 
association matrices that are separated by a time lag of one to 23 months, whereas other 
lines represent the mean and SD of 50 simulations of the model starting with November 
2001 association data using different δ values. 
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Figure 8. The total number of individuals infected after 50 time-steps decreases with 
increasing variability in the time-averaged connection strength between pairs and 
decreasing temporal variability of connections within pairs (α) and the proportion of 
connections that are removed from the network.  See methods for a description of how 
α increases the variance in association indices. Error bars indicate the standard errors of 
200 simulations using September 2003 as the association matrix, β = 0.3, and γ = 0.1. 
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A disease-eye view of population structure: 

dueling timescales of host mixing and disease recovery 

 

 

 

P.C. Cross, J.O. Lloyd-Smith, P.L.F Johnson and W.M. Getz 
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Introduction 

At the turn of the 20th century, rinderpest swept through Africa, devastating 

populations of African buffalo and wildebeest (Sinclair 1977, Plowright 1982, 

Anderson 1995).  From 1929 to 1983 recurrent rinderpest outbreaks occurred in the 

buffalo and eland populations of Central and Eastern Africa, while many other ungulate 

species, such as duikers, steenbok, oribi, roan, sable and gerenuk, were relatively 

unaffected (Anderson 1995).  Why were some hosts affected more than others?  

Traditionally, this may have been explained by immunological differences in 

susceptibility.  We illustrate, however, a significant component of behavioral 

susceptibility exists that is not a simple function of group size or population density, but 

rather the interaction of group size and host movement. 

Risk of disease is assumed to be a significant cost of group living (Freeland 

1976, Moller et al. 1993), yet recent comparative analyses that investigated the effect of 

group size on the immune system or parasite diversity have had mixed results (Cote and 

Poulin 1995, Nunn et al. 2000, Nunn 2002, Stanko et al. 2002, Tella 2002, Nunn et al. 

2003a, Nunn et al. 2003b).  These mixed results may be due, in part, to the interaction 

of movement and group size, whereby reduced movement rates can mitigate some costs 

associated with larger group sizes.  Specifically, large groups will be exposed to fewer 

introductions of disease if movement between groups is sufficiently rare. 

Several recent theoretical studies have investigated the role of host population 

structure in the invasion or persistence of disease (Hess 1996, Swinton et al. 1998, 

Keeling 1999, Keeling and Gilligan 2000, Keeling and Grenfell 2000, Thrall et al. 2000, 

Park et al. 2001, Fulford et al. 2002, Keeling and Rohani 2002, Park et al. 2002, 
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Hagenaars et al. 2004).  These studies incorporated host movement into structured 

disease models either phenomenologically or mechanistically.  Models with mechanistic 

host movement explicitly move individuals from one group to another (e.g. Hess 1996, 

Thrall et al. 2000, Keeling and Rohani 2002).  Models with phenomenological host 

mixing assume that hosts do not move between groups but can infect others within and 

among groups simultaneously (e.g. Ball et al. 1997, Swinton et al. 1998, Hagenaars et 

al. 2004). The phenomenological approach may be appropriate for plant-pathogen 

systems (e.g. Park et al. 2001, Park et al. 2002), but can obscure the relationships 

between host movement, group size, and disease recovery in mobile host populations.  

For example, in a system where between-group movements are rare, an epidemic of an 

acute, highly-transmissible disease may run to completion within a group before any 

individual moves and spreads infection to a new group.  A mechanistic model more 

readily captures this possibility, while a model with phenomenological mixing between 

groups does not.  In this study, we investigate how the interactions of group size, 

movement and recovery affect the probability of invasion by disease into structured 

populations using a mechanistic mixing model.  

