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Abstract

There is widespread concern about impacts of land-use change on connectivity among

animal and plant populations, but those impacts are difficult to quantify. Moreover, lack

of knowledge regarding ecosystems before fragmentation may obscure appropriate con-

servation targets. We use occurrence and population genetic data to contrast connectivity

for a long-lived mega-herbivore over historical and contemporary time frames. We test

whether (i) historical gene flow is predicted by persistent landscape features rather than

human settlement, (ii) contemporary connectivity is most affected by human settlement

and (iii) recent gene flow estimates show the effects of both factors. We used 16 microsat-

ellite loci to estimate historical and recent gene flow among African elephant (Loxodonta
africana) populations in seven protected areas in Tanzania, East Africa. We used histori-

cal gene flow (FST and G’ST) to test and optimize models of historical landscape resis-

tance to movement. We inferred contemporary landscape resistance from elephant

resource selection, assessed via walking surveys across ~15 400 km2 of protected and

unprotected lands. We used assignment-based recent gene flow estimates to optimize

and test the contemporary resistance model, and to test a combined historical and con-

temporary model. We detected striking changes in connectivity. Historical connectivity

among elephant populations was strongly influenced by slope but not human settlement,

whereas contemporary connectivity was influenced most by human settlement. Recent

gene flow was strongly influenced by slope but was also correlated with contemporary

resistance. Inferences across multiple timescales can better inform conservation efforts

on large and complex landscapes, while mitigating the fundamental problem of shifting

baselines in conservation.
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Introduction

Habitat fragmentation is a major threat to biodiversity

worldwide (Wilcox & Murphy 1985). Widespread rec-

ognition of one consequence of habitat fragmentation,

loss of connectivity (dispersal and gene flow) among

plant and animal populations, has led to growing inter-

est in conserving or re-establishing corridors or multi-

species linkages (Beier et al. 2008). Conservation efforts

aimed at increasing connectivity between isolated popu-

lations (e.g. Soule et al. 1979; Newmark 1995, 1996,

2008) assume that such connectivity existed historically

but has been reduced by recent and often striking
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changes in human land use. However, re-envisioning

those lost connections has typically relied on anecdotal

reports or guesswork. Assessing contemporary connec-

tivity among populations is equally difficult, and such

assessments are often undertaken only after significant

land-use changes have occurred. Thus, the potential for

a rapidly shifting baseline cannot be ignored (Gardner

et al. 2009), especially when defining conservation tar-

gets for hard-to-study processes such as connectivity.

Attempts to better quantify connectivity by predicting

potential movement or gene flow over large landscapes

have relied increasingly on approaches that use resis-

tance or cost surfaces based on predicted influences of

different habitats on animal movement (Spear et al.

2010). Least-cost path (Adriaensen et al. 2003) or circuit-

theoretic (McRae et al. 2008) methods are then used to

measure effective distances between locations and pre-

dict likely movement paths (least-cost) or describe areas

with higher predicted use (circuit-theory). Although

such models are widely used as a conservation tool,

confronting them with empirical data has proved chal-

lenging (Cushman & Lewis 2010; Sawyer et al. 2011).

Methods to derive resistance surfaces for connectivity

models empirically are increasingly being explored—

but each has limitations (Zeller et al. 2012). Resistance

surfaces for contemporary landscapes can be estimated

from location data that are used to generate resource

selection function (RSF) or resource selection probability

function (RSPF) models; resistance surfaces are then cre-

ated by inverting habitat selection or use probabilities

(e.g. Chetkiewicz & Boyce 2009). Path-based analyses of

animal movement also can be subjected to use/avail-

ability analysis (Driezen et al. 2007; Zellmer & Knowles

2009; Cushman et al. 2010). However, approaches based

on direct monitoring of animal locations may be con-

strained by financial and logistical limitations. Such

data sets also may be influenced most by use within

home ranges and definitions of habitat availability

rather than dispersal or rare long-distance movements,

and may offer little guidance for restoration in already-

altered landscapes.

Population genetic data have been used to test and

optimize resistance surfaces (Cushman et al. 2006; Epps

et al. 2007; Shirk et al. 2010). However, genetic connec-

tivity may be only indirectly related to demographic

connectivity (Lowe & Allendorf 2010), and interpreta-

tion of population genetic structure is confounded by

time: genetic drift is weak for species with large effec-

tive population sizes (Ne) and long generation times.

Thus, although standard metrics of genetic distance

(e.g. FST) among populations will be influenced by effects

of recent landscape changes, the influence of historical

landscapes may be much stronger (Balkenhol et al.

2009a). Individual-based analyses, where appropriate,

and other metrics of genetic dissimilarity may be more

sensitive to recent changes (Landguth et al. 2010). Popu-

lation assignment tests (Paetkau et al. 1995) that esti-

mate gene flow over more recent time periods (e.g.

previous 1–2 generations, Faubet & Gaggiotti 2008;

Wilson & Rannala 2003) also may offer new opportunities

to estimate resistance on recent landscapes (e.g. Chiuc-

chi & Gibbs 2010).

While each method for confronting connectivity

(resistance) models with empirical data has limitations,

using multiple methods may create new insights and

strengthen inferences. Here, we combine field and

genetic data to contrast the historical and current con-

nectivity of a long-lived mega-herbivore in East Africa.

Specifically, we examine gene flow and contemporary

distribution of African elephants (Loxodonta africana) to

infer changes in population connectivity among pro-

tected areas in Tanzania. African elephants are a conser-

vation flagship species and a valued game animal in

Tanzania, but are also increasingly involved in human–

wildlife conflict. Tanzania’s human population has

increased from 5 million in 1931 (national census,

Anonymous 1931) to an estimated 44 million in 2009

(Anonymous 2011), and this growth is associated with

expanded settlements and more intensive agriculture in

many rural areas. African elephants often avoid areas

with high human activity (e.g. Blom et al. 2005; Cush-

man et al. 2010; Pittiglio et al. 2011), and elephant activ-

ity outside protected areas in central Tanzania is

strongly correlated with species richness of other large

mammals, suggesting that they could serve as focal spe-

cies for connectivity conservation (Epps et al. 2011).

