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Summary

1. Evaluating landscape connectivity and identifying and protecting corridors for animal move-

ment have become central challenges in applied ecology and conservation. Currently, resource

selection analyses are widely used to focus corridor planning where animal movement is pre-

dicted to occur. An animal’s behavioural state (e.g. foraging, dispersing) is a significant determi-

nant of resource selection patterns, yet has largely been ignored in connectivity assessments.

2. We review 16 years of connectivity studies employing resource selection analysis to evalu-

ate how researchers have incorporated animal behaviour into corridor planning, and highlight

promising new approaches for identifying wildlife corridors. To illustrate the importance of

behavioural information in such analyses, we present an empirical case study to test beha-

viour-specific predictions of connectivity with long-distance dispersal movements of African

wild dogs Lycaon pictus. We conclude by recommending strategies for developing more realis-

tic connectivity models for future conservation efforts.

3. Our review indicates that most connectivity studies conflate resource selection with con-

nectivity requirements, which may result in misleading estimates of landscape resistance, and

lack validation of proposed connectivity models with movement data.

4. Our case study shows that including only directed movement behaviour when measuring

resource selection reveals markedly different, and more accurate, connectivity estimates than

a model measuring resource selection independent of behavioural state.

5. Synthesis and applications. Our results, using African wild dogs as a case study, suggest that

resource selection analyses that fail to consider an animal’s behavioural state may be insufficient

in targeting movement pathways and corridors for protection. This failure may result in misiden-

tification of wildlife corridors and misallocation of limited conservation resources. Our findings

underscore the need for considering patterns of animal movement in appropriate behavioural

contexts to ensure the effective application of resource selection analyses for corridor planning.

Key-words: behavioural state, conservation planning, corridor ecology, dispersal, landscape

connectivity, landscape resistance, movement ecology, resource selection, step selection

Introduction

Connectivity, that is the degree to which a landscape facil-

itates or impedes movement between resources or habitats

(Taylor et al. 1993), is a key aspect of land management

for the conservation of species and communities. Connec-

tivity influences demography (Clobert et al. 2001), pro-

motes dispersal and colonization (Hanski 1998), maintains

genetic diversity (Hendrick 2005), increases a species’ abil-

ity to respond to perturbations and changing climates*Correspondence author. E-mail: briana.abrahms@berkeley.edu
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(Heller & Zavaleta 2009) and supports long-term persis-

tence in heterogeneous landscapes (Vasudev et al. 2015).

Consequently, increasing landscape connectivity has been

identified as a fundamental strategy for mitigating impacts

of climate change on biodiversity (Heller & Zavaleta

2009).

The identification and protection of wildlife corridors,

that is land allowing movement of focal species between

two or more habitat areas (Beier, Majka and Spencer

2008), has become a critical tool for the maintenance of

landscape connectivity (Gilbert-Norton et al. 2010). As a

response to global concerns about habitat fragmentation,

climate change and loss of landscape connectivity, estab-

lishment of wildlife corridors has accelerated in the last

decade and half. Today, studies aimed at evaluating con-

nectivity and determining where to establish corridors

have become central to conservation science and practice

(Beier, Majka & Spencer 2008; Beier et al. 2011; Rudnick

et al. 2012).

Here, we systematically review 16 years of studies using

wildlife resource selection to estimate landscape connectiv-

ity and highlight promising new approaches for identify-

ing wildlife corridors. We argue that failure to assess

resource selection in appropriate behavioural contexts

may lead to misidentification of wildlife corridors and

misallocation of limited conservation resources.

METHODS FOR IDENTIFYING WILDLIFE CORRIDORS

Accurate identification of functional corridors depends on

knowledge of a species’ dispersal requirements (Vasudev

et al. 2015). Currently, estimating landscape resistance to

movement is the most widely used technique to focus cor-

ridor planning on areas where dispersal is considered

most likely to occur (Sawyer, Epps & Brashares 2011).

