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Summary

1. The high cost of directly measuring habitat quality has led ecologists to test alternate

methods for estimating and predicting this critically important ecological variable. In particu-

lar, it is frequently assumed but rarely tested that models of habitat suitability (‘species distri-

bution models’, SDMs) may provide useful indices of habitat quality, either from an

individual animal or manager’s perspective. Critically, SDMs are increasingly used to estimate

species’ ranges, with an implicit assumption that areas of high suitability will result in higher

probability of persistence. This assumption underlies efforts to use SDMs to design protected

areas, assess the status of cryptic species or manage responses to climate change. Recent tests

of this relationship have provided mixed results, suggesting SDMs may predict abundance

but not other measures of high-quality habitat (e.g. survival, persistence).

2. In this study, we created a suite of SDMs for the endangered giant kangaroo rat Dipodo-

mys ingens at three distinct scales using the machine-learning method Maxent. We compared

these models with three measures of habitat quality: survival, abundance and body condition.

3. Species distribution models were not correlated with survival, while models at all scales

were positively correlated with abundance. Finer-scale models were more closely correlated

with abundance than the largest scale. Body condition was not correlated with habitat suit-

ability at any scale. The inability of models to predict survival may be due to a lack of infor-

mation in environmental covariates; unmeasured community processes or stochastic events;

or the inadequacy of using models that predict species presence to also predict demography.

4. Synthesis and applications. Species distribution models (SDMs), especially fine scale ones,

may be useful for longer-term management goals, such as identifying high-quality habitat for

protection. However, short-term management decisions should be based only on models that

use covariates appropriate for the necessary temporal and spatial scales. Assumptions about

the relationship between habitat suitability and habitat quality must be made explicit. Even

then, care should be taken in inferring multiple types of habitat quality from SDMs.

Key-words: Dipodomys ingens, giant kangaroo rat, habitat suitability, mark–recapture,
Maxent, survival

Introduction

Measuring habitat quality is a key component of theoretical

and applied ecology (Rodenhouse, Sherry & Holmes 1997;

Johnson 2007), and a critical element in developing

ecological indicators of disturbances (Niemi & McDonald

2004). Managers require estimates of habitat quality to

adaptively manage populations (Boyd & Svejcar 2009),

design reserves for conservation (Pressey et al. 1993) and

designate critical habitat (Hagen & Hodges 2006). Theoreti-

cal ecologists have developed a suite of predictions relating

species’ abundances to their distributions (Brown 1995),*Correspondence author. E-mail: bean@humboldt.edu
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but testing these predictions has been stymied by the chal-

lenges of operationalizing and quantifying habitat quality.

‘Habitat quality’ has been inconsistently defined and

measured (Hall, Krausman & Morrison 1997; Salomon,

Ruesink & DeWreede 2006; Gaillard et al. 2010). Van

Horne (1983) defined habitat quality as ‘the product of

density, mean individual survival probability, and mean

expectation of future offspring.’ Johnson (2007) defined

habitat quality as ‘the per capita contribution to popula-

tion growth expected from a given habitat.’ While most

definitions incorporate some measure of ‘fitness,’ this is

generally taken to mean something akin to an individual’s

contribution to population persistence rather than an

evolutionary measure.

Of even greater importance is the notion that habitat

quality from an individual animal’s perspective may not

always align with habitat quality from a manager’s per-

spective (Johnson 2005). A population at carrying capac-

ity will likely have a lower survival rate than a nearby

population at half carrying capacity. From a management

perspective, conservation actions should be focused on the

population with the highest probability of long-term per-

sistence. Short-term estimates of survival, density or body

condition may or may not lead to reliable estimates of

habitat quality from a manager’s perspective due to basic

issues of population regulation or behavioural interactions

[i.e. ideal despotic distributions, Fretwell (1972)].

Understanding habitat quality’s contribution to popula-

tion persistence has been difficult due to the resources

required to monitor the necessary demographic rates.

Ecologists have instead turned to a range of proxies to

estimate habitat quality. Species distribution models

(SDMs), in particular the machine-learning method Max-

ent (Phillips, Anderson & Schapire 2006), have increas-

ingly been used to develop habitat quality indices (e.g.