Lloyd-Smith et al. (2004) showed that transmission of sexually-transmitted 

diseases is well-described by a phenomenological mixing model when partner exchange 

is very rapid relative to the infectious period, and otherwise a mechanistic pair-

formation model is required.  Keeling and Rohani (2002) reached similar conclusions 

for a two-patch system where host mixing was frequent.  We expand upon these 

analyses by exploring a broad range of relative timescales of movement and disease 

recovery as well as group and population size.  Our analysis is motivated by questions 
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regarding the invasion of disease in wildlife populations where host movement between 

groups can be rare or relatively frequent (e.g. natal dispersal versus frequent fission and 

fusion of entire groups), infectious periods range from several days to several years (e.g. 

rabies versus bovine tuberculosis), and group sizes range from monogamous pairs to 

thousands of individuals.  We focus on directly-transmitted diseases where hosts may 

move among groups, but contacts that are sufficient for disease transmission occur only 

within a group.  These groups may reflect either social or spatial structure in the host 

population. 

The basic reproductive number, R0, is the expected number of infections caused 

by a typical infectious individual in a completely susceptible population (Anderson and 

May 1991).  The R0 statistic has been the traditional standard by which epidemiologists 

and disease ecologists quantify the potential growth of a disease (Anderson and May 

1991, Diekmann and Heesterbeek 2000).  In stochastic models, a disease cannot invade 

the entire system when R0 ≤ 1 and has a non-zero probability of invading only when 

R0>1.  In the simplest case of an SIR (Susceptible-Infected-Recovered) disease 

(Anderson and May 1991), R0 is the ratio of two rates, or timescales: the infection rate 

and the recovery rate.  If transmission is density independent, with rate parameter β, and 

the recovery rate γ is constant, then γβ=0R  (McCallum et al. 2001).  Further, the 

average length of the infectious period is 1/γ.  We use a stochastic metapopulation 

model to illustrate the importance of another ratio of two timescales, specifically the 

ratio of the rates at which hosts move between groups (µ) and recover from disease (γ).  

For the simple case of constant recovery and no mortality, this ratio, µ/γ, is the expected 

number of times an infectious individual will move between groups. 
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First, we describe the simulation model and explore how the interactions of 

group size, host movement, and infectious period affect the probability of invasion by a 

disease.  Next, we describe a relatively new metric of disease invasion, , which is the 

number of groups that are expected to become infected from the initially infected group 

(Ball et al. 1997).  In other words,  is the group-level analogue of R

*R

*R 0.  We then use 

the simulation model to estimate R0 and  and demonstrate that  is a better predictor 

of disease invasion in structured populations with mechanistic host movement between 

groups.  We conclude with a number of testable predictions that follow from the ideas 

presented here. 

*R *R

 

Demonstration of Dueling Timescales Effect 

We use an individual-based, stochastic, discrete-time SIR model to investigate 

how the dueling timescales of host movement and disease recovery affect the ability of 

a directly-transmitted disease to invade a spatially, or socially, structured population.  

The total host population is evenly divided into an array of groups.  The host population 

is further subdivided into susceptible, infected, and recovered classes where S, I, and R 

are respectively the number of hosts in each category.  Three processes are described in 

the model: movement between groups, infection, and recovery of infected hosts.  Since 

the intent of the model is a qualitative description of different interactions, we have 

simplified these processes as much as possible.  For the case presented here, we 

consider a successful invasion to have occurred when the disease becomes a pandemic 

and infections occur within all groups of a structured population.  This narrow 

definition does not count disease establishment within a single patch as an invasion, but 
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instead emphasizes the spread of the disease among groups which is the phenomenon of 

interest here. 

We assume that movement between groups is density independent, and all 

individuals have a constant probability, µ, of leaving their current group each time step.  

Groups are organized on a square lattice and individuals can only move to their four 

nearest-neighboring groups.  To avoid boundary effects, opposite edges of the array are 

connected to create a torus.  In the supplementary material, we expand the analysis to 

include a loop structure, where each group has only two nearest-neighbors, and a 

spatially implicit array, where individuals can move to any other group within a time 

step (equivalent to the ‘island’ model used previously (Hess 1996, Fulford et al. 2002)).  

We assume that infected individuals recover to an immune class with a constant 

probability, γ, per time step.  