Landscape resistance models – or ‘resistance surfaces’ –
assign a value in a landscape grid cell to each environ-

mental variable of interest (e.g. elevation, land cover) that

represents the energetic or survival cost to the study spe-

cies of moving through that spatial position (Adriaensen

et al. 2003), or the willingness of the individual to cross

the cell (Zeller, McGarigal & Whiteley 2012). Earlier

efforts to estimate landscape resistance based on expert

opinion (e.g. LaRue & Nielsen 2008; Shen et al. 2008)

have been greatly advanced by technological and analyti-

cal tools that now allow researchers to evaluate resistance

directly from empirical data (Zeller, McGarigal & White-

ley 2012). Methods for estimating resistance based on

empirical data fall into the following two main

approaches, landscape genetics and resource selection

functions.

Landscape genetics approaches measure the correlation

of observed genetic distance between individuals or sub-

populations separated by hypothesized values of land-

scape resistance (Cushman et al. 2006; Epps et al. 2007).

Thus, landscape genetics infers the influence of landscape

variables on gene flow. These methods are a gold

standard in connectivity modelling when the process of

interest is genetic connectivity. However, the few studies

that have attempted to validate genetic results with move-

ment data indicate that while resistance models derived

from landscape genetics are useful in understanding large-

scale effects on the process of gene flow, they may not be

as useful for predicting pathways of wildlife movement at

finer, management-relevant scales (Graves, Beier & Royle

2013; Reding et al. 2013). Additionally, genetically

derived connectivity estimates can reflect past landscape

permeability, due to the time-lag to detect barriers (15–
100 generations depending on methods and species traits;

Langduth et al. 2010), and thus may not capture current

movement in rapidly evolving landscapes, changing

climates or for species dispersing short distances.

Given the uncertainties associated with applying land-

scape genetics to landscape planning at finer spatial and

temporal scales, we focused our review on the use of

resource selection functions (RSFs). In contrast to land-

scape genetic analyses, estimates of landscape resistance

derived from RSFs are thought to be effective at predicting

areas for wildlife movement at more immediate and fine

scales; as a consequence, this approach is highly applicable

to management decisions (Chetkiewicz & Boyce 2009).

Resource selection functions calculate the probability of

use of a given landscape variable (e.g. habitat type, eleva-

tion, slope) by statistically comparing the characteristics of

locations used by the study species with those in a control

set of random locations deemed available to, but presum-

ably unused by, that species (Manly et al. 2002). These

analyses have recently been improved by the introduction

of step selection (Fortin et al. 2005; Thurfjell, Ciuti &

Boyce 2014) and path selection (Cushman & Lewis 2010)

functions, which characterize movement as a series of

linked steps or paths rather than a distribution of indepen-

dent points. Thus, while traditional RSFs, also known as

point selection functions, are well suited for detection data,

step and path selection analyses tend to be more useful for

relocation data because they account for changes in

resource availability as an animal moves through its land-

scape (Zeller, McGarigal & Whiteley 2012).

THE ROLE OF BEHAVIOUR

Use of RSFs in connectivity planning is largely based on

the assumption that a habitat occupied/selected by a spe-

cies is predictive of the landscape conditions or features

necessary for successful dispersal (Vasudev et al. 2015).

This critical assumption has been the subject of debate,

specifically regarding the degree to which resource selec-

tion models provide an accurate proxy for movement

preference as an animal navigates through a landscape

(Beier, Majka & Spencer 2008; Zeller, McGarigal &

Whiteley 2012; Fattebert et al. 2015). Resource selection

during dispersal may differ significantly from selection

exhibited during daily residential activities (Elliot et al.

2014; Vasudev et al. 2015; Gast�on et al. 2016). In
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particular, there is increasing recognition that an animal’s

behavioural state (e.g. resource use vs. searching, territory

maintenance vs. dispersing) can strongly mediate patterns

of resource selection (Wilson, Gilbert-Norton & Gese

2012; Roever et al. 2013; Abrahms et al. 2015).

