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Abstract

Leaf area index (LAI) is an important structural variable for
quantitative analysis of the energy and mass exchange char-
acteristics of a terrestrial ecosystem. Previous research on es-
timating forest LAI by remote sensing is limited to the use of
conventional multispectral data. Methods used for LAI esti-
mation involved primarily simple statistical relationships be-
tween LAI and vegetation indices (VI) derived from remote
sensing data.

In this paper, the potentials of an imaging spectrometer,
the Compact Airborne Spectrographic Imager (CASI), have
been studied for coniferous forest LAI estimation using three
types of modeling techniques: univariate regression, multiple
regression, and vegetation-index (VI) based LAI estimation.
Four study sites have been selected along a forest transect in
Oregon. LAI measurements were collected from these study
sites. CASI data of two imaging modes — spatial and spectral
— had been calibrated and corrected. The relationships be-
tween the LAI measurements and the corrected CASI data
were then explored.

Results indicate that the CASI data acquired with the two
imaging modes have similar accuracies for LAI prediction.
All three LAI estimation methods resulted in LAIs with rea-
sonably low root-mean-squared errors (RMSEs). The use of the
normalized difference vegetation index (NDVI) produced more
accurate LAI estimates than did the use of channel ratio for
the univariate regression and the VI-based LAI prediction
methods. For the univariate regression, a non-linear hyper-
bola relationship between the LAI and the NDVI was the most
appropriate for LAI estimation. In this study, the VI-based LAI
estimation method has proven to be simple to use and effec-
tive.
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Introduction

Leaf area index (LAI), the projected leaf surface area per unit
ground area, is an important structural variable for quantify-
ing the energy and mass exchange characteristics of a terres-
trial ecosystem (Lathrop and Pierce, 1991; Herwitz et al.,
1990; Spanner et al., 1990a; Nemani and Running, 1989;
Running et al., 1989; Curran and Williamson, 1987; Asrar et
al., 1984). It is probably the most useful parameter to be ex-
tracted from remote sensing data for crop yield prediction
and crop stress assessment in agricultural studies, and for es-
timation of forest canopy characteristics and determination
of forest exchange rates of carbon dioxide, water, and oxy-
gen. For instance, the relationships between LAI and vegeta-
tion indices derived from various kinds of remote sensing
data were studied in order to estimate a number of agro-
nomic variables (Curran, 1983; Asrar et al., 1984; Baret et al.,
1989; Batista and Rudorff, 1990; Clevers, 1991). That a strong
correlation between LAI and vegetation indices exists was re-
ported in those studies. Running et al. (1989) used forest LAI
as an important variable in a forest biogeochemical (FOREST-
BGC) model to map regional forest evapotranspiration and
photosynthesis by coupling satellite sensor data with ecosys-
tem simulation. Based on an assumption that an equilibrium
exists between climate, soil water-holding capacity, and max-
imum leaf area in water-limited coniferous forest ecosystems,
Nemani and Running (1989) developed a quantitative rela-
tionship among the three factors. This relationship allows
the prediction of either equilibrium LAI or soil water-holding
capacity if the other is known. In addition, the determination
of LAI by remote sensing would also allow calculation of
canopy photosynthesis and evapotranspiration over a global
scale at a relevant time interval (Gutman, 1991; Spanner et
al., 1990b).

Running et al. (1986) attempted to estimate the LAI of
coniferous forests using an airborne Thematic Mapper Simu-
lator (TMS) data by establishing a relationship between the
forest LAI and the ratio of a near infrared (NIR) band to a red
(R) band. The LAI of temperate coniferous forests across a re-
gional gradient was found to be related to the ratio of NIR to
R TMS spectral bands (Peterson et al., 1987). Using multitem-
poral Advanced Very High Resolution Radiometer (AVHRR)
data, Spanner et al: (1990a) derived the normalized differ-
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TaBLE 1. TREE SpeCiES, NUMBER OF LAl MEASUREMENTS, AND AVAILABLE CASI IMAGERY AT EACH STUDY SITE

Dates and Resolution (m) of CASI Data

Tree Species No. of LAI Spatial-mode Spectral-mode
Red Alder, Western Hemlock, Sitka 13 16 May 16 May
Spruce (Site 1) (1.12X%2.46) (2.23%x2.46)
Douglas Fir (Site 2) 11 16 May 16 May
(2.23X%2.46) (2.23X9.45)
Western Hemlock, Douglas Fir 11 15 May 15 May
Red Alder (Site 3) (2.23%x2.46) (2.23%x9.45)
Ponderosa Pine (Site 5) 8 20 May 20 May
(1.71%2.5) (2.23%9.45)