Brambilla & Ficetola 2012; Cimino et al. 2013). SDMs

have become a cornerstone of applied ecological research,

consistently providing accurate estimates of the relative

probability of species presence (Elith et al. 2006). Maxent

requires only records of species presence to train the

model, making it an attractive method for estimating hab-

itat quality: the data requirements are considerably smal-

ler than models that require absence data, or direct

measurements of habitat quality. In fact, McDonald

(2013) suggests that presence-only (or use-available) data

may be more appropriate for estimating habitat suitabil-

ity. However, Maxent and similar models are designed to

predict probabilities or indices of species’ occurrence or

habitat suitability, and it is unclear to what extent habitat

suitability in a given area relates to habitat quality.

Species distribution models rely heavily on environmen-

tal niche theory to explain both range limits and relative

habitat suitability (Peterson et al. 2011). Species are

expected to have higher probability of occupancy in geo-

graphic areas with environmental conditions at the centre

of a species’ niche than at the edges. It is frequently

assumed that the same should be expected for habitat

quality: quality should be highest in areas with environ-

ments that most closely match the centre of a species’

niche and decline towards the edges. Researchers have

used both evolutionary (e.g. Kawecki 1995) and ecological

(Pearson & Fraterrigo 2011) explanations to relate habitat

quality and fitness to the environmental niche.

Unfortunately, due to issues of data collection, it is

rarely possible to directly estimate a species’ environmen-

tal niche from existing data sets. Perhaps the biggest, and

often cited, problem with equating habitat suitability with

habitat quality is the mismatch in scale (Gaillard et al.

2010). Habitat suitability is often modelled range-wide,

with environmental variables fixed at multidecadal time-

scales, while habitat quality and associated population

processes likely occur at much finer spatial and temporal

scales (Guisan & Thuiller 2005). Further, the probability

of presence may be more closely related to density, season

or cyclic phase than individual condition, a problem long

recognized in measuring habitat quality (Van Horne

1983). That is, occurrence records uncorrected for detec-

tion may be biased to high-density sites (Rondinini et al.

2006), but density may not be directly related to habitat

quality due to a number of factors (e.g. source-sink

dynamics). Most SDMs rely on museum records for

occurrence data. It is likely impossible to distinguish spe-

cies locations that were drawn from a sink or trap popu-

lation, thus adding potential bias to estimates of habitat

suitability and, thereby, habitat quality, however recent

efforts to relate intensity of use may be more useful in

determining a species’ distribution (Nielson & Sawyer

2013).

Nevertheless, despite the potential problems with esti-

mating a species’ environmental niche from location

records that may be biased in time, space or that are not

always drawn from a species’ source populations, these

models continue to be used to measure both habitat suit-

ability and, by extension, habitat quality. It is therefore

critical that SDMs, as they are currently practiced, be

tested as indices of habitat quality before they are applied

to that task.

Research into the relationship between habitat quality

and SDMs has generally found positive correlations

between SDM values and population abundance (Pearce &

Ferrier 2001; VanDerWal et al. 2009), but few studies have

gone beyond investigations of abundance. Recent work on

birds and butterflies in the UK found that while abundance

was positively correlated with suitability (measured from a

suite of different SDMs), a derived metric of population

stability was not (Oliver et al. 2012).

In this study, we examine multiple models of habitat suit-

ability, created with Maxent, at different spatial and tempo-

ral scales to examine how well each correlates with in situ

measures of habitat quality for the giant kangaroo rat

(Dipodomys ingens; hereafter GKR). The GKR is an ideal

species to test the relationship between SDMs and habitat

quality: their distribution is easily mapped; long-term popu-

lation abundance is measurable without intensive trapping;
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and the main hypothesized driver of population dynamics

can be estimated using freely available satellite imagery. We

use estimates of survival, population density and body con-

dition as proxies for habitat quality. First, we compare

range-wide SDMs with estimates of habitat quality. Next,

we create a more spatially restricted model to test whether

models of smaller extent better estimate mean habitat qual-

ity over time. Finally, we create local SDMs that incorpo-

rate annual changes in resource availability to test whether

small-scale SDMs are capable of predicting interannual

changes in habitat quality.

Materials and methods

STUDY SPECIES

The GKR is a federally endangered fossorial rodent and

California-endangered fossorial rodent. GKRs construct large

burrow mounds, 2–7 m in diameter (Williams & Kilburn 1980).