Behaviourally mediated differences in resource selection

can have important effects on estimates of landscape resis-

tance and resulting conservation actions. For example, a

recent study by Zeller et al. (2014) found opposite pat-

terns of resistance to some landscape variables for pumas

Puma concolor in a ‘resource-use’ behavioural state versus

a directed ‘movement’ state. Similarly, Elliot et al. (2014)

found that landscape resistance differed between dispers-

ing and resident male lions Panthera leo. Thus, failure to

assess resource selection in appropriate behavioural con-

texts may lead to misidentification of corridors for animal

movement and ineffective use of limited conservation

funding (LaPoint et al. 2013; Elliot et al. 2014). Because

dispersal events are often difficult to detect in the field,

resource selection measured during directed movement

states may provide an important proxy that can be used

to infer functional connectivity in addition to or in lieu of

direct dispersal data. Yet, little work has validated RSF-

derived predictions of landscape connectivity with long-

distance movement data to assess this possibility.

We surveyed recent RSF-derived connectivity studies to

(i) evaluate the extent to which these efforts have incorpo-

rated movement behaviour and (ii) identify best practices

for considering movement behaviour for future connectiv-

ity studies. While the range of definitions for animal move-

ment is vast (Nathan et al. 2008), we define ‘movement

behaviour’ in the context of connectivity science as directed

movement towards a new location (i.e. taxis), typical of

movement between rest sites or resource patches (Schick

et al. 2008). Using this definition, we evaluated published

studies with regard to how movement behaviour was con-

sidered in estimating landscape resistance and predicting

connectivity. Using data drawn from our studies of African

wild dogs, we demonstrate the sensitivity of corridor mod-

els to behavioural state and test the validity of model pre-

dictions against empirical movement data. Specifically, we

use high-resolution GPS data from African wild dogs in

northern Botswana to create least-cost path predictions

from two RSF-derived resistance models, one that ignores

behavioural state and one that isolates movement beha-

viour. We then test these predictions against observed long-

distance dispersal paths. We conclude by providing a

framework and recommending strategies for researchers

and managers to develop more realistic connectivity models

for future corridor planning efforts.

Materials and methods

L ITERATURE REVIEW

To capture current trends in the literature, we searched ISI Web

of Science for papers published between January 2000 and

February 2016 that contained the following keywords: Topic =

(landscape resistance OR cost-distance OR effective distance)

AND (corridor OR connectivity OR linkage). We filtered the

resulting 157 papers by restricting our search to the subject areas

Ecology, Environmental Sciences, Environmental Studies, Zool-

ogy, Biology, Biodiversity Conservation or Remote Sensing; this

resulted in a subset of 137 papers. We further restricted our

review by excluding studies that did not use resource selection to

estimate landscape resistance and/or did not explicitly aim to

model connectivity for the purpose of predicting wildlife move-

ment, resulting in a final set of 28 papers (Table 1). For each of

the selected papers, we evaluated (i) the source of biological data

(study species and data collection method), (ii) type of RSF

employed (e.g. point selection, step selection), (iii) whether move-

ment behaviour was explicitly considered in developing connectiv-

ity models and (iv) whether modelled corridors were validated

with independent movement data.

AFRICAN WILD DOG CASE STUDY

To determine whether isolation of directed movement behaviour

improves predictions regarding long-distance movement paths, we

collected high-resolution GPS data from 15 free-ranging African

wild dogs in northern Botswana (Abrahms et al. 2015). African

wild dogs are both the widest ranging and most endangered of

Africa’s large carnivores; the International Union for Conserva-

tion of Nature (IUCN) has linked the decline of wild dog popula-

tions to the species’ high sensitivity to habitat fragmentation

(Woodroffe & Sillero-Zubiri 2013). Consequently, these animals

are a highly relevant focal species for assessing functional land-

scape connectivity.