African elephants have one of the longest generation

times of any terrestrial mammal (25 years, Blanc 2008)

and have large population sizes in many protected

areas in Tanzania (Stoner et al. 2007), implying that

effective population sizes (Ne) are large. Therefore, we

predicted that population genetic structure of elephants

in Tanzania would reflect historical patterns of dis-

persal (e.g. hundreds of years before present) more than

recent landscape changes.

Here, we combine habitat use and population genetic

data to assess (i) the degree of connectivity between ele-

phant populations in protected areas and (ii) the extent

to which these populations were connected by gene

flow historically. First, we estimate genetic distance (FST
and G’ST) among core elephant populations in seven

protected areas across central and southern Tanzania,

optimize parameters for resistance models for the his-

torical landscape based on genetic distance, and use

simulated data to evaluate how rapidly FST would

change after a decline in migration rates. Second, we

estimate elephant resource selection from dung and

track locations detected along walking transects
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(systematically conducted across a potential movement

corridor), and transform the resource selection model to

a resistance surface to represent contemporary connec-

tivity. Third, we use assignment test-based estimates of

gene flow on the recent landscape (within the last gen-

eration) to optimize the contemporary resistance model

and test historical, contemporary and combined resis-

tance models. Last, we compare resistance between his-

torical and contemporary time frames to determine

where recent human activity has most affected connec-

tivity among elephant populations. We predicted that

the (i) historical gene flow would reflect permanent

landscape features but not current human activity, (ii)

contemporary landscape resistance (inferred from RSPF

modelling) also would reflect permanent landscape fea-

tures but would be driven primarily by human activity,

and (iii) recent gene flow estimates would be correlated

with both the historical and contemporary resistance

models.

Methods

Genetic samples and genetic structure

We used DNA extracted from elephant dung samples

collected within the last 13 years (Wasser et al. 2007,

2008) in seven major protected areas or protected area

complexes in central and southern Tanzania (Fig. 1;

hereafter, ‘genetic study area’). We chose those areas

because they represent major concentrations of ele-

phants in a biologically complex and less-studied region

of East Africa. Elephant populations are strongly con-

centrated in existing protected areas (see present distri-

bution; Anonymous 2007); therefore, we used a

population-based approach and sampled as widely as

possible across each focal area. Because of the clustered

nature of both the populations and the sampling, indi-

vidual-based approaches that perform best with an

even sample distribution appeared less appropriate.

Sample sizes were � 20 for all populations except

Udzungwa Mountains national parks (NP; n = 11),

where repeated sampling attempts generated few viable

samples because of humid conditions and low elephant

densities (Table 1). We genotyped dung samples at up

to 16 microsatellite loci (see Appendix S1, Supporting

information and Wasser et al. 2008, 2007); we included

only samples successfully genotyped at � 10 loci in

subsequent analyses. We defined populations spatially

using simple polygons drawn to enclose sampling loca-

tions within or near each protected area; we used the

entire protected area if precise sample locations were

not known (Fig. 1, Mikumi and Tarangire). Because

some of those sampling areas were relatively large, cre-

ating the potential for a Modifiable Areal Unit Problem

(Jelinski & Wu 1996), we evaluated FIS for each popula-

tion to determine whether there was evidence for sub-

structure within those populations. We also split

samples from two of the largest polygons and evaluated

population pairwise FST values between those clusters.

We tested for violations of Hardy–Weinberg equilib-

rium and linkage disequilibrium within populations

and by locus using GENEPOP v4.0.10 (Rousset 2008),

applying a Bonferroni correction for multiple compari-

sons across populations and loci. We estimated global

FST for the full data set using GENEPOP (Rousset 2008).

Estimating historical gene flow

Although genetic structure reflects both long-term and

recent patterns of gene flow, we interpreted population

pairwise FST to be primarily an index of long-term (his-

torical) patterns of gene flow (see Introduction). We

estimated population pairwise FST using GENEPOP (Rous-

set 2008) and converted those values to Slatkin’s linear-

ized FST (Slatkin 1995). As an alternative to FST, we also

estimated G’ST (using SMOGD, Crawford 2010), because it

may be more appropriate for highly variable microsatel-

lite data (Hedrick 2005; but see Whitlock 2011). To eval-

uate the assumption that FST would largely reflect

150 km

N

Genetic sampling area

National Park (NP)

Game Reserve (GR)

Wildlife Management Area

81°

0°

Slope

Other protected area

Katavi NP

Ruaha NP

Rukwa GR

Muhesi GR

Selous GR

Tarangire NP

Mikumi NP

Udzungwa 
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Fig. 1 Genetic sampling areas for elephant populations in cen-

tral and southern Tanzania, with major protected areas (solid-

coloured and named if included in the genetic sampling) and

slope (excluding some areas along the western edge of the

country). Genetic sampling area polygons were drawn around

the maximum extent of the locations of genetic samples.
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genetic structure prior to the dramatic human popula-

tion increases in the twentieth century, we simulated

data to test rates of change in genetic structure (Appen-

dix S2, Supporting information). We also attempted to

estimate long-term migration rates among population

pairs using coalescent approaches as implemented in

MIGRATE (Beerli & Felsenstein 2001), but abandoned that

approach because estimates never converged due to

weak genetic structure (not shown).

Estimating recent gene flow using BIMR

We used assignment tests implemented in Program BIMR

(Faubet & Gaggiotti 2008) to estimate recent migration

rates (within the last generation) among protected areas.