To isolate the effects of host movement and facilitate the comparison of disease 

dynamics in a range of population structures, we assume disease transmission is 

frequency-dependent (Getz and Pickering 1983).  Thus the probability of infection per 

time step for each susceptible in group i is given by the expression ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

i

i

N
I

βexp1 , 

where β is the transmission coefficient, Ii is the number of infected individuals in group 

i, and Ni is the total number of individuals in group i.  Since we do not incorporate host 

demographic dynamics, the assumption of frequency-dependent rather than density-

dependent transmission represents a rescaling of the transmission coefficient β.  If 

contact or transmission rates increase with population density (McCallum et al. 2001), 

then disease invasion would be even less likely when the population is divided into 
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many small groups than indicated by results presented here, but our overall conclusions 

about the interaction of movement and recovery timescales would still hold. 

In a continuous-time model with frequency-dependent transmission and a 

constant recovery rate, R0 = β/γ (Anderson and May 1991, McCallum et al. 2001).  For 

the discrete-time model used here, β/γ is an approximation of R0, which works well 

when the probability of infection per timestep is small and group sizes are relatively 

large.  The approximation does not change our qualitative conclusions, however, so for 

clarity we refer to the ratio β/γ as R0.  We also assume that disease invasion is fast 

relative to birth and death rates, so the total population size is constant.  Each simulation 

starts with one infected individual, and all groups begin with the same number of 

individuals.  Since our spatial model was symmetric, group sizes remained relatively 

constant during the course of each run. 

We begin by comparing the dynamics of two diseases with the same R0 value 

(β/γ) but where one disease is slow (i.e. a chronic disease with a relatively long 

infectious period; β = 0.05, γ = 0.01) while the other is an order of magnitude faster (β = 

0.5, γ = 0.1).  For time steps of 1 day, these parameters correspond to mean infectious 

periods of 100 or 10 days, respectively. We simulated the invasion of these two diseases 

in three different host population structures: 1 group of 1000 individuals (equivalent to 

the common “mean-field approximation” of random mixing among all individuals), 25 

groups of 40 individuals, and 100 groups of 10 individuals. 

As expected, subdividing the population into more groups decreases the 

probability of pandemic (Wilson and Worcester 1945) because it decreases the average 

group size and increases the number of between-group jumps the disease must make to 
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penetrate the entire population.  A less obvious effect is that slower diseases are more 

likely to invade a structured population, even if they have the same R0 as a faster 

disease.  For the case of 100 groups of ten individuals, the slow disease (γ = 0.01, β = 

0.05) infected, on average, far more individuals than the fast disease (γ = 0.1, β = 0.5) 

before the disease died-out (658 ± 45 SE compared to 19 ± 2.3 SE; Fig. 1).  This typifies 

the interaction of the host movement and disease recovery timescales: diseases with 

longer infectious periods allow more time for host mixing to occur and thus experience 

populations that are effectively larger.  When the movement rate is zero, neither a fast 

nor slow disease will invade the entire population regardless of the value of R0.  When 

movement is very frequent, both the fast and the slow disease are likely to invade the 

structured population provided that R0>1.  

The simulated epidemics in the one-group and 100-group populations differ 

markedly, but were less different for the slow disease compared with the fast disease.  

In other words, approximating a structured population by a mean-field model (i.e. a 

single group with homogenous mixing of hosts) is more appropriate for slow diseases 

than fast diseases (Fig. 1; Cross 2004).  The faster the disease, the more important it is 

to incorporate the spatial/social structure into any analysis.  The mean infectious period 

(1/γ) defines the natural disease timescale, and when movement occurs on this timescale 

or slower then movement should be incorporated mechanistically, rather than 

phenomenologically.    

Next we examine a range of host movement and recovery probabilities.  The 

proportion of the population infected over the course of an epidemic depends on the 

expected number of group changes per infectious lifetime (µ/γ), on R0 (β/γ), and on 
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group size (Fig. 2).  When movement is infrequent relative to the recovery rate, R0 has 

little predictive ability because few infections result for all values of R0 (Fig. 2a).  If 

movement is frequent relative to recovery, increasing R0 increases the average 

proportion of the population that becomes infected (Fig. 2a), consistent with predictions 

from mean-field models (Anderson and May 1991, Diekmann and Heesterbeek 2000).  