Using collar-mounted accelerometers, we classified GPS loca-

tions into three discrete behavioural states: travelling, chasing

and resting (Hubel et al. 2016). We used step selection functions

to quantify resource selection for a ‘combined model’ that

included all available data, ignoring behavioural state, and for a

‘movement model’ that included only the travelling data set

(Thurfjell, Ciuti & Boyce 2014). Three of the 15 collared wild

dogs exhibited long-distance dispersal movements during the

study period; these animals were excluded from the step selection

analysis to serve as test data against corridor model outputs. The

data from the remaining 12 individuals used to parameterize our

models were collected from 12 different packs to minimize risk of

pseudoreplication. Habitat cover, land-use type, proximity to

road and proximity to human settlements were included as initial

covariates after testing for collinearity based on known influences

on African wild dog space use (Woodroffe 2010; Whittington-

Jones et al. 2014; Abrahms et al. 2015; Table 2). We used AIC

forward model selection to determine which to retain in our final

models (Burnham & Anderson 2002). We used significant selec-

tion coefficients from each model to create two corresponding

resistance surfaces (Squires et al. 2013). For each resistance sur-

face, we used least-cost path (LCP) analysis to predict the disper-

sal paths of the three dispersers, as this represents the most

commonly used method for designing wildlife corridors (Sawyer,

Epps & Brashares 2011). Finally, to address the uncertainty

inherent in least-cost modelling, we estimated least-cost corridors

that overcome the single-pixel width limitation of LCPs (Beier,

Majka & Newell 2009). Following published recommendations

(Harrison 1992; Beier, Majka & Spencer 2008), we buffered our

LCPs by a conservative estimate of half the average home range

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society, Journal of Applied Ecology
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width for African wild dogs (8 km; Woodroffe 2010) to deter-

mine biologically informed corridor widths of 16 km.

To evaluate our models, we used two metrics as suggested by a

recent study comparing the utility of connectivity modelling vali-

dation methods (McClure, Hansen & Inman 2016). First, we cal-

culated the percentage of observed dispersal relocations

overlapping with predicted least-cost corridors, a metric relevant

to conservation practitioners in assessing the proportion of move-

ment that would be protected by a potential corridor (Poor et al.

2012; McClure, Hansen & Inman 2016). Secondly, we measured

the path deviation of each model’s LCP from the observed dis-

persal paths, a straightforward statistic of how well the model

agrees with the data (Pullinger & Johnson 2010). All statistical

analyses were performed using R 3.1.0 (R Core Team 2014). We

used ESRI ARCMAP 10.2 to create resistance surfaces and Linkage

MAPPER software (McRae & Kavanagh 2011) to generate least-

cost paths. See Appendix S1 (Supporting information) for full

methods details.

Results

L ITERATURE REVIEW

The majority of studies (82%) used animal relocation data

from either GPS or VHF collars to assess resource selec-

tion, while five (18%) relied on measures of indirect detec-

tion such as animal sign or camera trap data. None of the

detection-based studies made efforts to focus on move-

ment-related habitat use. In total, 11 of the 28 studies

evaluated included efforts to explicitly incorporate move-

ment behaviour into their connectivity analyses. The

remaining studies assumed that resource selection indi-

cated connectivity requirements.

Only five studies (18%) validated connectivity predic-

tions with movement data. LaPoint et al. (2013) found

poor agreement between corridor predictions for fishers

Martes pennanti based on GPS locations versus ‘animal-

defined’ corridors delineated by quick, repeated and linear

fisher movements. Deployment of camera traps demon-

strated greater use by fishers of animal-defined corridors

than cost-based corridors. In contrast, Harju et al. (2013)

found that connectivity estimates based on resource

selection during travelling and relocating movement states

for sage grouse Centrocercus urophasianus were strong

predictors of an independent test set of locations for these

movement states. Finally, Trainor et al. (2013) found a

strong correlation between connectivity predictions for

red-cockaded woodpeckers Leuconotopicus borealis based

on resource selection during exploratory forays and an

independent data set of short-distance dispersals.