This approach performs best when migration rates are

high but global FST values exceed 0.01 (Faubet & Gag-

giotti 2008), and was identified as one of the best-per-

forming methods to test hypotheses about the effect of

landscape resistance and isolation by distance (IBD) on

genetic structure (Balkenhol et al. 2009b). For each anal-

ysis, we used 10 replicate runs of the program (see

Appendix S3, Supporting information) to estimate pair-

wise migration rates between population pairs; we aver-

aged estimates to and from each population and across

runs to generate a symmetrical matrix for correlation

testing.

Field data on elephant distribution

We conducted walking transects to search for elephant

dung and tracks across a ~15 400 km2 area (hereafter,

‘field study area’) in central Tanzania bounded by

Ruaha National Park to the west, Mikumi National Park

to the east, and Udzungwa Mountains National Park to

the south (Fig. 1, see Epps et al. 2011 for further

details). We chose the field study area to investigate a

potential link between elephant populations in the

Selous–Mikumi complex and the Ruaha ecosystem (Jones

et al. 2009). The study area included fully protected

areas (the NP listed above), partially protected areas

open to limited hunting or other extractive uses, and

village lands and Game Controlled Areas (GCAs) where

agriculture, extractive use of wildlife and forest

resources, and human settlement (village lands) were

either permitted or not typically deterred by enforce-

ment (see Appendix S4, Supporting information).

We surveyed 61 unique walking transects (total

length, 481 km; mean and SD, 7.9 � 2.9 km) from Sep-

tember 2006 to February 2007 and from August to

November 2007 (Fig. 2). We recorded a binary response

Table 1 Genetic sample size (n), observed (Ho) and expected (He) heterozygosity (estimated using ARLEQUIN V. 3.11), inbreeding coeffi-

cient (FIS; estimated using Genepop), average number of alleles per locus, and corrected allelic richness for African elephant popula-

tions in seven protected areas in central and southern Tanzania

Sampling area* n Ho He FIS

Average

alleles/locus†
Average allelic

richness (corrected for sample size)‡

Katavi National Park/Rukwa Game Reserve 30 0.62 0.62 �0.006 5.69 4.02

Mikumi National Park 62 0.67 0.64 �0.043 7.00 4.18

Ruaha National Park 29 0.66 0.63 �0.036 6.19 4.32

Muhesi Game Reserve 20 0.62 0.62 0.003 5.69 4.18

Selous Game Reserve 25 0.65 0.62 �0.042 5.13 3.86

Tarangire National Park 40 0.60 0.64 0.069 6.69 4.21

Udzungwa Mountains National Park 11 0.64 0.64 0.007 4.94 4.40

*Only portions of Ruaha National Park, Muhesi Game Reserve, Selous Game Reserve and Udzungwa Mountains National Park were

sampled.
†Not corrected for differences in sample size.
‡We used FSTAT (Goudet 1995) to estimate corrected allelic richness by subsampling based on the smallest sample size.

Elephant sign detections/km

0
0.001-7
7-14

14-21
21-28
28-45

50 km

N

Ruaha NP

Selous GR

Mikumi NP

Udzungwa 
Mountains 

NP

Idodi-Pawaga
WMA

Fig. 2 Elephant detections per kilometre on walking transects

conducted in 2006–2007 in the field study area in central Tanza-

nia, with topographical relief depicted in grey shading; ele-

phants were detected in some locations well outside of protected

areas. Protected areas (NP, national parks; GR, game reserves;

WMA, wildlife management area) are outlined in black.
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(used/not used) for each 10-m interval of the surveyed

transects if elephant dung or tracks were detected

within ~2.5 m of the transect centre line (Appendix S4,

Supporting information). We placed 50 of 61 transects

according to a randomly determined, regular grid of

points [with 10-min (~19 km) spacing in most areas,

although 5- and 7-min grids were initially employed in

some of the protected areas]; those transects were trian-

gular, cross country, with vertices based on the pre-

assigned starting location (e.g. Waltert et al. 2008). We

surveyed the remaining 11 locations using opportunistic

‘recce’ style transects (Walsh & White 1999), where we

travelled irregular routes to explore an area. We sam-

pled at the end of the long wet season, through the dry

season, and into the early wet season (Appendix S4,

Supporting information; Epps et al. 2011). Thus, our

surveying captured both wet- and dry-season activity

patterns but did not clearly separate whether habitat

selection varied across seasons.

Modelling historical gene flow based on landscape
features

We evaluated whether genetic distances among

elephant populations in central and southern Tanzania

were correlated with distance or persistent landscape

features. We used a Mantel-based model optimization

framework (e.g. Epps et al. 2007) to determine optimal

transformations for single variables, then developed

and tested more complicated models using multiple

regression on distance matrices (MDRM, Legendre et al.

1994; Lichstein 2007). We tested two basic hypotheses

of isolation by landscape resistance (IBR) based on (i)

slope, because elephants typically avoid steeper slopes

(Wall et al. 2006) and (ii) distance to fresh water (lakes

and rivers), which influences elephant movements (e.g.

Cushman et al. 2010). We treated IBD (distances

between sampling polygon edges) as the null hypothe-

sis, and used a four-part approach: (i) for each land-

scape hypothesis, we generated a set of resistance

models with progressively stronger resistance values

based on power transformations of the primary resis-

tance layer (e.g. slopex; see Figs S1 and S2, Supporting

information); (ii) for each resistance model, we used

Program CIRCUITSCAPE (v.3.5.2, Shah & McRae 2008) to

calculate cumulative resistance between all population

pairs over all possible pathways on the underlying

resistance surface (McRae et al. 2008); (iii) we used sim-

ple Mantel tests (Smouse et al. 1986) to evaluate the cor-

relation of pairwise linearized FST and G’ST estimates

with the pairwise estimates of cumulative resistance

from each resistance model (graphed in Figs S1 and S2,

Supporting information); and (iv) for each landscape

hypothesis, we evaluated whether any resistance model

was more correlated with FST or G’ST than the null

hypothesis of IBD (geographic distance), and whether

we saw a clear unimodal peak in the strength of corre-

lations over the range of transformations tested (Shirk

et al. 2010). If so, we used the transformation with the

strongest correlation coefficient as the ‘optimized’

model in subsequent analyses. Although Mantel tests

have been criticized for a variety of reasons including

inflated type I error in the presence of spatial autocorre-

lation (Guillot & Rousset 2012), we did not rely on

significance tests in the optimization process. Further-

more, Mantel tests are considered appropriate for

exploratory analyses of relationships for distance-based

measurements (Legendre & Fortin 2010).