After grasses begin to senesce, GKRs clip vegetation from atop

their burrow leaving a circle of bare soil amidst standing dry

vegetation. GKR home range size is typically 60–350 m2 (Braun

1985). The pattern of burrows on the landscape offer a reason-

able estimate of long-term mean abundance, while the bare cir-

cles created by their active clipping provides an easy way of

mapping population extent with aerial surveys (Bean et al.

2012). GKRs are, throughout much of their range, competitively

dominant (Grinnell 1932). Their populations are believed to be

bottom-up limited by primary productivity (Bean 2012).

STUDY SITES

Trapping of GKRs was conducted at two sites in the California

Coast Range: the Carrizo Plain National Monument (35�19°N,

119�73°W), located in eastern San Luis Obispo County, and the

Ciervo-Panoche Natural Area (36�58°N, 120�69°W), on the border

of San Benito and Fresno counties. Both areas represented rela-

tively intact habitat of the San Joaquin desert grassland system

(Germano et al. 2011). Climate was similar in both areas (mean

annual precipitation = 230 mm, SD = 102 mm), with the majority

of rain falling from October through April (Horel et al. 2002).

Both areas were influenced by a north-south gradient in precipita-

tion, with the more southern and eastern areas experiencing drier

conditions. Both sites were dominated by non-native annual

grasses, primarily red brome (Bromus madritensis rubens). The

Carrizo Plain and the Ciervo-Panoche represent the two largest

remaining populations of GKRs.

Two types of trapping occurred. At 28 sites in the Carrizo Plain,

61 traps were set in a 100 m 9 100 m grid to estimate density, sur-

vival and body condition, which we translate to an effective trap-

ping area of 110 m 9 110 m. Twenty of these sites were randomly

selected in 2007 in high-quality GKR habitat as part of a long-term

ecological research project (Prugh & Brashares 2012). Eight addi-

tional sites were established in the Carrizo Plain in August 2010,

stratified across a wider range of habitat suitability, with two sites

each randomly placed within quartiles of habitat suitability from a

preliminary SDM. At an additional 85 sites in Carrizo Plain (in

2010 and 2011) and 72 sites in the Ciervo-Panoche (in 2011), we set

five traps for three nights. These sites were selected randomly

between 100 and 250 m from roads and provided both records of

occupancy and measures of body condition and long-term mean

abundance, but not mark–recapture estimates of abundance or

survival.

MEASURES OF HABITAT QUALITY

We considered a suite of commonly used metrics of individual

and population persistence associated with habitat quality

that fall into three categories: (i) survival, (ii) abundance and

(iii) body condition (Johnson 2007).

Survival and abundance were estimated using robust design

mark–recapture estimates at the 28 density sites in Carrizo

(Kendall 2012). Primary trapping occasions occurred twice annu-

ally, once in the spring (April–May) and once in late summer

(August). Twenty-eight sites were trapped for three nights on each

primary occasion, and individuals were ear-tagged with National

Band and Tag ear tags in both ears. At 20 of the sites, individuals

were injected with a passive integrated transponder tag and just

one ear tag.

Population parameters were estimated using the robust design

with heterogeneity models (Kendall 2012) in program MARK

(White & Burnham 1999) implemented via the ‘RMark’ package in

program R (Laake 2009). The robust design consists of primary

and secondary trapping sessions, with survival estimated between

primary sessions and abundance estimated within secondary ses-

sions. Secondary sessions are assumed to be closed to births,

deaths, immigration and emigration. The robust design allows for

direct estimates of survival (S) by partitioning survival into emigra-

tion rates (i.e. animals that left the study area) and true survival

(those that did not die). We used a model selection framework with

Maximum Likelihood Estimation and corrected Akaikes Informa-

tion Criterion (AICc) (Burnham & Anderson 2002). Parameters

estimated with the robust design with heterogeneity were p (proba-

bility of capture), 1�c0 (probability of immigration), c0 0 (probabil-
ity of emigration), S (survival), N (abundance) and p
(a partitioning factor that allows for within-population heterogene-

ity among the other parameters) (Kendall 2012). N and S were esti-

mated to vary by time and plot. We tested three variants of p,

varying by primary and secondary session, and by plot. We also

tested three models for GKR movement: ‘random flow,’ where the

probability of immigrating and emigrating are equal; ‘Markov

movement,’ where the probability of immigrating or emigrating are

dependent on the previous state of the individual (in or out of

the population); and a movement model where GKR that had

emigrated would not immigrate back into the population

(i.e. 1�c0 = 0) (Kendall 2012). Estimates of N and S for each site at

each time were then derived through model averaging based on the

relative weight of each model calculated from the AICc score.