Increasing the host group size decreases the amount of host movement required for the 

disease to invade the entire population (Fig. 2b).  Larger groups experience larger 

within-group outbreaks, and hence more infected individuals dispersing from each 

infected group (given density-independent movement).  For our model with frequency-

dependent transmission, the total number of infected individuals is, on average, a fixed 

proportion of group size; for density-dependent transmission, the proportion infected 

would increase with group size, causing greater increases in the number of infected 

dispersers. 

For high values of R0, the ratio µ/γ yields a sharp threshold for invasion (Fig. 

2b).  As a rule of thumb, a disease will invade the metapopulation if µ/γ is greater than 

the reciprocal of the expected number of individuals that will be infected within a single 

group.  This makes intuitive sense because in this model system µ/γ is the expected 

number of between-group movements made by each infectious individual.  Thus, µ/γ 

multiplied by the expected number of infected individuals is the expected number of 

infected dispersers per group—which must exceed one for a pandemic.  When R0 is 

high, almost all individuals in a group will be infected, so for a pandemic µ/γ should be 

greater than the reciprocal of the average group size.  For example, if the group size is 
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200, then, on average, more than one infectious individual in 200 will need to move 

between groups (i.e. µ/γ  > 0.005) for a pandemic to occur. 

The mean proportion of the population that becomes infected, shown in Fig. 2, 

obscures the underlying distribution of the number of infections per epidemic (i.e. over 

different runs of the stochastic simulation).  It is incorrect to assume that the mean of 

this distribution is similar to the median or mode, because in many cases the distribution 

is bimodal with peaks centered on zero and one or close to one (Fig. 3c, f, i).  When 

movement is very infrequent relative to recovery, the probability of a pandemic is close 

to zero because the disease almost always dies out within the initial group (Fig. 3a,d,g).  

When movement is frequent, then the disease tends to either die out stochastically 

within the initial group or invade most or all of the metapopulation (Fig. 3 c, f, i), with 

the relative frequencies of die-out versus invasion determined by R0 as in mean-field 

models (Diekmann and Heesterbeek 2000).  With intermediate movement rates 

variation is considerable with regard to the extent to which the disease penetrates the 

population (Fig. 3b). 

These results (Fig. 2a, Fig. 3) agree with previous studies when µ/γ is either 

much greater than one or close to zero.  When µ/γ is large, then group structure of the 

population is less important and β/γ is a good predictor of disease invasion (Fig. 2a).  

When µ/γ is close to zero then β/γ is a good predictor of disease invasion within the 

initial group, but the probability of the spread of disease between groups is rather small.  

For the intermediate scenarios we analyzed, however, the ratio of movement to recovery 

rate (µ/γ) has greater influence on the invasion of a disease than β/γ.  
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Predictors of a Pandemic  

Recent theoretical work has extended the R0 concept to account for depletion of 

the susceptible pool (Keeling and Grenfell 2000), host spatial structure (Keeling 1999, 

Fulford et al. 2002), and populations with heterogeneous infectiousness or susceptibility 

(Diekmann and Heesterbeek 2000).  However, even after incorporating these effects R0 

may be misleading in metapopulations with limited mixing, since R0 as it is traditionally 

used, is an individual-based measure.  Ball and colleagues demonstrated that the 

individual-based R0 is not the best predictor of disease invasion in structured host 

populations and introduced a group-level reproductive number, , which is the average 

number of groups infected by the initially infected group (Ball et al. 1997, Ball 1999, 

Ball and Lyne 2001, Ball and Neal 2002, Ball et al. 2004).  This finding has been 

echoed in the context of reproductive fitness of a new mutant in a metapopulation 

(Gyllenberg and Metz 2001, Metz and Gyllenberg 2001).  In a model with 

phenomenological mixing,  is the formal threshold criterion for invasion of a 

disease into an infinite number of finite-sized groups (Ball et al. 1997).   

*R

1>R

R

R

R

*

The phenomenological mixing model used by Ball et al. facilitates analysis, but 

to demonstrate the utility of the  metric in the context of interacting timescales of host 

movement and recovery, we applied our simulation model with explicit host movement 

between groups.  For the model described above, we estimated R

*

0 and  by tracking 

the mean number of infections caused by the initially infected individual or group, 

respectively.  Then we averaged these estimates of R

*

0 and  over many runs of the 

stochastic model.  When a susceptible individual was infected and two or more infected 

individuals were present within the group, we randomly allocated the infection to only 

*
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one of those infectious individuals.  To estimate , we tracked the number of groups 

that were infected by individuals that were themselves infected within the index group.  