ence vegetation index (NDVI) for large area LAI studies. They
found that there was an asymtotic relationship between max-
imum July AVHRR NDVI data and the seasonal LAI maximum
of coniferous forests of the western United States while the
winter minimum NDVI values could not be explained entirely
by phenological reduction of LAI probably due to some abi-
otic factors, After examining the relationships between LAI of
temperate coniferous forests and Landsat Thematic Mapper
(T™) spectral bands, ratios, and transforms, Spanner et al.
(1990b) found that LAI estimation was affected by canopy
closure, understory vegetation, and background reflectance.
LAI changes of closed-canopy pine plantations in central
Massachusetts were evaluated using Landsat T™M data (Her-
witz et al., 1990) and it was concluded that the T™ data
might provide a more reliable guide to changes in the LAT of
closed canopy plantations at local scales than field measure-
ments based on allometric equations. Seasonal LAI in slash
pine was estimated based on the NDVI derived from Landsat
TM data of three different seasons for the study of forest sea-
sonal dynamics (Curran et al., 1992). A discrepancy between
LAI values derived from ground-based canopy transmittance
and those from Landsat TM NIR/R ratios has been noted in La-
throp and Pierce (1991). The differences are especially evi-
dent at low overstory LAI levels where differential
background reflectance becomes important. A spectral deriv-
ative method was used to suppress the effects of background
soil on tree spectra leading to improved correlation between
LAI values measured from a low canopy closure ponderosa
pine stand and data from the Compact Airborne Spectro-
graphic Imager (CASI) (Gong et al., 1992).

Most previous studies on forest LAI estimation using re-
mote sensing methods are primarily limited to the use of
conventional multispectral data with a selected number of
relatively broad spectral bands. Most of these studies have
focused on finding a linear or non-linear relationship be-
tween LAI and various vegetation indices (Vi) derived from
remote sensing data. In a recent study, multitemporal re-
motely sensed data collected on three different airborne plat-
forms over a transect of coniferous forest stands in Oregon
were analyzed with respect to seasonal LAI (Spanner et al.,
1994). Four different sensors were used including the broad
spectral-band TMS and three narrow spectral-band high spec-
tral resolution sensors: the CASI, the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS), and a Spectron
SE590 spectroradiometer. Strong logarithmic relationships
were observed between seasonal maximum and minimum
LAI and the NIR/R for all these sensors (R? = 0.82 to 0.97).
The correlation was examined at the forest stand level for all
six study sites selected in the Oregon Transect Ecosystem
Research (OTTER) project (Peterson and Waring, 1994).

In this study, efforts were focused on estimating LAI, at a
level of spatial scale smaller than that in Spanner et al.
(1994), using data collected from a CASI instrument over four
of the six OTTER coniferous forest sites. CASI acquires images
in two modes, spatial and spectral, with very high spectral
resolution (Anger et al., 1990). The objectives of this paper
are

® to determine what technique is more appropriate for conifer-
ous LAT estimation using CASI data, and

® to compare the effectiveness of the spatial and spectral imag-
ing modes of CASI for LAI estimation.

The Study Sites

The six OTTER study sites are located along a temperature-
moisture gradient across west-central Oregon, called the
Oregon transect. They are Cascade Head (Site 1), Waring’s
Woods (Site 2), Scio (Site 3), Santiam Pass (Site 4), Metolius
River (Site 5), and Juniper (Site 6) (Peterson and Waring,
1994). The transect cuts across seven vegetation zones from
the western coast to the eastern high desert of Oregon. The
distributions of various zones and locations of study sites as
well as coniferous species composition of each zone were
described in detail in Gholz (1982). The LAI variation (from
> 10 to < 1) across this transect is controlled by both tem-
perature and moisture (Runyan et al., 1994). Canopy closure
is greater than 90 percent for some of the western stands,
and is less than 50 percent for some of the eastern stands.
The understory vegetation along the transect consists of
highly varying proportions of ferns, shrubs, and various
grasses, with little exposed rock or soil along the first four
study sites. Sites 5 and 6 have about 10 to 30 percent of soil
exposure. In this study, only four sites — Sites 1, 2, 3, and 5
— were used. Major tree species for the four study sites are
listed in Table 1.

Data Collection and Preprocessing

Field LAI Measurements

An LAI-2000 Plant Canopy Analyzer (PCA) was used in the
field to measure forest LAL The operation instructions for the
LAI instrument were followed carefully to make sure that the
measured LAIs were within 10 percent of the mean values
with a 0.95 confidence level (LI-COR Inc., 1990). From 15
May to 22 May, 1991, a total of 58 LAI measurements were
taken by the authors at the six study sites. Out of these, 52
LAI measurements were collected under coniferous forest
stands. The time inveolved in taking one LAI measurement
ranged from a few minutes to half an hour depending on the
accessibility of the site and the weather condition. The num-
bers of LAI measurements for four of these study sites are



listed in Table 1. Each LAI measurement represents an aver-
age of five to ten point PCA readings which were taken in an
area between 40 and 100 m?. The locations of LAI measure-
ments in each study site were selected based on the canopy
closure, age of stands, and nutrient level so as to make them
representative of the variability in the site. Separated at least
10 m away from each other, the LAl measurements were con-
sidered as independent samples. The exact locations from
which the LAI measurements were taken were marked on
color infrared aerial photographs. These have been used as
references for spectral data extraction from CASI images. A
conversion factor has been used for each forest species to
transform readings from an LAI-2000 PCA to LAI values (LI-
COR Inc., 1990).

CASI Data Acquisition and Calibration

CASI is a relatively portable imaging spectrometer developed
for use on board small aircraft or in laboratories. Due to the
limitation of data recording rate, CASI is operated in two
modes, a spatial mode and a spectral mode. In the spatial
mode, the CASI acquires spatial images with each line having
the full spatial resolution (512 pixels) and with up to 18
spectral channels. In addition, the spectral band widths,
number, and ground cell resolutions are programmable in
the spatial mode. In the spectral mode, the CASI generates
images in which each pixel has a complete spectrum from
approximately 417 nm to 927 nm in 288 bands, with an av-
erage spectral bandwidth of 1.76 nm and a spectral resolu-
tion of the spectral mode of CASI is approximately 3.5 nm. In
this case, each image line has only 39 pixels, resulting in an
image covering only stripes of areas along an aircraft flight
track. The viewing direction along the swath can be selected
interactively by the operator.