After determining whether there was support for each

landscape hypothesis (slope or water) as above, we used

multiple regression of distance matrices (MRDM) (as

implemented in Program R, ecodist package) to evaluate

the performance of each optimized model. Balkenhol

et al. (2009b) found that MRDM was the best-performing

method for landscape genetic analysis of population

data. We used 10 000 permutations to assess significance

of each test. We assessed colinearity of predictor vari-

ables (Table S1, Supporting information) and plotted

variables against genetic distance to examine linearity

and determine whether transformation was necessary

(Fig. S3, Supporting information). Next, we tested how

the best-fitting resistance models from the optimization

exercises predicted genetic distance as univariate models,

then in multivariate models including geographic dis-

tance to test whether the resistance models performed

better than geographic distance (based on effects tests for

each variable). We used the final model from this process

as our optimized historical resistance model.

Estimating the resource selection probability function
model and contemporary resistance surface

Although data on elephant movement would be most

appropriate for modelling contemporary resistance,

collection of movement data across this landscape (e.g.

by satellite telemetry) was not logistically feasible due

to expense, low elephant population density in the cor-

ridor areas, and permitting constraints. Therefore, we

employed a use vs. available study design to estimate

resource selection by elephants. We defined used sites

(n = 2207) by transect intervals wherein dung and

tracks were detected (e.g. Pradhan & Wegge 2007) and

available sites by each sampling interval (n = 44 301).

Hence, both the used and available sites were equally

constrained to the sampling transects in an approach

consistent with Keim et al. (2011). For both used and

available locations, we used a Geographic Information

System (GIS; ARCGIS 10.1) to measure covariates (Table

© 2013 Blackwell Publishing Ltd
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S2, Supporting information) relevant to our predictions

that elephants would select protected areas and avoid

areas with dense human settlement or agriculture (Epps

et al. 2011), avoid steeper slopes (Wall et al. 2006), but

select areas near water and with cooler aspects (south-

facing in the Southern Hemisphere). Recognizing that

different model forms should be considered to deter-

mine which model best fits the data (Rosner 1995), we

considered two competing model forms as part of the

model selection process: the exponential RSF and the

logistic form of the RSPF (Lele & Keim 2006). We

selected the model form and covariates that best fit the

data in two steps (Table S3, Supporting information).

First, we estimated resource selection using maximum

likelihood methods and selected the model form and

covariates that best fit the data using Schwarz Informa-

tion Criteria (SIC, Schwarz 1978). We used SIC because

that criterion appears better than AIC for determining

relative importance of variables (Astrup et al. 2008;

Raffalovich et al. 2008). Second, we examined the distri-

bution and range of the predicted values for anomalies

(e.g. maximum probabilities of selection near zero or a

confined distribution of probability values).

We mapped the final resource selection model across

the genetic study area. For landscape predictions, input

variables were limited to the minimum and maximum

values observed within the sampled distribution to pre-

vent extrapolations beyond the limits of our data.

Although we extended our model beyond the area from

which it was developed (Figs 1–3), the field study area

contained a heterogeneous mix of habitats and levels of

human activity and thus should permit cautious extrap-

olation of the model elsewhere in Tanzania.

Although resistance surfaces (where higher values

imply lower suitability for use or movement) have been

generated from RSF or RSPF models (where higher val-

ues imply greater levels of habitat use) by simply inverting

the resistance surface (e.g. Chetkiewicz & Boyce 2009),

(a) (b)

(c) (d)

Fig. 3 Resistance models for elephant movement, including the ‘historical’ model (a) based on slope, and the ‘combined’ model (b)

based on the combination of the historical model and a contemporary resistance model derived from a habitat selection model, with

corresponding maps depicting flow of ‘current’ among genetic sampling areas based on the historical (c) and the combined (d) resis-

tance models. Areas with higher current values have higher probability of movement through that location for a random walk

between sample areas; warmer colours indicate ‘bottlenecks’ or areas through which movement would be forced. Protected areas are

outlined in black and grey.
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different models for scaling the resulting resistance

surface warrant exploration. This is particularly true

because animals might be more willing to travel

through poor-quality habitat during rapid long-distance

movements than during daily foraging. We created a

basic resistance surface by inverting probabilities of

selection from the RSPF model (1/RSPF) across the

entire landscape for the genetic study, but then used

recent gene flow estimates (Program BIMR, see above) to

optimize the 1/RSPF model. We created models of

increasingly lower resistance by transforming the 1/

RSPF resistance model using power transformations

ranging from 1 (no change) to 0.2 [(1/RSPF)1/5], and

used CIRCUITSCAPE to calculate cumulative resistance

among populations for each transformation. We used

simple Mantel tests to determine which transformation

was most strongly correlated with estimates of recent

gene flow (Fig. S4, Supporting information), and used

that optimized model [hereafter, the ‘contemporary

(RSPF)’ resistance model] for further testing.