Infected individuals had to move to a completely susceptible group and cause infection 

there in order to contribute to .  When individuals from multiple groups moved to a 

susceptible group and caused an infection, we randomly allocated the infection to one of 

the individuals (and thus its source group).  The mean estimates over many simulations, 

denoted as  and , are “empirical” in the sense that they are based on data collected 

from simulated epidemics mimicking epidemiological contact-tracing data.  As 

estimates from model output, they incorporate the effects of spatial structure, host 

movement, and depletion of the susceptible pool.  Thus they will differ from traditional 

analytical R

*R

R

ˆ ˆ

R

*

0R *R

0 and  values, which assume an infinite susceptible population and, 

hence, overestimate the value of these parameters when populations have a finite size.     

*

We simulated the model using a range of transmission (β) and movement (µ) 

probabilities, a fixed recovery probability γ = 0.1, and an 11x11 toroidal array with ten 

individuals per group and nearest neighbor movement.  Each parameter set was 

simulated 1000 times to generate mean values of  and .  We then plotted the 

relationship between the model output variables , , and the proportion of the 

population infected (Fig. 4, Fig. S2.).  Each line in Figure 4 corresponds to a fixed 

within-group transmission rate (β) and a range of movement probabilities increasing 

from left to right.   

0R̂ *R̂

0R̂ *R̂

 The empirical individual-level  is not a good predictor of the mean proportion 

infected: even when  is much greater than one, the mean proportion infected may be 

0R̂

0R̂
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low depending upon the movement probability (Fig. 4a, Fig. S2).  Also for different β, 

the proportion infected appears to show a threshold at different values of .  The 

group-level , on the other hand, is a much better predictor of a pandemic in a 

structured population (Fig. 4b).  In an idealized metapopulation,  is the threshold 

above which there is a finite probability of disease invasion (Ball et al. 1997).  In our 

simulations, the proportion infected begins climbing at  and rises most steeply 

around  (Fig. 4b).  This gradual transition around the threshold is typical of 

stochastic epidemic models, particularly with spatially-constrained mixing, because the 

invasion has many chances to die out before invading the entire population.  When 

transmission rates (and hence R

0R̂

*R̂

1* >R

1ˆ
* ≈R

2ˆ
* ≈R

0) are low,  is small for all values of movement (Fig. 

4b, β = 0.1).  When transmission is intermediate and movement is frequent, the disease 

will either stochastically die out in the initial group or invade the entire population 

(Fig.3d, e, f), resulting in intermediate values of  and mean proportion infected (Fig. 

4b, β = 0.5 and 1).  Finally, when both movement and transmission rates are high,  

and the mean proportion infected are also high.   

*R̂

*R̂

*R̂

 

Future Empirical Research 

These findings suggest important directions for empirical studies, as well as a 

number of testable predictions.  Previous analyses of disease presence/absence in 

different host social structures have not considered the interaction between movement 

rates and the duration of the infectious period (e.g. Cote and Poulin 1995, Nunn et al. 

2000, Altizer et al. 2003, Nunn et al. 2003a, Nunn et al. 2003b).  Our results illustrate, 
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however, that it is the relative timescales of movement, recovery, and infection that 

determine the probability of a pandemic.  A slow, chronic disease may “perceive” a host 

to be relatively well-mixed with frequent movement of individuals among groups.  An 

acute disease will perceive that same host population to be more structured because 

movements between groups are less frequent relative to the timescale of the infectious 

period (Cross et al. 2004).  We hypothesize that all else being equal, chronic diseases 

will be more likely to penetrate structured populations than acute diseases.  Conversely, 

we hypothesize that behaviorally susceptible host species, with large groups and 

frequent movement, are likely to be more heavily impacted by acute diseases than hosts 

with small groups and infrequent movement.  Thus the ratio of acute to chronic diseases 

found in different host populations should increase as a function of group size and 

movement rate.   