CASI data were acquired during the period of 16 to 21
May 1991 as part of the OTTER multiplatform airborne remote
sensing campaign. Due to poor weather conditions or pilot
misjudgement, LAI measurement locations from only four of
the six OTTER study sites can be clearly identified from the
data acquired (Table 1). The flight heights for these CASI data
range from 900 m to 1800 m. Eight spectral channels were
selected for the spatial mode according to the characteristics
of a general vegetation spectral reflectance curve. These spec-
tral channels are located at spectral regions including the
blue, the inflection point of the blue-green slope, the green
peak, the red well, the inflection point of the red edge, the
red-edge shoulder, and two near-infrared bands (Table 2). Al-
though the CASI spectral-mode data were calibrated using the
CASI manufacturer’s parameters, the resultant radiance values
for each image pixel are noisy. The noise came from two ma-
jor sources: the specific atmospheric absorption features and
the system errors. The first noise source has been suppressed
using a radiance-to-reflectance conversion procedure de-
scribed later. The second noise source has strong effects on
the radiance values collected at wavelengths longer than 800
nm. Thus, radiance values at spectral bands whose wave-
lengths are longer than 800 nm have not been used in this
study. The lack of spectral bands with wavelengths ranging
from 800 nm to 1100 nm was not a problem in this study be-
cause there were enough spectral bands covering the shoul-
der of a tree spectral curve in both the spectral- and
spatial-mode CASI imagery.

All the spatial-mode and spectral-mode CASI images
have been checked to identify LAI measurement locations by
referring to the marked aerial color-infrared photographs. As

a result, 30 LAI measurement locations have been identified
from the four study sites for the spatial-mode images while
28 LAI measurement sites have been located on the spectral-
mode CASI images. Spectral data were then extracted from
both the spatial-mode and the spectral-mode CASI images.
Because of different sky conditions among different study
sites, it is impossible to use radiance data directly from CASI
images for LAI estimation. For this reason, the CASI data were

- converted from radiance to reflectance using simple linear

relationships between reflectance measured from pseudo-in-
variant targets for each scene and the corresponding radiance
from the CASI images. Ground reflectance measurements were
taken using a SPECTRON SE-590 radiometer during the same
field study period. The pseudo-invariant targets include
roads, gravel pits, roof tops, and parking lots (Freemantle et
al., 1992).

The extracted spectral-mode CASI data have been further
processed using a band-merging method. Every five succes-
sive spectral bands have been merged to form a new chan-
nel. This resulted in 43 merged channels with their centers
ranging from 421.2 nm to 794.4 nm and each of which has a
band width of approximately 8.8 nm (Table 2). There are two
reasons for spectral band merging for the spectral-mode CASI
data. First, band merging grouped originally narrow bands to
suppress the noise noted above. Second, the number of chan-
nels has to be reduced in order to make better use of a multi-
ple regression algorithm for LAI estimation. As explained
later, the piece-wise multiple regression method will pro-
duce inflated LAI estimation results if the number of chan-
nels to be used as independent variables is much greater
than the number of LAI measurements.

Model Developments

In order to estimate LAI from CASI data, the exact forms of
LAI as a function of CASI data have to be established. Three
types of models have been used in this study. In each model,
the LAI of coniferous forests was defined as the dependent
variable while spectral reflectance of each channel, its trans-
forms such as its logarithmic transform, and two types of
vegetation indices (e.g., NDVI =(NIR — R)/(NIR + R) and RVI =
NIR/R) were defined as independent variable(s). On the image
each LAI location corresponds to approximately 10 to 20 pix-
els. The average spectral reflectances for each LAI location
were taken from the images. The three types of models are
described below.

Univariate Linear and Nonlinear Prediction Models
A total of seven univariate LAI prediction models were used.
They include

® a simple linear function, Y=a + bX;

® a power function, Y = aX®

® an exponential function, Y=aexp(bX);

® another exponential function, Y=asexp(b/X);
® a logarithmic function, Y=a+b-LOG(X);

@ a hyperbola function, Y=1/(a+b/X); and

® an S-model curve, Y=1/(a+b<exp(—X));

where Y represents the LAI to be predicted, a and b are re-
gression coefficients, and X denotes the independent varia-
ble. Candidates for X included the eight bands in the
spatial-mode and the 43 merged channels in the spectral-
mode and many ratios and NDVIs. The purpose was to select
an optimal model that produced the best goodness of fit
(GOF) for LAI estimation using CASI data (Xu, 1988). Those ra-



TABLE 2.