AFRICAN WILD DOG CASE STUDY

The highest ranked movement model based on AIC

model selection retained habitat cover, land-use type and

distance to roads as predictor variables; the highest

ranked combined model retained habitat cover and land-

use type (Table S2). Step selection results showed differ-

ent, and in some cases opposing, responses to landscape

variables between the movement model and the combined

model (Fig. 1, Table S3); these differences were reflected

in the divergent patterns of landscape resistance between

the two models and resulting LCPs (Fig. 2). Least-cost

corridors from the movement model overlapped with the

large majority of GPS locations from the three dispersal

paths (range 62–100%, mean 87%; Table 3) while those

from the combined model included a lower percentage of

GPS locations (range 0–100%, mean 33%). Path devia-

tions between the movement model LCPs and observed

paths were significantly lower than those between the

combined model LCPs and observed paths.

Discussion

LITERATURE REVIEW: INCLUSION OF MOVEMENT

BEHAVIOUR IN CORRIDOR PLANNING

Collectively, the studies in our review that validated con-

nectivity predictions with independent movement data

point to the importance of incorporating behavioural data

in connectivity models as a key step towards generating

management strategies. As showcased by several such

Table 2. Landscape variables used to quantify resource selection of African wild dogs

Category Variable name Description Source

Habitat cover Swamp Moist and seasonally flooded floodplains Broekhuis et al. (2013)

Grassland Former floodplains characterized by

shrubbed grassland

Woodland Mixed woodland dominated by Acacia spp.

Mopane Woodland composed primarily of

Colophosphermum mopane shrubs and trees

Land-use type Game Reserve IUCN Category IV Protected Area Botswana Department of Lands

National Park IUCN Category II Protected Area

Wildlife Management

Area (WMA)

Community-managed land gazetted

for photographic and hunting tourism

Pastoral Non-wildlife area dominated by pastoralism

Anthropogenic

features

Road Distance to nearest road Okavango Delta Information System

Settlement Distance to nearest human settlement
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studies, multiple data collection, and technological and

analytical approaches exist to aid conservation scientists

and practitioners in including movement behaviour in cor-

ridor planning. The eleven studies that considered animal

movement behaviour in their connectivity predictions pro-

vide informative examples for working with relocation

data (Table 4). From these studies, we identified two prin-

cipal scales at which movement behaviour has been

addressed: a behavioural level and a demographic level.

At the behavioural level, several studies identified the sub-

set of locations at which animals displayed behavioural

states categorized broadly as movement behaviour. These

categorizations included (i) ‘travelling’, ‘relocating’ or
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Fig. 1. (a) Comparison of step selection parameter estimates and standard errors for the combined model, measuring resource selection

for all location data independent of behavioural state, and the movement model, measuring resource selection only when wild dogs were

in a ‘travelling’ behavioural state (see Table S3 for listed values). Negative selection coefficients indicate avoidance of corresponding

landscape variables; positive values indicate selection for corresponding variables. P-values were calculated from Wald tests. (b) Resis-

tance surface derived from significant selection coefficients (P < 0�05) in the combined model. Resistance values were calculated as the
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(Table S1). Okavango Delta floodwaters (light blue) are included for spatial reference.

Table 3. Percentage overlap between least-cost corridors (LCC)

and GPS points along observed dispersal paths, and path devia-

tion between modelled and observed paths with P-values indicat-

ing significant differences between model performance

Model

LCC overlap

Path deviation

% Mean (km) SD P

Path 1 – Movement 62 7�16 2�28 <0�001
Path 1 – Combined 0 25�5 3�18
Path 2 – Movement 100 2�65 1�92 <0�001
Path 2 – Combined 0 29�8 6�08
Path 3 – Movement 100 0�34 0�75 0�07
Path 3 – Combined 100 1�93 1�55
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‘moving’ based on step-length distributions (Harju et al.