Testing and comparing models of historical and
contemporary connectivity with recent gene flow

We predicted that genetic structure (historical gene flow)

would be predicted by persistent landscape features

(described earlier) but not human activity and that recent

gene flow would be predicted by both persistent land-

scape features and human activity. We used MRDM to

estimate whether recent gene flow estimates were pre-

dicted by cumulative resistance estimates from (i) the his-

torical resistance model, (ii) the contemporary resistance

model and (iii) a combined model, which used the high-

est value from the historical or contemporary models in

each grid cell. By using the highest value, we assumed

that resistance due to human activity (the primary driver

of the combined model, see Results) would be additive to

resistance from persistent landscape features that would

affect gene flow in all time frames. Next, we used multi-

variate MRDM and the effects tests for each variable to

evaluate our predictions that: (i) recent gene flow esti-

mates would be predicted by contemporary resistance

even after controlling for geographic distance by includ-

ing it as a covariate, (ii) recent gene flow estimates would

be predicted by both contemporary resistance and histor-

ical resistance and (iii) recent gene flow estimates would

be predicted by the combined (historical plus contempo-

rary) resistance model better than by the historical land-

scape model alone. Finally, we used MRDM to test our

prediction that historical gene flow (FST and G’ST) would

not be predicted by the contemporary landscape resis-

tance model.

As an additional test of the contemporary and histori-

cal resistance models, we evaluated posterior probabili-

ties for competing explanatory models in Program BIMR.

Matrices from each potentially explanatory model (e.g.

geographic distance, or cumulative resistance) can be

used by BIMR as priors for migration rate estimation;

posterior probabilities are then estimated for each

model and combinations of models allowing compari-

sons of model performance (Faubet & Gaggiotti 2008).

First, we used BIMR to test the performance of the histor-

ical model in contrast to IBD and an empty model with

no explanatory matrices, as a further test of the histori-

cal model’s influence on recent gene flow. Next, we

used BIMR to estimate the posterior probability of the

historical model, the contemporary (RSPF) model, and

both models simultaneously as separate variables (not

combined). Lastly, we contrasted posterior probabilities

of the combined (historical and present day) model and

the historical model, but excluded simultaneous esti-

mates for both models, because the combined model

included the historical model. For each test, we evalu-

ated average posterior probabilities across 10 replicate

analytical runs, and also evaluated posterior probabili-

ties for the run with the lowest Bayesian deviance for

assignments (the most likely run, Faubet 2007).

Finally, we evaluated the ratio of cumulative resis-

tance estimates from the combined resistance model to

the historical model for each population pair. We used

these ratios to rank pairwise comparisons and identify

which pairs of sampling areas have experienced the

greatest declines in connectivity.

Results

Genetic samples and structure

At the population level, no microsatellite loci exhibited

significant linkage disequilibrium after Bonferroni correc-

tion for multiple comparisons (72 of 840 comparisons

were significant at P < 0.05). Across all populations, no

pairs of loci were in significant linkage disequilibrium

after correction for multiple comparisons (14 of 120 were

linked at P < 0.05). Tests by population and by locus

exhibited no significant departure from Hardy–Weinberg

equilibrium after correction for multiple comparisons. We

observed very low FIS values in the seven populations

(Table 1), and FST values between sample clusters within

the two largest polygons (Selous and Katavi-Rukwa) were

among the lowest observed (0.004 and 0.005), suggesting

that little genetic structure existed within the original

polygons and thus theywere ecologically defensible.

Historical and recent estimates of gene flow

African elephant populations among central and south-

ern protected areas in Tanzania were at most weakly

© 2013 Blackwell Publishing Ltd

1580 C. W. EPPS ET AL.



differentiated with a global FST estimate of 0.014 and

relatively similar estimates of genetic diversity

(Table 1). Population pairwise linearized FST values

among sampling polygons ranged from 0 to 0.04

(Table 2). Estimates of recent (BIMR m) gene flow among

elephant populations showed considerable variation

among different pairs of protected areas (Table 2; Fig.

S5, Supporting information), but were relatively consis-

tent across runs (data not shown). Both analyses sug-

gested very weak genetic structure and high levels of

gene flow among western protected areas (Ruaha, Mu-

hesi and Katavi) as well as between Mikumi and Selous

in the east, and moderate levels of gene flow across the

field study area (Ruaha-Udzungwa-Mikumi; Table 2).

Estimates of historical genetic structure suggested mod-

erate connectivity of elephants in Tarangire with both

western and eastern protected area clusters; recent gene

flow estimates for those comparisons were moderate to

weak (Table 2).

After simulating a 10-fold decrease in migration rates

across all populations, for simulated populations and

sample sizes representative of our study, at least four

generations (100 years) were needed to detect a change

in genetic structure (see Figs S2-1 and S2-2 in Appendix

S2, Supporting information).

Resource selection function model and contemporary
resistance surface

We detected elephants at 2207 locations on 38 of 61

transects. Elephant activity spanned nearly the entire

field study area but was not ubiquitous (Fig. 2);

although we did not separate wet- and dry-season data,

we noted elephant activity far outside of protected

areas in both seasons. The final RSPF model was in the

form of the logistic RSPF (Table S3, Supporting informa-

tion) and showed that the elephants selected protected

areas, mid-range slope values and cooler aspects, but

avoided areas with higher human population density,

agriculture and greater distances to water (Table 3; Fig.

S6, Supporting information). Human population density

and protected area status had the strongest effects

based on SIC (Table S3, Supporting information) and

effect size (Table 3). The variables in the final model are

consistent with other studies on elephant habitat use

(Wall et al. 2006; Cushman et al. 2010; de Knegt et al.

2011), suggesting that our sampling and analytical

design was appropriate for quantifying habitat use by

elephants in this area.

Testing and comparing models of historical and recent
gene flow with contemporary connectivity

We did not detect IBD in our indices of historical gene

flow (Table 4). However, we detected strong isolation

by resistance (IBR) from slope (Table 4), with the high-

est correlation at (slope)1.5, hereafter the ‘historical

(slope) model’ (Fig. S1, Supporting information). A mul-

tivariate MRDM model including both slope and geo-

graphic distance performed no better than the model

for slope alone, and the effects test did not support geo-

graphic distance (Table 4). Historical gene flow was not

predicted by distance to water (Fig. S2, Supporting

information) or the optimized contemporary resistance

model (Table 4). Recent gene flow (square root trans-

formed to improve linearity, Figs S7 and S8, Supporting

information) likewise was not predicted by geographic

distance but was strongly predicted by the historical

(slope) resistance model (Table 4).