CHANNEL AND MERGED-CHANNEL WAVELENGTHS (NM) OF THE CASI IMAGES USED IN THIS STUDY

Spatial-Mode

Spectral-Mode

CH# A MCH# A MCH# A MCH# A MCH# A MCH# A
1 440.3 1 421.2 10 499.6 19 578.8 28 658.7 37 739
2 497 2 429.9 11 508.4 20 587.6 29 667.6 38 747.9
3 551.4 3 438.5 12 517.1 21 596.5 30 676.5 39 756.8
4 679.2 4 447.2 13 525.9 22 605.4 31 685.4 40 765.8
5 711.3 5 455.9 14 534.7 23 614.2 32 694.3 41 774.7
6 738.1 6 464.6 15 543.5 24 623.1 33 703.2 42 783.7
7 747.9 7 473.4 16 552.3 25 632 34 712.1 43 794.4
8 787.3 8 482.1 17 561.1 26 640.9 35 721.1

9 490.8 18 570 27 649.8 36 730

Note: CH# = channel number of the spatial-mode CASI data
MCH# = merged-channel number of the spectral-mode CASI data
\ = central wavelength (nm).

tios and NDVIs producing relatively high GOFs are presented
in Tables 3, 4, and 5.

VI-Based LAl Estimation

After examining the potentials and limits of vegetation indi-
ces for LAI and APAR (absorbed photosynthetic active radi-
ance) estimation, Baret and Guyot (1991) published a model
in which the variation of VI, as a function of LAI, can be ex-
pressed by a modified Beer’s law: i.e.,

VI = VL + (VI, = VL) » exp (—K,, * LAI) (1)

where VI, is the vegetation index corresponding to that of the
bare soil, VL, is the asymptotic value of VI infinity (practi-
cally, this limit can always be reached when LAI is greater
than 8.0), and Ky, is an attenuation coefficient. For the pur-
pose of this study, Equation 1 has been rearranged in order
to estimate LAIL: i.e.,

LAl = — Ln () /K, 2)
In this approach, VI, was specified with the maximum value

appearing in this study, while vI, was obtained by averaging
vegetation indices on the bare soil from the four study sites.

Piece-Wise Multiple Regression

A forward piece-wise regression procedure (Tang, 1984) was
employed to determine channel combinations that were most
strongly associated with the LAL The input to the piece-wise
regression procedure is the LAI values measured in the field
and spectral reflectances at each channel. The output is a se-
ries of multivariate linear equations which are different from
each other by the number of spectral channels involved, and
the goodness of fit (GOF) and the standard deviation associ-
ated with each equation. In this method, the regression equa-
tion is developed by successive insertion of a predictor
variable (e.g., a spectral channel) into the equation based on
the ranking of the partial correlations of all variables that are
not selected with the dependent variable (LAI). The final re-
gression equation, after running the piece-wise program, can
be expressed in the following form:

Y=b,+b,x,+b,x,+ece+ b, x, (3)

where X; represents the ith predictor (independent) variable,
usually channel reflectance or channel logarithmic reflec-
tance, Y denotes the predicted LAl and b, is the ith regres-
sion coefficient (b, is a constant) having the “best’” GOF. The

accuracy of LAI estimation by the univariate and multiple re-
gression models was evaluated using the root-mean-squared
error (RMSE).

Results and Discussion
Correlating LAls with Spatial-Mode CASI Data

Univariate Correlations between the LAls and the Spatial-
Mode CASI Data

As mentioned above, spectral data corresponding to 30 LAI
measurements were extracted from the spatial-mode CASI
data for the four sites. The distributions of the 30 LAI meas-
urement locations are ten for site 1, six for site 2, six for site
3, and eight for site 5. The highest GOFs were obtained from
those derivative data consisting of channel ratios and NDVIs
calculated from a combination of the NIR channels and the
red channel. The linear and highest non-linear GOFs for the
eight single channels and the six sets of derivative data with
the highest GOFs are listed in Table 3. It is interesting to note
that the highest non-linear GOFs were all obtained using the
hyperbola model. The S-model curve fitting consistently re-
sulted in the second best GOFs, while the two models based
on power functions produced the third best GOFs. From a

TABLE 3. GOODNESS OF FiT DERIVED FROM LINEAR AND NONLINEAR
REGRESSIONS BETWEEN LAl AND CHANNEL, LAl AND NDVI, or LAl AND RVI
OBTAINED USING THE SPATIAL-MoDE CASI DATA (N = 30)

Nonlinear Nonlinear
Linear Fitting (R?)  Fitting (R?)
Fitting Hyperbola  Exponential
Code Channel Types (R?) Model Model
1 ch 1 (440.3 nm) 0.25 0.40
ch 2 (497.0 nm) 0.36 0.58
3 ch 3 (551.4 nm) 0.11 0.21
4 ch 4 (679.2 nm) 0.46 0.72
5 ch 5 (711.3 nm) 0.01 0.06
6 ch 6 (738.1 nm) 0.36 0.39
7 ch 7 (747.9 nm) 0.42 0.46
8 ch 8 (787.3 nm) 0.49 0.55
9 (ch6—ch4)/(ch6+ch4) 0.65 0.86 0.80
10 (ch7—ch4)/(ch7+ch4) 0.65 0.87 0.81
11 (ch8—ch4)/(ch8+ch4)* 0.65 0.87 0.81
12 ch6/ch4 0.70 0.87 0.80
13 ch7/ch4 0.71 0.87 0.80
14 ch8/ch4 0.72 0.88 0.80

*the highest among codes 9, 10, 11



TABLE 4. ROOT-MEAN-SQUARE ERRORS (RMSE), GOODNESS OF FiT, AND MEAN
ATTENUATION COEFFICIENTS (K) OBTAINED FROM DIFFERENT ANALYSIS METHODS
WITH THE SPATIAL-MODE CASI DATA