A major focus of recent disease ecology has been how transmission or contact 

rates depend on population density (e.g. Bouma et al. 1995, Begon et al. 2003), but for 

metapopulations, we have shown that movement rates are also critical to understanding 

disease invasion (Figs. 2-4).  Despite the importance of host movement, very few 

studies have been published that examine the amount of mixing between groups of 

many wildlife species.  Our results can help to guide the design of field studies intended 

to estimate host movement for disease models.  The proportion of individuals that 

should be tracked and the duration of the study will depend upon the infectious period 

of the disease as well as the average group size of the host.  As group sizes and 

infectious periods increase, the amount of movement required for a pandemic to occur 

decreases.  Low movement rates, however, will require researchers to track more 
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individuals to accurately estimate the amount of movement among groups.  If group 

sizes are large, say 200, and the disease is highly infectious, say , then only 1 in 

approximately 200 infectious individuals needs to switch between groups for a 

pandemic to become likely (Fig. 2b).   

50 >R

Researchers may estimate movement between groups using genetic data or 

tracking of known individuals (Waser et al. 1994, Koenig et al. 1996, Cain et al. 2003, 

Nathan et al. 2003).  Radio-tracking or re-sighting data are more effective than genetic 

methods as long as individuals frequently move between groups relative to the duration 

of the study.  Genetic methods of estimating movement will be relevant only for chronic 

diseases in large groups, and their use in a disease context involves at least three major 

assumptions:  1) past movement accurately reflects current movement; 2) short-term 

movements that are likely to be missed in genetic signatures (e.g. foraging rather than 

mating) are unimportant to disease dynamics; and 3) moving individuals are as 

reproductively successful as non-moving individuals (Waser et al. 1994).  

 

Future Theoretical Research 

Our findings emphasize that the group-level reproductive number  is a critical 

determinant of invasion success in structured populations.  Analytical formulations of 

 in systems with explicit host movement may clarify the important interaction 

between timescales of host movement and disease recovery, and help to formalize the 

rule of thumb proposed above.  Previous work on  has focused on models with 

phenomenological host mixing and an infinite number of groups such that all new 

infections are in susceptible groups (Ball et al. 1997, Ball and Neal 2002, Ball et al. 

*R

*R

*R
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2004).  Analogous to recent developments in the theory of  (Keeling 1999, Keeling 

& Grenfell 2000), further work on  should consider finite populations with spatial 

constraints on movement.  Longer dispersal distances and spatial configurations that 

increase the number of neighboring groups (Supplementary Material) will mitigate the 

depletion of susceptible groups and facilitate the invasion of a disease.  These effects 

are implicitly incorporated into our  and  estimates, but analytical exposition 

would help advance our understanding.  

0R

*R

0R̂ *R̂

In our stochastic model, we made a number of simplifying assumptions that 

could be relaxed to make our simulations more realistic.  First, the assumption of a 

constant probability of recovery per time step, γ, results in a geometrically distributed 

infectious period.  The effects of alternative infectious period distributions on  are 

unclear (cf. Keeling & Grenfell 2000).  For instance, with a fixed infectious period, time 

spent in the home group while infectious will increase the number of local infections, 

but will also diminish the infectious period in any new group, thereby decreasing the 

number of infections elsewhere.  A fixed infectious period would also cause fewer 

individuals to recover before moving, compared to the geometric infectious period (with 

its mode at one timestep).  Second, we have assumed that movement between groups 

occurs instantaneously and without mortality, but if individuals spend time or die during 

movement their infectious lifetime within the next group is reduced, thereby 

decreasing .  Finally, we assumed that disease invasion was fast relative to the 

timescale of host birth and death.  This is less likely to hold for chronic diseases, or for 

acute diseases that lead to rapid mortality rather than recovery.  Both natural and 

disease-induced mortality shorten the infectious period and thus reduce R

*R

*R

0 (Anderson 
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and May 1991) and .  Our broad conclusions about the interaction of host movement 

and disease recovery timescales should still apply, but investigating the effects of host 

demographics and disease mortality on  would be an important extension of this 

study. 