The untransformed 1/RSPF model was slightly less

correlated with recent gene flow (r = 0.47, P = 0.001)

than was the IBD model (Fig. S4, Supporting informa-

tion). However, the cube root transformation of the 1/

RSPF resistance model was much more strongly corre-

lated with recent gene flow estimates (r = �0.65,

P < 0.0001; Fig. S4, Supporting information): thus, the

untransformed 1/RSPF model appeared to overestimate

resistance. MRDM likewise supported the optimized

(cube root) 1/RSPF resistance (hereafter, “contemporary

[RSPF]”) model but not IBD (Table 4). The multivariate

MRDM models including both contemporary (RSPF)

and historical (slope) resistance models supported both

Table 2 Slatkin’s (1995) linearized FST values (above diagonal) and migration rates (percentage of genes derived from migrants

within the last generation as estimated by BIMR (Faubet & Gaggiotti 2008), below diagonal), among African elephant populations in

seven protected areas in Tanzania

Katavi Mikumi Ruaha Muhesi Selous Tarangire Udzungwa

Katavi — 0.022 0.004 0.004 0.040 0.012 0.016

Mikumi 0.00864 — 0.015 0.017 0.008 0.011 0.005

Ruaha 0.0836 0.0365 — 0 0.034 0.007 0.021

Muhesi 0.0210 0.0214 0.127 — 0.029 0.006 0.014

Selous 0.000124 0.205 0.00359 0.000409 — 0.020 0.022

Tarangire 0.00184 0.0150 0.0243 0.00423 0.000532 — 0.004

Udzungwa 0.000174 0.0621 0.00842 0.000574 4.53 9 10�8 0.000608 —
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variables but not geographic distance; R2 values from

univariate MRDM models suggested that the historical

(slope) model explained more variation in recent gene

flow than did the contemporary (RSPF) model (Table 4).

Finally, the combined resistance model (based on maxi-

mum values for the historical and contemporary mod-

els) had the highest R2 of any univariate MRDM model,

and was the only variable supported in multivariate

models including both slope and the combined model

(Table 4). Many of these variables were strongly collin-

ear (Table S1, Supporting information), but conclusions

were consistent across analyses.

Conclusions from evaluating posterior probabilities of

competing explanatory models for recent gene flow (in

Program BIMR) were similar. The first test demonstrated

that the historical (slope) model was strongly favoured

over the IBD model (Table 5). In the second test that

compared the historical (slope) model and the contem-

porary (RSPF) resistance model, migration rates were

best explained by the historical (slope) model although

the contemporary (RSPF) model had higher relative

support than geographic distance in the previous analy-

sis. However, the third test that contrasted posterior

probabilities for the historical (slope) model and the

combined resistance model indicated that the migration

rates were best explained by the combined model

across the majority of replicate runs: thus, recent gene

flow reflected both the contemporary (largely driven by

human activity) and historical (slope) estimates of resis-

tance (Table 5).

The predicted patterns of gene flow shifted markedly

from the historical to the combined model (Fig. 3).

Resistance increased between all pairs of protected

areas, but, by far, the largest increases occurred

between Tarangire National Park and protected areas to

the south due to the dense human settlement in north-

eastern Tanzania (Figs 3 and 4).
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Fig. 4 Ratio of cumulative population

pairwise resistance estimates (combined

resistance model/historical resistance

model) for seven elephant populations

sampled in central and southern Tanzania

(named in inset map of sampling poly-

gons). Higher ratios indicate increased

resistance in the contemporary compared

to historical time frames. Pairwise com-

parisons including Tarangire National

park had the greatest increase in resis-

tance due to intense human activity in

northeastern Tanzania.

Table 3 Parameter estimates and significance tests for vari-

ables in the best-supported resource selection probability func-

tion (RSPF) model (based on model selection with Schwarz

Information Criteria) for elephants in central Tanzania

Effect Estimate SE z value P (>|z|)

Intercept �2.704 0.119 �22.633 <0.0001
Human

population density*
�1.691 0.112 �15.084 <0.0001

Distance

from water (km)†
�0.102 0.015 �6.877 <0.0001

Slope‡ 12.929 1.348 9.594 <0.0001
(Slope)2 �23.044 3.122 �7.382 <0.0001
Protected area status§ 2.355 0.136 17.315 <0.0001
Agricultural areas¶ �1.829 0.195 �9.379 <0.0001
‘Aspect’** 0.280 0.073 3.833 0.0002

*Ward level, 2002 census; standardized about mean (11.304)

and standard deviation (8.272).
†Estimated using AFRICOVER C. 1997 (FAO 2005).
‡Transformed and converted from degrees to radians as: sine

((slope * p)/180).
§Scored as ‘1’ if within a patrolled protected area (see Appen-

dix S4); estimated using a corrected version of the World Dat-

abase of Protected Areas (v. 2005).
¶Scored as ‘1’ if within agricultural areas identified by AFRICOV-

ER C. 1997 (FAO 2005).

**Transformed and converted from degrees to radians as: sine

(((Aspect + 225) * p)/180).
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Discussion

Historically, gene flow among most African elephant

populations in central and southern Tanzania (Table 2,

Fig. 3c) was high (as observed in Kenya, Okello et al.

2008). However, estimates of recent gene flow, field

assessment of elephant activity among three central pro-

tected areas, and our model of contemporary landscape

resistance based on habitat use suggested that connectiv-

ity is now threatened, if not absent, among some popula-

tions that were linked previously by relatively strong

gene flow. Although topography was still the strongest

determinant of recent gene flow, expanding human set-

tlement has caused detectable changes in recent gene

flow among protected areas in Tanzania. Landscape

resistance has not increased evenly: among many pro-

tected areas, substantial potential for gene flow still

remains, while other connections are likely severed at

this time (Figs 3, 4 and S6, Supporting information).