Independent Variables in Equations =~ RMSE  R? K/Sk*
Piece-wise Regression Analysis
LOG(ch1),LOG(ch2),LOG(ch3),LOG(ch8) 0.982 0.83+
LOG(ch1),LOG(ch3),LOG(ch8) 0.836 0.81t
LOG(ch6),LOG(ch8) 0.873 0.73t
Univariate Regression

ch8/ch4 1.697 0.88

ch7/ch4 1.729 0.87

ch6/ch4 1.727 0.87
(ch8—ch4)/(ch8+ch4) 1.117 0.86
(ch7—ch4)/(ch7+ch4) 1.110 0.86
(ch6-ch4)(ch6+ch4) 1.117 0.85

VI-based LAI Estimation

(ch8—ch4)/(ch8+ch4) 1.172 0.420/0.119
(ch7—ch4)/(ch7+ch4) 1.206 0.376/0.110
(ch6—ch4)/(ch6+ch4) 1.227 0.367/0.109

*: K/Sk=mean attenuation coefficient/standard deviation of K; t: sig-
nificant at p=0.01.

pure model fitting point of view, as indicated in Table 3, it
seems that hyperbola functions are more appropriate to use
as compared to the more widely used power functions (e.g.,
those used in Peterson et al. (1987), Spanner et al. (1990b),
and Spanner et al. (1993)). Among the three near-infrared

. channels, channel 8 and channel 7 have higher GOFs with
the LAIs than does channel 6. This is because channel 6 is
located at the red-edge shoulder where the higher near-infra-
red reflecting behavior of a tree species is still affected by the
absorption property at the red wavelength region. This is
particularly true for channel 5, located at the inflection point
of the red edge. The mediating effect of the NIR and the red
spectral bands has made the GOFs between channel 5 and the
LAIs approach 0.

The highest single-channel non-linear GOF with the LAIs
was achieved at channel 4, the red spectral region. Accord-
ing to general conclusions of other researchers that the
higher the APAR of vegetation, the lower is the spectral re-
flectance of vegetation at the red band, the stronger relation-
ship between channel 4 and the LAls seems to be reasonable
because more vigorous vegetation is likely leading to higher
LAL In the non-linear relationships, both channel ratio and
NDVI applied to the three NIR channels and the red channel
resulted in high GOFs with the minimum of 0.86 obtained

from correlating the LAIs with the NDVI derived from channel
6 and channel 4 (Figure 1). These agree well with other re-
searcher’s findings that the NDVI and the ratio vegetation in-
dex have strong relationships with LAI, although power
functions and linear models were used in other studies (e.g.,
Peterson et al., 1987; Spanner et al., 1990a; Curran and Wil-
liamson, 1992). From Figures 1a and 1b, it can be seen that
the channel 4 reflectance and the NDVI saturate when LAI is
slightly greater than 4 while, from Figure 1c, it can be seen
that the channel 8 and channel 4 ratio saturates as LAI is
over 6. The linear relations between NDVI and LAI and be-
tween the channel ratio and LAl as indicated by GOFs, are
0.650 and 0.717, respectively. It seems that the channel ratio
is more sensitive to LAI change than to the NDVL

LAI Estimation with Spatial-Mode CASI Data

LAIs of coniferous forests were predicted using three
techniques: univariate regression, piece-wise multivariate re-
gression, and the VI-based estimation. For each prediction
technique, the 30 samples were divided into two groups:
predicting and testing. The predicting group consisted of 20
samples while the remaining ten were used as test samples.
The predicting group was used in coefficient estimation to
establish the LAT prediction equations, while the test group
was used to calculate the root-mean-square errors (RMSEs).
The division of predicting sample and test sample was made
randomly so as to have the test sample as representative to
the total sample as possible. The variable types used in LAI
predicting equations, accuracies of the predictions measured
by RMSEs, and GOFs (R?) are listed in Table 4. While the
RMSEs were obtained from test samples, the GOFs were calcu-
lated from the predicting samples at the same time as the
predicting equations were derived.

It can be seen from Table 4 that the only comparable
measure for all the three types of LAI estimation techniques
is the RMSE. The lowest estimation errors have been achieved
with the use of piece-wise regression. After comparing the ef-
fectiveness of multiple regression using different types of
variables (e.g., original reflectance, transforms, etc.), it was
found that the logarithmic value of channel reflectance had
the best relationship to LAIs. Therefore, in the multiple re-
gression analysis, each of spectral reflectance was trans-
formed into its logarithmic counterpart. For the univariate
regression case, even though some of the channel ratios had
high GOFs in relation to LAIs, they produced greater RMSEs as
compared to NDVIs (Table 4). The univariate regression

TABLE 5.  ROOT-MEAN-SQUARE ERRORS (RMSE), GOODNESS OF FiT, AND MEAN ATTENUATION COEFFICIENTS (K) OBTAINED FROM DIFFERENT ANALYSIS METHODS WITH
CASI DATA IN SPECTRAL MODE

Independent Variables in Equations RMSE R2 K/Sk*
Piece-wise Regression Analysis

LOG(mch2),LOG(mch3),LOG(mch14),LOG(mch34) 1.405 0.87t
LOG(mch3),LOG(mch14),LOG(mch34) 1.652 0.83t