2013; Zeller et al. 2014); (ii) ‘large-scale movements’

delimited by a threshold for movement rate (Pullinger &

Johnson 2010); and (iii) ‘active’ vs. ‘resting’ behaviour

based on both step-length and turn angle distributions

(Squires et al. 2013). At the demographic level, three stud-

ies employed a demographic approach by collaring and

collecting relocation data from juvenile dispersers

(Richard & Armstrong 2010; Trainor et al. 2013; Elliot

et al. 2014). While behavioural and demographic

approaches may be used in concert, we distinguish a

demographic approach from a behavioural one in that it

may include all behavioural states of a disperser. This

approach may be ideal for determining how dispersers

navigate their landscape, but it is logistically challenging

because it requires predicting which individuals in the

population will disperse. Perhaps not coincidentally, two

of these three studies focused on birds, where identifica-

tion and tagging of juvenile dispersers is easier than it is

for many other vertebrates (Zeller, McGarigal & Whiteley

2012). To focus on dispersal movements, three other stud-

ies collected location data during known dispersal seasons

for their study species (Cushman & Lewis 2010; Walpole

et al. 2012; Roever, van Aarde & Leggett 2013).

Advances in GPS collar technology over the last decade

can contribute to connectivity science by coupling discrete

behavioural states with patterns of space use and move-

ment preference. In particular, activity sensors such as

collar-mounted accelerometers, magnetometers and physi-

ological loggers are becoming increasingly popular for

classifying behavioural states remotely (Brown, Kays &

Wikelski 2013; Wilson et al. 2013; Nams 2014). However,

the literature also provides many methods for inferring

behavioural state without the expense of activity sensors,

even for collars that operate at coarse spatiotemporal

scales. For instance, Pullinger & Johnson (2010) classified

two behavioural states of resource use vs. long-distance

movement for caribou Rangifer tarandus by examining

movement rate between 3-h GPS fix intervals. Similarly,

pairing movement rate with turn angle distributions

revealed a clear distinction between sedentary and

exploratory behavioural states in elephants (Roever et al.

2013). Patterns of GPS clustering have been used to fur-

ther partition relocation data, including identifying kill

sites, dens and scent marking areas for pumas (Wilmers

et al. 2013) and feeding and bedding behaviours in grizzly

bears (Cristescu, Stenhouse & Boyce 2015). The wide

variety of existing methods for inferring behavioural states

necessitates the development of best practices for

their application and interpretation in the context of

connectivity modelling.

As mentioned previously, advances have also been

made in the analytical procedures associated with resource

selection analyses, such as the addition of step selection

(Fortin et al. 2005; Thurfjell, Ciuti & Boyce 2014) and

path selection functions (Cushman & Lewis 2010). Both

of these analytical approaches can help to quantify selec-

tion specifically for movement paths, though for the pur-

poses of connectivity modelling care must still be taken to

ensure resource selection is measured for the appropriate

behavioural state(s). In addition, the rapidly growing field

of movement ecology (Nathan et al. 2008; Schick et al.

2008) offers many analytical approaches for remote iden-

tification of behavioural states such as hidden Markov

(Patterson et al. 2009) and state-space models (Jonsen,

Flemming & Myers 2005; Patterson et al. 2008) that have

been developed for effectively analysing noisy or imperfect

animal movement data.

Our result that none of the detection-based studies

focused on movement-related habitat use highlights a ripe

opportunity for advancement. Indirect detection methods

are often less costly than obtaining direct relocation data

and are sometimes the only feasible option for rare or elu-

sive species. For those using indirect detection based on

sign to identify movement corridors (e.g. Walpole et al.

2012; Mateo-S�anchez, Cushman and Saura 2014), loca-

tions with sign of resource-use behaviour (e.g. gorilla nest-

ing/feeding sign; McNeilage et al. 2006 grizzly bear

bedding sites; Munro et al. 2006) can be excluded from

resource selection analyses in favour of travel-related sign

(e.g. gorilla trampled vegetation, dung, footprints; Sawyer

& Brashares 2013) to limit inferences to more movement-

focused habitat use. For studies relying on camera trap

data to identify corridors (e.g. Brodie et al. 2014; Wang

et al. 2014), there are several improvements that can be

made beyond using standard abundance estimates to infer

areas with high connectivity. If individual identification

from photographs is possible, spatially explicit movement

rates can be measured and related to landscape variables

through spatial capture–recapture methods (Royle et al.