Using multiple types of data to optimize resistance

models allowed new inferences and improved model

performance, although each type had limitations. For

instance, while the contemporary resistance model

(derived from location data) explained variation in

recent gene flow, adding the historical model clearly

improved model performance (combined model,

Table 4). Moreover, the un-optimized contemporary (1/

RSPF) model may have overstated the influence of

Table 4 Tests of explanatory models for historical and recent gene flow among elephant populations in Tanzania using multiple

regression of distance matrices (MRDM), conducted in Program R using the ecodist package. Scatterplots of the univariate relation-

ships are presented in Figs S3, S7 and S8 (Supporting information). Variables that are supported by significant (P < 0.05) model

F tests (univariate models) or effects tests (multivariate models) are indicated in bold

Response Model Model R2 Model F test Significance of model F test

Effects test for single

variables in multivariate

models

Variable P value

Linearized FST Geodis* 0.033 7.21 0.076 — —
Slope† 0.130 31.09 0.002 — —

RSPF‡ 0.005 1.02 0.407 — —
Geodis + Slope 0.136 16.23 0.007 Geodis 0.481

Slope 0.004

G’ST Geodis 0.040 8.66 0.077 — —

Slope 0.170 41.69 0.001 — —
RSPF <0.001 <0.01 0.961 — —

Geodis + Slope 0.173 21.62 0.003 Geodis 0.499

Slope 0.002

BIMR
§ Geodis 0.037 8.00 0.078 — —

Slope 0.352 113.2 0.0001 — —

RSPF 0.188 48.07 0.0004 — —
Combo¶ 0.464 179.8 0.0001 — —

Geodis + Slope 0.352 56.32 0.0001 Geodis 0.945

Slope 0.0001

Slope + RSPF 0.419 74.58 0.0001 Slope 0.0001

RSPF 0.0016

Slope + RSPF + Geodis 0.430 51.70 0.0002 Slope 0.0001

RSPF 0.0012

Geodis 0.2570

Slope + Combo 0.465 89.79 0.0001 Slope 0.6699

Combo 0.0008

Slope + Combo + RSPF 0.465 59.79 0.0002 Slope 0.5651

Combo 0.0162

RSPF 0.6625

RSPF, resource selection probability function.

*Geographic distance.
†Optimized model used in all tests: (Slope)1.5.
‡Optimized model used in all tests: (1/RSPF)0.33.
§Square-root transformed to improve linearity (see Figs S7 and S8). Tests using the untransformed estimates showed identical conclu-

sions about the relative importance of variables but slightly lower fits for the overall models (not shown).
¶Resistance model created using the highest value from the Slope1.5 and (1/RSPF)0.33 models for each grid cell.
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human activity on connectivity because it was based on

habitat use rather than movement: elephants might bet-

ter tolerate human activity when rapidly dispersing

through an area vs. foraging. Using the recent gene

flow estimates to optimize the contemporary model

resulted in lower resistance estimates. Our data set only

slightly exceeded the minimum genetic structure recom-

mended for BIMR, and our sample sizes (Table 1;

mean = 31) were lower than those tested by Faubet &

Gaggiotti (2008, n = 50). Thus, although our recent gene

flow estimates were consistent with the models devel-

oped from other data, individual estimates among

population pairs should be interpreted with caution

especially where sample sizes were low.

Our approach does not fully delineate different time-

scales. For instance, our indices of historical gene flow

(FST and G’ST) must have included some effects of

recent landscape changes, particularly as the effects of

past landscapes disappear more quickly for animals

with long dispersal distances (Landguth et al. 2010).

However, our finding that at least four generations (for

elephants, 100 years) after a severe decline in gene flow

would be needed to detect a change in genetic structure

for these populations (simulated data, Appendix S2,

Supporting information) supports our assumption that

genetic structure of elephant populations in Tanzania

largely reflects conditions prior to twentieth century

human population explosion. Even our recent gene flow

estimates may still reflect a time lag: because elephant

generations overlap, the previous generation of living

individuals would include animals alive within the last

~100 years. Our analysis was also complicated by

strong colinearity among some competing models (such

as the historical and combined modes). However, we

believe that the combined model is most suitable for

modelling gene flow on the current landscape (Fig. 3),

because it incorporates empirical data on gene flow as

well as the impacts of recent human activity.

The influence of human activity varied sharply over

time. Although we observed high levels of elephant

activity in some locations far outside protected areas

(Fig. 2), contemporary elephant habitat selection and

thus resistance was most strongly influenced by human

activity (Table 3). As observed elsewhere (e.g. Douglas-

Hamilton et al. 2005; Galanti et al. 2006; Wittemyer et al.

2007; Blake et al. 2008; Pittiglio et al. 2011), areas with

higher human population density, outside protected

areas, and within agricultural areas were strongly less

selected by elephants (Table 3, Fig. S6, Supporting

information), probably because of conflict with humans

and high levels of illegal harvest in Tanzania (Wasser

et al. 2009). Recent gene flow estimates were best pre-

dicted by slope but also were predicted by contempo-

rary resistance and thus human activity (Table 4).

However, variation in historical gene flow (FST or G’ST)

was not predicted by the contemporary resistance

Table 5 Posterior probabilities of explanatory models for pairwise estimates of recent gene flow (previous generation) among ele-

phant populations in central and southern Tanzania, estimated using a Bayesian population assignment test (Program BIMR; Faubet &

Gaggiotti 2008)

Test Explanatory model(s)

Proportion of runs

with highest posterior

probability

Average posterior

probability*

Historical vs. distance None 0/10 0.05

Distance 0/10 0.05

Historical (slope)† 10/10 0.63

Distance, Historical (slope) 0/10 0.25

Historical vs. contemporary None 0/10 0.04

Historical (slope) 10/10 0.44

Contemporary (RSPF)‡ 0/10 0.17

Historical, Contemporary (RSPF) 0/10 0.24

Historical vs. combined None 0/10 0.02§

Historical (slope) 2/10 0.32

Combined¶ 8/10 0.40§

RSPF, resource selection probability function.