LOG(mch3),LOG(mch14) 1.642 0.78t

Univariate Regression

(mch40—mch22)/(mch40+mch22) 0.764 0.97

(mch40—mch25)/(mch40+mch25) 0.848 0.97

(mch43—mch29)/(mch43+mch29) 1.151 0.97

VI-based LAI Estimation

(mch40—mch22)/(mch40+mch22) 1.079 0.297/0.060
(mch40—mch25)/(mch40+mch25) 1.033 0.328/0.066
(mch43—-mch29)/(mch43+mch29) 1.218 0.439/0.130

*: K/Sk=mean attenuation coefficient/standard deviation of K; t: significant at p=0.01.
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Figure 1. Correlations between LAl measurements and (a)
CH4, (b) NDVI (CH8 — CH4)/(CH8 + CH4), and (C) RVI CH8/
CH4 using the spatial-mode CAsI data. CH4 and CH8 corre-
spond to 679.2 nm and 787.3 nm, respectively.

method based on NDVIs has produced slightly smaller errors
than the VI-based LAI estimation.

For the Vi-based LAI estimation method, the mean atten-
uation coefficient (K) was calculated directly from Equation
2. This was done by first calculating each K; using the corre-
sponding LAL and VI, and then the K; were averaged to form
the K to be used in the LAI prediction. S, is the standard de-
viation of K. The GOFs obtained using the multiple regression
method are significant at the 0.99 probability level. Among
the results obtained from each of the three techniques, all
the errors are relatively small when compared to the magni-
tude of the LAIs.

The field measured LAI values have been compared with
those predicted ones for the multiple regression, univariate re-
gression, and the VI-based model, respectively (Figures 2, 3,
and 4). It is evident when compared with Figure 2 that data
points in Figures 3 and 4 tend to have a larger scattering pat-

tern, indicating a poorer agreement between the predicted and
measured LAIs. It is interesting to note that in every figure a
larger discrepancy between the predicted LAIs and the LAI
measurements can be observed as the LAI value exceeds ap-
proximately 6.0. From a computational point of view, the VI-
based LAI estimation is the simplest. On the other hand, the
multiple regression algorithm is more flexible. It does not re-
quire channels to be in the red and NIR spectral regions.

Correlating LAls with Spectral-Mode CASI Data

Univariate Correlation Analysis between LAIs and Merged

Channels

GOFs obtained from both the linear correlation and the best
non-linear correlation have been plotted versus the central
wavelengths of the merged channels (Figure 5). Most of the
visible channels have resulted in surprisingly high GOFs
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Figure 2. Measured LAIs compared with predicted LAIs us-
ing the piece-wise regression with CAsI spatial data. Pre-
dicted LAIs were obtained from both the 20 predicting
samples used for setting up the predicting equation and
the ten test samples. (a) Predicted with four channels
corresponding to 440.3 nm, 497.0 nm, 551.4 nm, and
787.3 nm, respectively; (b) predicted with three channels
corresponding to 440.3 nm, 551.4 nm, and 787.3 nm,
respectively; and (c) predicted with two channels corre-
sponding to 738.1 nm and 787.3 nm, respectively.
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Figure 3. Measured LAIs compared with predicted LAIS us-
ing the univariate regression with spatial-mode CAsI data.
Predicted LAIs were obtained from both the 20 predicting
samples used for setting up the predicting equation and
the ten test samples. (a) Predicted with NDVI between NIR
CH8 and R CH4; (b) predicted with NDVI between NIR CH7
and R CH4; and (c) predicted with NDVI between NIR CH6
and R CH4. Channel wavelengths can be found in Table 2.

while the NIR channels have lead to very low GOFs. A num-
ber of factors might have contributed to low GOFs among the
NIR channels. First, the spectral-mode data had relatively
large pixel sizes and only covered a portion of the study area
in a systematic manner. These made it difficult to precisely
locate the LAI measurement sites. In other words, location
mismatching between ground and the spectral-mode CASI im-
ages could introduce errors. While little variation may occur
in the visible bands because of the low spectral reflectances
of tree stands, in the near infrared bands the sensor may be
very sensitive to the large pixel-averaging effects and possi-
ble misplacement of LAI sites. Second, sensor calibration er-
rors may also contribute to the low GOFs in the NIR bands.
Such errors are related to (1) the relatively poor internal data
calibration in the NIR bands, (2) the inconsistency of the nar-
row band wavelengths between the CASI and the Spectron
Engineering 590 field spectroradiometer used to collect spec-
tra for pseudo-invariant targets, and (3) the temporal differ-
ences caused different weather conditions during the period

of CASI and the field spectroradiometer data acquisition
across the four study sites.

LAI Estimation Using Spectral-Mode CASI Data

Similar to the LAI prediction analysis with the spatial-
mode CASI data, the three LAI estimation techniques were
also applied to the spectral-mode CASI data. The most accu-
rate prediction results in terms of the lowest RMSEs have
been listed in Table 5. A total of only 28 LAI measurement
locations have been found from the spectral-mode images.
Again, 20 samples were divided into the predicting group
while the remaining eight were used as test sample. "Mch"
was used to represent merged channels. Similar to the use of
the spatial-mode CASI data, the logarithm of original channel
reflectance had a greater power of LAI prediction than the
original reflectance and various channel combinations for the
multiple regression case.