*R

*R

 

Conclusion 

Traditionally, epidemiologists and disease ecologists have focused on R0 >1 as a 

threshold for disease invasion (e.g. Anderson and May 1991, Diekmann and 

Heesterbeek 2000).  We have shown that in metapopulations the relationship between 

invasion of disease and an individual-level R0 is often weak.  Even for very large values 

of R0, a pandemic is unlikely if the expected number of times an individual will move 

between groups during their infectious lifetime (µ/γ) is low (Fig. 2).  Pandemics in 

structured populations require both within-group and between-group transmission, and 

the group-level reproductive number  is a better predictor than the individual-level 

R

*R

0 for these systems (Fig. 4).  Results from our individually-based stochastic model 

support the analytical results of Ball et al. (Ball et al. 1997, Ball and Neal 2002, Ball et 

al. 2004), which proved that  is the threshold for disease invasion in a population 

with group structure.  As a general rule of thumb, the individual-level R

1* >R

0 must be greater 

than one and the expected number of group changes while infectious (µ/γ) multiplied by 

the average group size must be greater than one for a pandemic to occur (Fig. 2b).   

Chronic diseases with longer infectious periods allow for more mixing to occur 

between groups.  As a result, chronic diseases will perceive more thoroughly mixed 

host populations and exhibit dynamics that are closer to those predicted by mean-field 
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models than acute diseases (Fig. 1).  For the same R0, chronic diseases are more likely 

to invade structured populations than slow diseases.  ‘Slow’ and ‘fast’ diseases are 

relative terms: a fast, acute disease in a host population with frequent movement 

between groups may well behave like a relatively slow disease in a population with less 

frequent movement.  The probability of a pandemic in a structured population is thus an 

emergent property of the interaction of host and parasite demography and behavior, 

incorporating a dimension of host behavioral susceptibility arising from group size and 

movement rates.  The results presented here, and in a recent paper by Lloyd-Smith et al. 

(2004), suggest that when contact, movement, birth and death processes occur on a 

timescale similar to that of the disease (i.e. the infectious period), these processes 

should be incorporated mechanistically into disease models. 

    109



 
a) 

0  50 100 150
0  

200

400

600

Time

N
um

be
r 

in
fe

ct
io

us

Acute disease
      γ  = 0.1 
      β  = 0.5   

 

b) 

0 50 100 150
0  

200

400

600

Time

N
um

be
r 

in
fe

ct
io

us

0 0 0 

Chronic disease  
      γ = 0.01
      β = 0.05 

 

Figure 1. Disease invasion depends upon population structure (green circles: 1 group of 
1000 individuals; red points: 25 groups of 40 individuals; blue crosses: 100 groups of 
10 individuals) and the duration of the infectious period.  A mean-field model of one 
group (green circles) is a worse approximation of a structured population for an acute 
disease with γ = 0.1 (a) than a chronic disease with γ = 0.01 (b).  For both diseases β/γ = 
5, but the slow disease causes more infections in the structured population.  Lines 
represent the mean of 100 simulations.  Simulations with 25 or 100 groups were run on 
a toroidal spatial structure with a movement probability µ of 0.01, such that µ/γ=0.1 (a) 
or 1 (b). 
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Figure 2. The interaction of movement (µ), transmission (β), and group size determines 
the mean proportion of the population that becomes infected.  In (a) β varied from 0.2 to 
2 while group size was fixed at 10.  In (b) group size was increased from 5 to 200 while 
β was fixed at 2 (β/γ=20).  Increasing β/γ only affected the proportion infected when 
movement was frequent (a).  Larger group sizes require less movement for the disease 
to invade (b). Each parameter set was simulated 1000 times on an 11x11 toroidal array 
of groups with a constant recovery probability γ of 0.1.   
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Figure 3. Histograms of the proportion of individuals infected during an epidemic for 
different transmission (β) and movement (µ) values scaled by the probability of disease 
recovery (γ).  Each parameter set was simulated 1000 times on an 11x11 toroidal array 
of groups with 10 individuals each and a recovery probability γ of 0.1.   
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a) 

 

b) 

 

 

Figure 4.  can be substantially greater than one and yet not cause a pandemic (a), 

whereas  is a much better single predictor of the mean proportion of individuals 
infected (b).  Each line represents a fixed transmission parameter β and a range of 
movement probabilities from zero to one (increasing from left to right) sampled on a log 
scale.  Each parameter set was simulated 1000 times on an 11x11 toroidal array of 
groups with 10 individuals each and a recovery probability γ of 0.1. 