Trapping on 20 of the sites had occurred since the summer of

2007, while the trapping on the remaining eight sites began in

August 2010. Because MARK does not allow for missing primary

capture sessions, we tested two model designs: first, we combined

all trapping data but removed any trapping data from before

August 2010. We also separated the trapping data, grouped by

sites with identical primary and secondary sessions and conducted

separate model selections on each set of data.

In addition to abundance estimated from the mark–recapture

data, we used counts of burrow mounds at an additional 157 sites

to estimate longer-term mean abundance. Burrow mounds counted

on the ground have been shown to be positively correlated with

carrying capacity or long-term mean population abundance (Bean
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et al. 2012). This method of estimating carrying capacity allowed

for the inclusion of additional sites from across the study area and

across a wider range of SDM values. At each of the 157 sites that

had been trapped across the Carrizo Plain and Ciervo-Panoche

with only five traps, we walked a 50 m 9 10 m transect and

counted every active and inactive burrow mound. Burrow mounds

were identified as topographical features, 2–4 m in diameter, with

greater vegetation and composition distinct from the surrounding

habitat. Burrows were attributed to GKR based on tunnel size

opening (height: 78–81 mm; width: 88–89 mm; Williams & Kilburn

1980).

In order to measure body condition, captured GKR were

weighed, length of the skull was measured, and most individuals

were examined for ectoparasites (fleas and an unidentified

orange mite). On the 20 sites established in 2007, GKR were

not systematically checked for fleas and were therefore removed

from this analysis. Individuals with seeds in their cheek pouches

were also removed from body mass analyses. Due to variability

of juvenile body size, only adults were included in analysis of

body mass. Individuals were assigned an age class (‘Adult’,

‘Yearling’ and ‘Juvenile’) based on body mass as well as condi-

tion of the fur and ears. Juveniles were identified as having

downy fur with less distinct colour patterning and undamaged

ears. Assigning age class to GKRs can be problematic; we

therefore also conducted body mass analyses only for individu-

als recaptured in more than one primary trapping session (i.e.

individuals that were guaranteed to be older than 6 months).

We used body mass to skull length ratio as an additional

measure of body condition.

RANGE-WIDE DISTRIBUTION MODEL

We created a distribution model for GKR using Maxent

(Phillips & Dudik 2008). In addition to the 120 GKR presence

points acquired from our trapping data, we used the gbif func-

tion in the dismo package in R (Hijmans et al. 2012) to obtain

38 spatially referenced records for GKR from museum collec-

tions. Records were restricted to those obtained after 1950, in

order to match the temporal range of environmental variables.

We then obtained 19 climate layers (Hijmans et al. 2005) fre-

quently used in distribution modelling as independent variables

(Graham & Hijmans 2006). Bioclim layers are estimated as

mean conditions from 1950 to 2000. From the initial 19 layers,

we limited our models to six that we believed to be most

important in describing GKR distribution and that were only

partially correlated with each other. These layers were annual

mean temperature (BIO1); annual precipitation (BIO12); mini-

mum temperature of the coldest month (BIO6); precipitation of

the driest month (BIO14); and precipitation of the driest quar-

ter (BIO17). In addition to climatic layers, we included soil par-

ticle size and slope as predictor variables. Giant kangaroo rats

require medium-sized soil particles in order to construct their

burrow systems and are generally restricted to areas of less

than 10° slope (Grinnell 1932; Williams 1992). Study extent was

limited to a buffer of 100 km from all occurrence records. The

climate layers were the coarsest resolution layer (30 s), and thus

soil particle size and slope were aggregated to match this

resolution.

Maxent produces, as an output, an estimate of habitat suitabil-

ity represented by a raster at the same extent and grain as input

layers. Model values may be output in three formats: raw, logistic

and cumulative (Phillips, Anderson & Schapire 2006). The logistic

output may range from 0 to 1 and, if prevalence is well estimated

in the model, may represent a probability of presence. Estimating

prevalence with presence-only data may be difficult, and so the

Maxent output is typically treated as a more general measure of

habitat suitability, with suitability likely correlated with probabil-

ity of presence. Performance was measured using the Area Under

the Curve (AUC, Hanley & McNeil 1982).