Different from the spatial-mode’s case, however, the NIR
channels of the spectral-mode CASI data made little contribu-
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Figure 4. Measured LAIs compared with predicted LAIs us-
ing the Vi-based LAl estimation method with CAsI spatial
data. Predicted LAIs were calculated by using both the 20
predicting samples used to derive the average attenua-
tion coefficient (K) and the ten test samples. (a) Pre-
dicted with NDVI between NIR CH8 and R CH4; (b) predicted
with NDVI between NIR CH7 and R CH4; and (c) predicted
with NDVI between NIR CH6 and R CH4. Channel wave-
lengths can be found in Table 2.




1 L B L B I A i s

o8 [ -

g 06 g
& C ]
§o.4 - 3
r v | linear GOF ]

0.2 nonlinear GOF -

o SR S S S I W F J

400 450 500 550 600 650 700 750 800
Wavelength (nm)

Figure 5. Goodness of fit obtained from linear and non-
linear regressions between LAl and merged channels.

tion to LAI prediction with multiple regression possibly due
to the reasons mentioned in the previous section (Table 5).
For the univariate regression analysis and the VI-based LAI
estimation methods, NDVIs have shown better performance
than have other variables such as channel ratios and individ-
ual merged channels. In combination with what has been
found from the use of spatial-mode CASI data, NDVI as a
measure of LAI seems to be more robust than channel ratios.
The NDVI is less sensitive to variations in location, viewing
angle, and lighting conditions when compared with the NIR
channels because the NIR channels acquired from different
sites and at different times of the day produced very low
GOFs.

The RMSEs for the piece-wise regression method are the
highest among the three methods (Table 5). By comparing
the RMSEs obtained from the univariate regression and viI-
based LAI estimation methods, we see that the univariate
method has lower RMSEs than does the Vi-based method.
When comparing GOFs derived from the piece-wise method
with univariate regression, the GOFs of the latter are consid-
erably higher than those of the former. The predicted Lals
and the measured LAls are compared for each of the three
methods (Figures 6, 7, and 8). Again, better agreements can
be found when LAI values are less than 6.0. This is consis-
tent with what Figures 2, 3, and 4 show.

A Comparison of the Two CASI Imaging Modes for LAl Estimation
The results obtained by correlating each individual channel
(or merged channel) with measured LAIs show that in the
visible region the spectral-mode CASI data have a considera-
bly stronger correlation with LAls than do the spatial-mode
CASI data. For instance, for the spectral-mode CASI data, the
GOFs obtained using the merged channel 30 (676 nm) of the
spectral-mode data are 0.65 and 0.86 using a linear and a
non-linear hyperbola model, respectively (see Figure 5). On
the other hand, the highest linear and non-linear GOFs for the
spatial-mode data obtained from the use of channel 4 (679
nm) are 0.46 and 0.72, respectively. At the NIR region, how-
ever, the GOFs obtained with the spectral-mode data are
much lower than those obtained with the spatial-mode data.
’ By comparing the RMSEs in Table 4 with those in Table
5, the LAI prediction accuracies are better with the spatial-
mode data than those with the spectral-mode data for the
multiple regression method. On the other hand, most of the

prediction accuracies obtained from using the spectral-mode
data are higher than those obtained from using the spatial-
mode data for the univariate regression and the Vi-based LAI
estimation method.

The same trend held when the practical effectiveness of
the three LAI estimation methods were further validated. LAI
prediction equations were used to estimate the LAIs of conif-
erous forests in a broader spatial scale for three selected
study sites (Sites 2, 3, and 5) using the available CASI images.
An average radiance value was extracted from every spectral
channel for each study site. These radiances were then con-
verted to spectral reflectances. Having been converted to log-
arithmic values or transformed into NDVIs, they were used as
inputs to the LAI prediction equations. Table 6 summarizes
the LAI estimation results as compared to ground-based LAI
estimates for each selected study site (ground-based LAIs
were provided by R. Waring). A relative error, defined as the
ratio of the standard deviation (between the remote sensing
estimates and ground-based estimates) and the average
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Figure 6. Measured LAIs compared with predicted LAIs us-
ing the piece-wise regression with CAsI spectral data. Pre-
dicted LAIs were obtained from both the 20 predicting
samples used for setting up the predicting equation and
the eight test samples. (a) Predicted with four channels
corresponding to 429.9 nm, 438.5 nm, 534.7 nm, and
712.1 nm, respectively; (b) predicted with three channels
corresponding to 438.5 nm, 534.7 nm, and 712.1 nm,
respectively; and (c) predicted with two channels corre-
sponding to 438.5 nm and 534.7 nm, respectively.
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Figure 7. Measured LAIs compared with predicted LAls us-
ing the univariate regression with CAsI spectral data. Pre-
dicted LAIs were obtained from both the 20 predicting
samples used for setting up the predicting equation and
the eight test samples. (a) Predicted with NDVI between
NIR MCH40 (765.8 nm) and R MCH22 (605.4 nm); (b) pre-
dicted with NDVI between NIR MCH40 (765.8 nm) and R
MCH25 (632.0 nm); and (c) predicted with NDVI between
NIR MCH43 (794.4 nm) and R MCH29 (667.6 nm).