0R̂

*R̂
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Supplementary Material 

In the main text we focused primarily on an 11x11 toroidal array of groups with 

differing group sizes, and hence varying population sizes.  Here we expand our analysis 

to investigate the effect of total population size while group size is kept constant by 

varying the number of groups.  The effect of population size is minimal provided the 

group size remains fixed (Fig. S1a).  At low values of µ/γ though, the proportion 

infected is higher for the 5x5 array than the 11x11 or 21x21 array simply because the 

initial herd represents a greater proportion of the population.  The difference shown in 

Fig. 2b thus can be interpreted as a group size effect rather than an effect of increasing 

total population size.  

We also investigated the effect of two other spatial configurations: a loop with 

nearest-neighbor movement and a spatially implicit array where an individual could 

move to any other group in one time step.  As expected, disease invasion of the loop 

array requires a higher µ/γ ratio than invasion of the torus due to the depletion of 

susceptible groups (Fig. S1b).  On a loop an infected individual dispersing from any 

given group has only two neighboring groups (compared to four in the torus) that may 

have been infected already by a previously dispersing individual.  In contrast, invasion 

of the spatially implicit metapopulation requires less host movement than the torus 

because all groups are neighbors, thus minimizing the depletion effect by maximizing 

the number of neighboring groups. 

Finally, we present a more complete picture of the relationships among ,  

and the mean proportion infected than shown in Fig. 4.  Similar to Fig. 4, we simulated 

range of transmission and movement probabilities on an 11x11 toroidal array of groups 

0R̂ *R̂
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with 10 individuals each.  In contrast to Fig. 4, in Fig. S2 each line represents a fixed 

movement probability, but a range of transmission coefficients.  When movement is 

infrequent, higher transmission rates cause an increase in , but  and the mean 

proportion infected are relatively unaffected.  Increasing the movement probability 

increases , for a given value of β.  Note that when  is near one then both  and 

the average proportion infected are low: if the disease is likely to die out within a patch 

( 1) more frequent movement will not lead to a pandemic.  When  is greater than 

one it is not a strong predictor of the mean proportion infected because the penetration 

of the disease into the metapopulation depends upon  and the probability of host 

movement.  For a pandemic to occur both  and  must be significantly greater than 

one (Fig. S2).  

0R̂ *R̂

*R̂ 0R̂ *R̂

0R̂ ≈ 0R̂

*R̂

0R̂ *R̂

Note that there are regions of the -  parameter space where lines are absent.  

If  then  is not greater than one 1 because the disease is unlikely to invade 

multiple groups if extinction is likely within the initial group.  Further, for the 

simulations we conducted with a recovery rate of 0.1,  was usually less than the 

group size because of the competition amongst infectious individuals to infect the 

remaining susceptibles within the group.  can exceed the group size, however, if 

movement rates are high and recovery rates are low. 

0R̂ *R̂

1ˆ
0 ≤R *R̂

0R̂
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Fig. S1.  The mean proportion of the population that becomes infected hardly depends 
on the number of groups, or individuals, in the population (a), but does depend on the 
spatial array (b). In (a) the spatial configuration is a torus, but the number of groups 
(and hence total population size) varies.  In (b) all simulations have 121 groups in 
different spatial configurations.  Each parameter set was simulated 1000 times, with a 
group size of ten and a recovery probability γ of 0.1.   
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Figure S2. The mean proportion of individuals that are infected is a function of the 
average  and average .  Each line represents averages of 1000 simulations with a 

fixed movement probability and varying transmission rates.  Note  can be 
substantially greater than one and yet not cause a pandemic if movement is infrequent.  
All parameter sets were simulated on an 11x11 toroidal array of groups with 10 
individuals each and a recovery probability γ of 0.1. 
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