Table 4. Approaches for using movement behaviour to inform connectivity conservation

Approach Description No. of Studies Example studies

Behavioural Use localities when the individual is in

a travelling/exploratory state

versus a resource-use state

7 Pullinger & Johnson (2010), Squires et al.

(2013), Zeller et al. (2014)

Demographic Use localities from dispersing vs.

resident individuals in the population

3 Elliot et al. (2014), Richard & Armstrong (2010),

Trainor et al. (2013)

Seasonal Collect location data during

the known dispersal season

3 Cushman & Lewis (2010), Roever et al. (2013),

Walpole et al. (2012)
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2013a,b). If individual identification is not possible, cam-

era trap data can be used to associate habitat use with

activity patterns of the study species (Rowcliffe et al.

2014). Given that nearly 20% of the connectivity studies

we evaluated relied on indirect detection for their resource

selection analyses, development and application of meth-

ods to better assess movement behaviour in these data

sets is greatly needed.

We propose a series of steps that can be taken through

the data collection and analysis stages of resource selec-

tion estimation to better emphasize movement behaviour

in connectivity modelling (Fig. 3). As is the case with all

ecological fieldwork, the processes we suggest depend first

on what data can be feasibly collected for the target spe-

cies. However, since location data are often used for a

variety of purposes and thus may not have been collected

specifically for connectivity analyses, we suggest that

researchers working with such data sets apply the analyti-

cal approaches outlined above to focus inferences on

movement behaviour regardless of the methods employed

during the data collection stage.

AFRICAN WILD DOG CASE STUDY

Results from our African wild dog case study mirror a

small set of recent publications (e.g. Harju et al. 2013;

Trainor et al. 2013), indicating that including only move-

ment behaviour in resistance surfaces analyses reveals

markedly different patterns of connectivity than models

measuring resource selection without consideration of

behavioural state. For the goal of predicting and protect-

ing dispersal, the movement model (i.e. only GPS

positions when the dogs were in a ‘travelling’ behavioural

state) outperformed the combined model (i.e. all available

GPS positions independent of behavioural state) accord-

ing to both validation metrics used in our analysis

(Table 3). The movement model least-cost corridor (LCC)

fully incorporated two of the three observed dispersal

paths, overlapping with a total of 87% of movement loca-

tions compared with only 33% for the combined model

LCC. In addition, the path deviation statistic indicated

greater agreement between the least-cost paths derived

from the movement model and the observed wild dog dis-

persal paths than those from the combined model. These

results suggest that a general resource selection analysis

may be insufficient in predicting and protecting movement

pathways for African wild dogs.

The divergent patterns of resource selection by African

wild dogs revealed by our models have significance for the

conservation and management of this species. African

wild dogs displayed large differences in habitat preference

when travelling compared to when behavioural state was

not considered. Our behaviourally informed model also

revealed that African wild dogs showed a higher tolerance

for human-modified landscapes and features (pastoral

areas, roads) when dispersing, an outcome that has been

reported for other dispersing carnivores including lions

(Elliot et al. 2014) and Iberian lynx Lynx pardinus

(Gast�on et al. 2016). While the ability of dispersing carni-

vores to navigate potentially hostile landscapes may allow

populations to maintain greater levels of connectivity than

previously thought (Mateo-S�anchez et al. 2015), this also

places them at higher risk of human–wildlife conflict.