Next, we examined to what extent the range-wide SDM corre-

lated with measures of habitat quality. Due to heteroscedasticity

in one or both variables, we calculated Spearman rank correla-

tion coefficients for the SDM with mean survival and mean den-

sity across the four trapping sessions. Three sampling sites had

no GKR at any time during the study and were therefore

removed from analyses of survival. We also calculated correla-

tions for the SDM with counts of burrow density across Carrizo

Plain and Ciervo-Panoche. Finally, we compared body condition

from all individuals captured in Carrizo Plain and the Ciervo-

Panoche with the SDM values. Specifically, we examined whether

adult body mass or the presence of parasites was correlated with

SDM values at each site.

LOCAL DISTRIBUTION MODEL

To further examine the effect of study extent (i.e. the geographic

limit of environmental variables included in the model), we then

created an SDM, with the same bioclimatic layers as the range-

wide model at 30-s resolution, but limited to the area of the

Carrizo Plain. This model produced greater variation of habitat

suitability for the Carrizo GKR population. All relationships

tested for the range-wide model were tested for the local distribu-

tion model: mean survival and density, body mass and the pres-

ence of parasites.

LOCAL TEMPORAL DISTRIBUTION MODELS

We created finer-scale models specific to the Carrizo Plain to

consider the temporal dynamics of habitat suitability. Using

random points selected from estimates of population extent

based on aerial surveys flown over Carrizo Plain in 2010 and

2011 as presences, we used Maxent to model habitat suitability

for each year. GKR distribution was mapped using 0�5-km-wide

aerial transects, with observers recording the beginning and end

of active GKR burrows along each transect. This produced an

areal estimate of population extent in our study area (Bean

et al. 2012). From this total extent, points were randomly

selected to be used as occurrence locations for the SDMs.

Rather than using broad-scale climatic factors, we incorporated

local measures of soil particle size (Soil Survey Staff); vegetation

type (USDA Forest Service 2008); slope and elevation (United

States Geological Survey 2006); and mean annual precipitation

isohyets (United States Geological Survey 1994) at 30-m resolu-

tion. We have found that resource availability in the current

and previous year were contributing factors to GKR presence in

a given year, where resource availability was estimated as the

peak measurement in a time series of Normalized Difference

Vegetation Index (NDVI) from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) (Bean 2012). Therefore, in

addition to the local fixed environmental layers, we also

included measures of maximum NDVI from the current and
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previous year in the yearly models of habitat suitability. All

environmental layers for these local models had a 250-m resolu-

tion.

Using similar analyses to the range-wide models, we then exam-

ined how well these finer-scale models correlated with measures of

habitat quality. We calculated Spearman correlation coefficients

for survival and abundance for each trapping session of the study

(Summer 2010, Spring and Summer 2011, and Spring 2012) with

SDM values. We also examined how well the local SDMs predicted

parasite load and body mass in each given year.

Results

ESTIMATES OF SURVIVAL AND ABUNDANCE

Mark–recapture models estimated from the combined

data representing a limited time frame of sampling were

generally unreliable and frequently failed to converge. We

therefore relied on separate candidate models for (i) the

longer trapping data from 20 sites and (ii) the more recent

trapping data from the other eight sites (Table 1). While

analyses were conducted separately, the same suite of

models had the best support for both data sets. Only

models that incorporated probability of capture as a func-

tion of time or time and plot were supported. In addition,

the ‘random flow’ and Markov movement models were

the only movement types supported.

Abundance and survival on the eight new sites were

generally lower than the 20 long-term sites, but were

otherwise comparable (Table 2, Prugh & Brashares 2012).

Only four of the eight more recently established sites had

GKR present during all trapping sessions. GKR appeared

to move onto a fifth site during the summer of 2011. The

other three sites had a higher diversity of small mammals

in general, but no GKR were trapped and no burrow

mounds were apparent.

DISTRIBUTION MODELS

Species distribution models at all scales were generally

similar, but variation was high at specific locations in

Carrizo Plain (Fig. 1). All models had ‘useful’ AUC

scores (Hanley & McNeil 1982), although AUC score

declined with finer model resolution (0�96 range-wide to

0�75 for the 2011 model).

Variables ranked as important by Maxent differed by

scale, but in general, the climatic and environmental vari-

ables that define GKR distribution followed patterns

described by Grinnell (1932) and Williams (1992). Specifi-

cally, GKR preferred flat areas or gently sloping hills

dominated by California grassland, in areas with hot, dry

summers and average annual precipitation of c. 30 cm or

less.