ground-based estimates, was calculated for each method (Ta-
ble 6). The relative errors range from 11 percent to 17
percent. In this comparison, results from the Vi-based LAI es-
timation method have shown the best agreement with the
ground-based LAI estimates, while the multiple regression
and the univariate regression ranked the second and the
third, respectively. The spectral-mode CASI data have re-
sulted in slightly better LAI estimates than have the spatial-
mode data. The LAI values in Table 6 were estimated using
the following equations:
For the spatial mode,

Model I: LAI = — 8.089 — 59.124+Log(CHs6)

+ 65.555+Log(CHS),

Model II: LAI = 1/(— 0.9061 + 1.2383/(NDVI + 0.3348)),

and

NDVI — 0.9
III: LAl = — Ln (——— .
Model n (0'01925 _0‘9) /0.416

where NDVI = (CH8 — CH4)/(CH8 + GH4).
For the spectral mode,

Model I: LAI = 4.620 + 4.334Log(MCH2)
— 4.908°Log(MCH3) — 1.570°Log(MCH14)
+ 1.655°Log(MCH34),
Model II: LAI = 1/(— 0.7970 + 1.0824/(NDVI + 0.3924)),
and

NDVI — 0.
Model IIL: 141 = — Ln (YL~ 085 ) /2187
0.03616 — 0.85

where NDVI = (MCH40 - MCH25)/(MCH40 + MCH25).

Conclusions

One of the objectives of this study was to evaluate three
methods — piece-wise multiple regression, univariate regres-
sion, and the vegetation-index-based method — for LAI esti-
mation using two different modes of CASI data: the spatial
and spectral modes. The piece-wise multiple regression
method resulted in lower RMSE prediction errors as com-
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Figure 8. Measured LAIs compared with predicted LAls us-
ing the vi-based LAl estimation method with CAsI spectral
data. Predicted LAIs were calculated by using both the 20
predicting samples used to derive the average attenua-
tion coefficient (K) and the eight test samples. (a) Pre-
dicted with NDvI between NIR MCH40 (765.8 nm) and R
MCH22 (605.4 nm); (b) predicted with NDVI between NIR
MCH40 (765.8 nm) and R MCH25 (632.0 nm); and (a) pre-
dicted with NDVI between NIR MCH43 (794.4 nm) and R
MCH29 (667.6 nm).




TABLE 6. CROSS VALIDATION OF PREDICTED LAl USING THREE TECHNIQUES:
PIECE-WISE (1), UNIVARIATE REGRESSION (I), AND VI-BASED LAI EsTimaTioN (11)
WITH CASI DATA*

CASI LAI Estimation

Spatial-mode Spectral-mode

Study

Area G.B.LAI I I I I I I
site 2 6.33 6.42 6.24 6.43 6.45 6.75 6.54
site 3C 7.23 8.77 5.62 5.77 7.82 8.66 8.17
site 3IF 8.46 9.03 9.14 8.67 8.46 8.84 8.34
site 5C 0.8 1.08 1.06 1.05 2.17 1.49 1.48
site 5F 1.8 1.18 1.20 1.15 1.77 1.42 1.37

Average relative

error 0.16 0.17 0.15 0.14 0.16 0.12

Note: G.B.LAI - ground-based LAI measurement; C-control study
area; F-fertilized study area; and IF-intensively fertilized study area
*These ground-based LAI measurements were provided by Richard
Waring. They were collected from the study site level which is com-
pletely different from the other LAI measurements used in the rest
of this study.

pared to the univariate regression and the Vi-based LAI esti-
mation methods using the spatial-mode CASI data. However,
it produced the largest RMSEs among the three methods when
CASI spectral-mode data were used. For both the spectral and
spatial-mode CASI data, the use of logarithmic reflectance in
the multiple regression method produced lower RMSEs than
did the use of raw channel reflectance. The advantage of the
piece-wise multiple regression method is its flexibility in the
use of spectral bands. Instead of using the near-infrared (NIR)
and red (R) spectral bands as in the other two methods, the
multiple regression method can be used to estimate LAI rea-
sonably well with only two spectral bands: merged channels
3 (438.5 nm) and 14 (534.7 nm) which are in the blue and
green spectral regions, respectively (see Table 5). We recom-
mend that the multiple regression method be used to dis-
cover new relationships between LAI and spectral reflec-
tances derived from remote sensing imagery. Because this
method is rooted purely on a statistical basis, further studies
may be carried out to identify the biophysical reasons be-
hind those discovered relationships.

In this study, NDVI starts to saturate before LAI reaches
6. Linear correlations indicated that channel ratio is more
correlated with LAL. However, NDVI appeared to be a non-
linear better estimator of LAI than channel ratio for the uni-
variate regression and the VI-based LAI estimation methods.
For the univariate regression, a non-linear hyperbola rela-
tionship between the LAI and the NDVI was the most appro-
priate for LAI estimation. The VI-based LAI estimation
method has proven to be simple to use and effective. Fur-
ther studies are required to verify these two models in dif-
ferent forest environments.

Although the spatial- and spectral-mode CASI data pro-
duced similar LAI estimation results using the three methods,
we recommend the use of the spatial-mode CASI data for LAI
estimation. With spectral-mode CASI data, it is difficult to lo-
cate LAI measurement sites and that, in turn, may affect the
final LAI estimation results. However, the multiple regression
method should be further evaluated for LAI estimation using
high spectral resolution data other than the spectral-mode
CASI data.
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