Because of increased tolerance for human disturbance and

Fig. 3. A decision tree for focusing

resource selection analyses on animal

movement for connectivity planning. At

the data collection stage, decisions are

made as to the type of data that can be

collected and whether collection can be

targeted towards dispersal seasonally or

demographically. At the data analysis

stage, the collected data can be analysed

and cleaned to isolate locations for move-

ment before inputting the data set into a

resource selection analysis.
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proclivity to range beyond protected areas, African wild

dogs in a dispersing or exploratory state are more prone

to human-caused mortality (Woodroffe et al. 2007;

Davies-Mostert et al. 2012), and thus, it is essential that

creation of corridors for large carnivore movement be

paired with efforts to mitigate human–carnivore conflict

(Elliot et al. 2014).

CAVEATS

A number of caveats and assumptions to this work are

important to note. First, this work is focused on corridor

design for terrestrial vertebrates, and not for entire com-

munity assemblages. The latter would rely less upon sin-

gle-species dispersal requirements than broader estimates

of structural connectivity, such as landscape ‘naturalness’

(Theobald et al. 2012). We also focus on connectivity as

viewed through movement corridors, rather than the more

spatially expansive lens of habitat contiguity. The first

emphasizes the maintenance of pathways for effective dis-

persal between populations while the second seeks to pre-

serve viable habitat to ensure occupancy of a focal species

across fragmented landscapes. This distinction is impor-

tant in the context of our review because resource selec-

tion functions or other general assessments of habitat use

may be effective on their own where the conservation goal

is simply to preserve a connected system of occupied habi-

tats.

We chose to employ least-cost path (LCP) analysis for

our case study because it is the most popular method for

managers to delineate corridors (Sawyer, Epps & Bra-

shares 2011); however, it requires a number of assump-

tions that may not be upheld in all cases. First, it assumes

a defined start and end point, which is appropriate when

determining a connection between two protected areas, or

in our case a natal and dispersal range, but this assump-

tion is often violated when clear habitat patches cannot

be demarcated. Similarly, LCP analysis cannot evaluate

multiple potential pathways between more than two

patches. In addition, by weighting the cumulative cost of

a pathway by its total Euclidean distance, LCP analysis

implicitly assumes that animals have total knowledge of

their landscape, which is especially likely to be violated

when animals are dispersing into new territory. Ulti-

mately, when evaluating whether to use a least-cost or

alternative approach such as circuit-theory modelling, the

movement ecology of the focal species and the landscape

context are key determinants that should be considered

(McClure, Hansen & Inman 2016).

A final and important limitation to our case study is

the small number of known dispersal paths for our study

animals, despite data collection over a 4-year period,

highlighting the challenge of collecting long-distance

movement data for evaluating functional landscape con-

nectivity. Efforts such as ours to directly compare beha-

viour-informed predictions of connectivity with known

long-distance dispersal movements are accordingly rare.

Nevertheless, the strong effect sizes of our model valida-

tion metrics lend confidence to our inference that consid-

eration of behavioural state is critical and that by

focusing connectivity analyses on movement behaviour,

researchers can eliminate much of the noise that comes

from analysing all data points.

CONCLUSIONS AND FUTURE DIRECTIONS

While the protection of corridors for animal movement

involves sociopolitical, economic and other considerations

that were not addressed in this assessment, our review

and case study suggest that the success of corridor efforts

also relies on an accurate understanding of how animals

move through their environment. Resource selection

within an animal’s home range may be a suitable proxy

for movement preference during dispersal for some species

(Fattebert et al. 2015), though researchers and conserva-

tion practitioners should be aware this is not always the

case and failure to recognize this distinction may have

important consequences for preserving landscape connec-

tivity. Our findings underscore the need for examining

animal movement in appropriate behavioural contexts to

ensure effective application of resource selection analyses

for corridor planning. Advances in monitoring technology

are fostering new opportunities to study wildlife move-

ments that promise to enhance corridor conservation. At

the same time, current analytical tools that rely on indi-

rect location data can be improved to more accurately

inform connectivity models. Given limited conservation

resources and rapidly changing environments, efficient

and accurate corridor identification, establishment and

management is a critical need in conservation planning.

Unifying the fields of movement ecology and connectivity

science promises to advance our knowledge of – and thus

our ability to preserve – the fundamental process of wild-

life movement.
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