In the 2010 and 2011 models, long-term annual rainfall

was the most important variable (50�8% and 47�9% con-

tribution). In 2011, GKR also had a positive correlation

Table 1. Model selection results for mark–recapture estimates of survival and abundance for giant kangaroo rats under a robust design

with heterogeneity, with four primary sessions and three secondary sessions each from August 2010 to May 2012. Additional models

incorporating a fixed movement with no re-immigration failed to converge. Parameters estimated were survival (φ), probability of cap-

ture (p) and abundance (N). Two types of movement were tested. Random movement (R) allowed for equal probability of immigration

or emigration, while Markov movement (M) estimated different immigration and emigration rates. Models were estimated from 91

unique capture histories

Model Movement k AICc DAICc Weight

φ(time+Plot)p(session)N(session+Plot) R 21 215�30 0 0�59
φ(time+Plot)p(session)N(session+Plot) M 22 217�45 2�157 0�20
φ(time+Plot)p(session+Plot)N(session+Plot) R 24 217�68 2�389 0�18
φ(time+Plot)p(session+Plot)N(session+Plot) M 26 222�05 6�756 0�02
φ(time+Plot)p(session)N(session+Plot) M 21 224�79 9�489 0�01
φ(time+Plot)p(session+Plot)N(session+Plot) M 25 229�06 13�765 0�00
φ(.)p(.)N(session) – 8 230�47 15�177 0�00

AICc, Akaikes Information Criterion.

Table 2. Model-averaged parameter estimates for abundance (N)

and survival (S) on eight sites trapped for three nights on four

primary occasions from August 2010 to May 2012. N was esti-

mated August 2010 (T1), April 2011 (T2), August 2011 (T3) and

May 2012 (T4). S was estimated for periods between trapping ses-

sions, winter 2010 (T1), summer 2011 (T2) and winter 2011 (T3).

Parameters were estimated from a suite of robust design with

heterogeneity models, with varying predictors for probability of

capture (p) and movement (c0 and c0 0)

Parameter Site Latitude, Longitude T1 T2 T3 T4

N G1 35�2121, �119�8974 0 0 0 0

N G2 35�2070, �119�8834 0 0 2 4

N G3 35�1722, �119�8433 0 0 0 0

N G4 35�1744, �119�8339 0 0 0 0

N G5 35�1184, �119�7624 10�73 27�17 37�46 40�62
N G6 35�0998, �119�7170 23�70 32�14 14�43 37�58
N G7 35�1037, �119�7140 31�08 38�32 33�71 32�92
N G8 35�0648, �119�6707 4�12 12�95 16�04 11�09
S G1 35�2121, �119�8974 0 0 0 –
S G2 35�2070, �119�8834 0 0 0 –
S G3 35�1722, �119�8433 0 0 0 –
S G4 35�1744, �119�8339 0 0 0 –
S G5 35�1184, �119�7624 0�84 0�56 0�52 –
S G6 35�0998, �119�7170 0�78 0�46 0�42 –
S G7 35�1037, �119�7140 0�85 0�58 0�54 –
S G8 35�0648, �119�6707 0�81 0�51 0�47 –
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with resource availability (measured from peak NDVI),

whereas in 2010, NDVI measures were not an important

variable in GKR distribution.

Variability of habitat suitability values at trapped sites

increased in models with smaller extent and finer resolu-

tion. Suitability values for all trapping sites ranged from

0�62 to 0�86 in the range-wide model; 0�60 to 0�87 in the

Carrizo-only model; and 0�04 to 0�73 in the finest scale

models that incorporated changes in population extent

and resource availability.

HABITAT SUITABIL ITY VS. HABITAT QUALITY

Long-term mean abundance, estimated from counts of

burrow mounds at 93 sites in Carrizo Plain and 51 sites

in Ciervo-Panoche, was positively correlated with habitat

suitability at all scales. Population abundance, estimated

from 28 mark–recapture plots, was positively correlated

with habitat suitability at local scales. Three-year mean

abundance was positively correlated at the range-wide

scale, but not the Carrizo-only scale (Fig. 2). We found

no relationship between standard deviation of population

abundance (i.e. stability), a potential measure of habitat

quality, and SDM value at any scale. SDMs were not cor-

related with survival at any of the 28 sites (Fig. 3).