*The model favoured in the run with lowest Bayesian deviance is indicated in boldface for each test.
†Optimized model used in all tests: (Slope)1.5.
‡Optimized model used in all tests: (1/RSPF)0.33.
§Although the combined model was always favoured in >75% of the runs, in one of three replicate analyses (not shown), the null

model was favoured in the single run with the lowest Bayesian deviance (but only in that run); we speculate that this may have

resulted from strong colinearity between the slope and combined models.
¶Resistance model created by comparing the Slope1.5 and (1/RSPF)0.33 models in the Geographic Information System and using the

highest value from each overlapping pair of grid cells.
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model (Table 4), further indicating that genetic structure

still largely reflected the historical landscape.

The effect of persistent landscape features also varied

across timescales and models, but had consistent ele-

ments. For instance, steep slopes impeded movement in

historical, recent, and contemporary time frames

(Tables 3–5). African elephants clearly use mountainous

areas and can negotiate relatively steep slopes over

short distances, but long-distance movement over steep

terrain may be restricted by energetic limitations (Wall

et al. 2006). However, the contemporary (habitat

selection) model showed that elephants now select mid--

range slopes (slope and its quadratic, Table 3), suggesting

that the elephants are shifting to steeper habitats, per-

haps because human settlement often occurs on lower

slopes in river valleys. Other differences between histor-

ical and contemporary models likely resulted because

elephants respond to different habitat elements at local

vs. landscape scales (de Knegt et al. 2011). Distance to

water did not affect historical gene flow (Fig. S2,

Supporting information), perhaps because elephants are

less closely tied to water during the wet season (per-

sonal observation), but elephants selected areas near

water and cooler aspects in the best-supported RSPF

model based on contemporary locations (Table 3). Thus,

water availability and microsite characteristics affect

fine- but not coarse-scale movements (de Knegt et al.

2011), again demonstrating that habitat use is a different

process than gene flow.

The different scales and biological processes involved

(e.g. dispersal and reproduction vs. daily foraging)

necessitate caution when making comparisons across

models. However, the strong effect of slope on move-

ment as inferred from the genetic data highlights the

utility of combining genetic analyses (which address

connectivity in the sense of movement followed by

breeding) with habitat-use models based on the occur-

rence data, because the latter may not fully reflect the

influence of landscape on long-distance movements.

Conversely, the addition of the habitat model

highlighted the importance of human activity on the

contemporary landscape and helped address the time

lag inherent to genetic-based models. Thus, our study

underscores the need for multiple lines of evidence

when estimating connectivity (Cushman & Lewis 2010).

The connectivity of elephant populations in Tanza-

nian protected areas reflects a landscape in transition:

elephants are still moving surprising distances outside

protected areas (Fig. 2), even over steep terrain and

near human settlements, but areas of dense human set-

tlement and poaching threats have likely greatly

reduced or eliminated many such movements (Figs 3

and 4). Movement corridors across the Ruaha-Ud-

zungwa-Mikumi field study area (Fig. 2) appear highly

threatened: local people described some routes that

appear to have already been abandoned, while others

fall near areas with rapid expansion of housing and

agriculture (see Jones et al. 2009; Epps et al. 2011).

Movements across the field study area may be the only

remaining link between eastern/southern and north-

ern/western populations of elephants in Tanzania

(Fig. 3c,d). However, connectivity appears mostly intact

among the park and game reserves of the Ruaha eco-

system and Katavi National Park to the west (Figs 1, 3,

4 and S6, Supporting information) as well as between

Mikumi National Park and the Selous Game Reserve.

Those populations also showed the highest connectivity

in the past (Table 2; Fig. 3a,c).

Invoking the historical landscape involves much

uncertainty, and we should not assume elephants moved

without restriction until recent decades. Humans have

been present in Tanzania for millennia, and it is clearly

erroneous to envision existing protected areas as rem-

nants of untouched wilderness: many had human settle-

ment, agricultural or pastoral activity before people were

removed during reserve establishment. Other areas may

have reopened to elephants in the late 1960s during Tan-

zania’s Ujamaa, a period of government-induced social

change that included widespread resettlement and vil-

lage consolidation. Furthermore, elephant hunting for

ivory was widespread in the nineteenth century and even

earlier, although the scale of elephant killing in Tanzania

may have increased sharply in the late twentieth century

(Wasser et al. 2009). However, elephants were known to

occur across nearly the entire country in the nineteenth

and early twentieth centuries (summarized by the Tanza-

nia Mammal Atlas Project, Anonymous 2007), and recent

human population size far exceeds past levels. While

Kjekshus (1977) argued that settlement patterns prior to

European colonization of the interior were more wide-

spread and stable than is often assumed, he also stated

‘we should immediately recognize that large parts of the

country have never been vied for as areas of human

exploitation’ (p. 48). Thus, our findings strongly suggest

that current patterns of human settlement are causing

unprecedented changes in connectivity among elephant

populations.

African elephants exemplify the challenges inherent

to connectivity conservation. They are large and wide

ranging, but increasingly restricted to protected areas

due to conflict with humans. Loss of migration routes

in other areas of East and Southern Africa has led to

local overpopulation of elephants and caused habitat

destruction (e.g. Amboseli NP and Kruger NP). For ele-

phants, as for other species, we must ask whether it is

worth investing the resources to preserve movement

corridors among protected areas. In that context, under-

standing both long-term and contemporary patterns of
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movement or gene flow will help us prioritize based on

high levels of previous connectivity, high threat to con-

temporary connectivity, or both.
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