Body mass was not significantly correlated with SDM

values at any scale. Results were similar examining only

recaptured individuals or skull length to body mass ratios.

In general, the presence of orange mites was negatively

correlated with habitat suitability. The presence of fleas

was not correlated with distribution model value at the

range-wide or fixed Carrizo Plain model; however, in the

2011 model, the presence of fleas was positively correlated

with SDM value.

Discussion

In this study, we examined the extent to which SDMs cor-

related with proxies of habitat quality for the GKR.

While models at all scales were correlated with long-term

mean abundance estimated from burrow density, the

model built from data collected at a local spatial scale did

not correlate with abundance estimated from mark–recap-

ture trapping. Correlation between abundance and SDM

value also increased at finer temporal and spatial scales.

None of the SDMs were significantly correlated with sur-

vival.

Correlations between estimated abundances and SDM

values conformed to previous findings (Oliver et al. 2012),

but the use of abundance as a measure of habitat quality

has been questioned (Van Horne 1983). However, in addi-

tion to measuring population abundance from mark–

recapture estimates, we also used counts of burrow

mounds as a proxy for long-term population size. Studies

of GKR population (Bean et al. 2012) and behavioural

ecology (Randall et al. 2002) support the use of burrow

mounds as a measure of carrying capacity: GKR are soli-

tary and in times of higher-than-average density will share

Fig. 1. Giant kangaroo rat (GKR) distri-

bution models created with Maxent at

three spatial scales. Longitude and latitude

are given on the x and y axes; colour

depicts habitat suitability value, with white

corresponding to low suitability, green

with high suitability. The range-wide and

Carrizo-only models were created using

low-resolution climate data (BIOCLIM),

slope and soil particle size, while the 2010

and 2011 models were created with higher

resolution data for mean annual precipita-

tion, elevation, slope, soil particle size and

vegetation type. Suitability values are rep-

resented from low (orange) to high (green).

Carrizo Plain National Monument is out-

lined in black and the Ciervo-Panoche

Natural Area in red. GKR distribution in

Carrizo, based on aerial flight surveys, is

also outlined in black for 2010 and 2011.

While the models described the same

broad pattern – GKR prefer dry, flat,

grassland habitat- variation within Carrizo

differed substantially at each scale of

analysis. Area Under the Curve scores for

each model were ‘useful’ (range-wide:

0�981; Carrizo-only: 0�937; 2010: 0�832;
2011: 0�752).
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burrows, while in times of lower-than-average density will

increase home range to incorporate multiple burrows. At

the broadest scales, then, it is unsurprising, but reassur-

ing, that SDMs predict habitat quality as measured by

long-term abundance.

At the same time, two findings of this study raise some

concern about the use of SDMs as indices of habitat

quality. First, scale matters: by decreasing the study

extent and increasing resolution of the environmental lay-

ers, the models produced greater variability in SDM val-

ues within GKR population extent. The range-wide SDM

produced a homogenous suitability value for most of the

Carrizo Plain, whereas the SDM using the same environ-

mental layers but with smaller total extent created greater

Fig. 2. Relation of abundance to habitat suitability at three spatial scales and two time periods. N was estimated using robust design

mark–recapture models for four trapping occasions from August 2010 to May 2012. Carrying capacity was estimated as number of bur-

row counts in a 50 m 9 10 m transect at sites in Carrizo Plain National Monument and Ciervo-Panoche Natural Area. Habitat suitabil-

ity was estimated with four species distribution models created in Maxent: a range-wide model, a Carrizo-only model and two models

for Carrizo that incorporated giant kangaroo rat resource availability (measured as primary productivity estimated from Normalized

Difference Vegetation Index in a given year). Broad-scale models were significantly correlated with carrying capacity, but showed little

variability in suitability among trapped sites. Local models that incorporated resource availability better distinguished between high- and

low-quality sites.*P < 0.5; **P < 0.1; ***P < 0.01.
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variability in suitability scores. As always, the manage-

ment question will dictate the appropriate scale for model

building. Broad-scale studies may be appropriate for

designing protected areas or designating critical habitat:

the two largest known GKR populations (Carrizo Plain

and Ciervo-Panoche) had the highest suitability values.

However, local management (e.g. restoration or other

active management strategies) would best be focused on

high-quality habitat, which is better defined by more local

distribution models. Environmental variables differed

between each spatial and temporal scale, and additional

years of data are always recommended in order to under-

stand determinants of a species’ niche.

Further, while longer-term management may be con-

ducted with coarse-scaled models, our results suggest only

the finest temporal and spatial models should be used to

inform management of population-level processes. The

models created using single-year estimates of GKR popu-

lation extent and temporal environmental layers (e.g.

NDVI) were best at predicting population abundance,

and no models were correlated with survival.

Although most models adequately estimated mean

abundance over time, we were unable to generate a model

that consistently predicted survival, even though mean

survival is positively correlated with mean abundance over

time at each site. At the individual site scale, local com-

munity-level factors likely play a larger role in determin-

ing survival than habitat quality. Processes such as

interspecific competition and predation cannot be defined

with single-species distribution models. Two sites could

have similar habitat quality and support the same number

of GKR over time, but if one site is located close to a kit

fox (Vulpes macrotis mutica) natal den (as was observed

in this study), for example, survival will be substantially

lower. Further, for many species, survival is likely to be

negatively related to density. For some applications,

abundance may be a more appropriate measure of habitat

quality. It should be noted, then, that SDMs may be

problematic for management decisions that seek high ani-

mal survival over short time frames (e.g. relocation

efforts).

In fact, correlations were strong enough from these

yearly models that it may be possible to estimate GKR

population size in Carrizo from the SDM (q = 0�62 in

2011). A linear regression of abundance predicted by

SDM value in August 2011 gives a y-intercept (b0) of

�19�90 and a slope (b1) of 122�93. Incidentally, this places
the x-intercept at 0�162 – that is, assuming a linear rela-

tionship between GKR abundance and habitat suitability

value, there should be 0 GKR at or below suitability val-

ues of 0�162. Indeed, of the 105 sites trapped across Carri-

zo in 2011, only one site had GKR present below a model

value of 0�162 (at 0�08). In other words, GKR abundance

based on trapping is predicted to be 0 at approximately

the same value Maxent predicted a probability of presence

of 0. Each Maxent cell is 30 m 9 30 m (900 m2), whereas

abundance of GKR is calculated for 120 m 9 120 m cells

(12 100 m2). So, total abundance in 2011 for Carrizo

Fig. 3. Relation of habitat suitability to

giant kangaroo rat survival estimated with

mark–recapture models at 28 sites in

Carrizo Plain National Monument. Species

distribution models were unable to predict

survival at any spatial scale or time

period.
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Plain should be the sum of all Maxent cells, adjusted by

the equation

ð�19 � 90þ 122 � 93�maxent valueÞ�ð900=12 100Þ
¼ 1 898 728

eqn 1

which equates to a population density of c. 18 per ha.

This estimate matches well with our observed estimates at

trapping grids, where estimated density ranged from c. 1

to 50 individuals per hectare.

The weak relationship found between SDMs and survival

at each site may also be due to poor estimates of survival

from the mark–recapture models. The robust design theo-

retically is able to estimate ‘true’ survival by partitioning

emigration rates separately from survival (Kendall 2012).

Although GKRs are believed to have high site fidelity, the

best-supported models suggested some background level of

emigration and immigration, suggesting some bias in the

‘excursion’ rate. While these estimates of survival are

believed to be the least biased of any population estimate

without direct measures of survival, the variability in the

estimates may have contributed to the poor relationship

between SDM values and survival. However, a pilot teleme-

try project on a subset of five of our study plots estimated

similar survival rates using data from radio-collared adults

(S. Etter, unpublished data).

In conclusion, we found that species SDMs can be

effective proxies for some measures of habitat quality, but

that the nature of the question addressed and the tempo-

ral and spatial scales used can considerably alter their effi-

cacy. For long time scales and broad, range-wide

questions, range-wide SDMs may effectively target areas

of high habitat quality, but at finer scales, more local

models were necessary. Resource selection functions may

be better at predicting these finer-scale measures of habi-

tat quality, and on-going research to unite the literature

on SDMs with resource selection functions is likely to

lead to greater synthesis in spatial ecology (Warton &

Aarts 2013). While SDM values were correlated with

long-term trends in abundance, most models were incapa-

ble of predicting survival. Additional research is required

to understand how much this failure was due to the data

or models used and how much was simply due to stochas-

tic or undetected community-level processes.
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