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Abstract

Species distribution models are commonly used to predict species responses to climate change. However, their

usefulness in conservation planning and policy is controversial because they are difficult to validate across time and

space. Here we capitalize on small mammal surveys repeated over a century in Yosemite National Park, USA, to

assess accuracy of model predictions. Historical (1900–1940) climate, vegetation, and species occurrence data were

used to develop single- and multi-species multivariate adaptive regression spline distribution models for three species

of chipmunk. Models were projected onto the current (1980–2007) environmental surface and then tested against

modern field resurveys of each species. We evaluated models both within and between time periods and found that

even with the inclusion of biotic predictors, climate alone is the dominant predictor explaining the distribution of the

study species within a time period. However, climate was not consistently an adequate predictor of the distributional

change observed in all three species across time. For two of the three species, climate alone or climate and vegetation

models showed good predictive performance across time. The stability of the distribution from the past to present

observed in the third species, however, was not predicted by our modeling approach. Our results demonstrate that

correlative distribution models are useful in understanding species’ potential responses to environmental change, but

also show how changes in species-environment correlations through time can limit the predictive performance of

models.
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Introduction

A pressing challenge for biodiversity conservation in the

21st century lies in forecasting species’ responses to the

direct and indirect effects of climate change (Barnard &

Thuiller, 2008). The complexity of these effects and the

evidence for the idiosyncratic nature of species’ responses

to past climate change makes this arguably the most

difficult problem confronting biologists today (Brown

et al., 1997; Jackson & Overpeck, 2000; Walther et al.,

2002). Novel climates are anticipated in the future (Wil-

liams & Jackson, 2007), which further exacerbate our

ability to accurately predict how species will

respond. Forecasting in the face of this uncertainty re-

quires that we develop a deeper understanding of the

ecological and environmental factors that drive changes in

distribution at multiple spatiotemporal scales.

Correlative models are widely used to predict the

effects of climate change on species’ distributions (Tho-

mas et al., 2004; Thuiller et al., 2005; Lawler et al., 2006).

These models are based on the observed relationship

between a species and its environment (Guisan &

Zimmermann, 2000) and when mapped using geo-

graphic information systems are referred to as predic-

tive distribution maps (Guisan & Thuiller, 2005). A

strong criticism of this approach in predicting species

responses to climate change is that they are difficult to

validate across time (Araujo et al., 2005a; Hijmans &

Graham, 2006) so their usefulness as predictive tools

remains relatively untested (but see Araujo et al., 2005b;

Kharouba et al., 2009). Another criticism of correlative

models is that they tend to rely solely on abiotic

variables while excluding biotic factors such as species
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interactions, vegetation and dispersal (Davis et al., 1998;

Pearson & Dawson, 2003; Hampe, 2004; Araujo &

Luoto, 2007; Barnard & Thuiller, 2008; but see Preston

et al., 2008). In this study, we are in the unique position

to address some of these criticisms. Using historical

surveys and contemporary resurveys of chipmunks in

Yosemite National Park, California, we examine the

environmental drivers of changes in distribution over

the past century.

The three study species examined in the study, Tamias

alpinus, Tamias senex, and Tamias speciosus occupy dif-

ferent elevational zones in Yosemite. Recently, Moritz

et al. (2008) showed by comparing early 20th century

surveys with modern resurveys that these chipmunk

species have responded differently to environmental

change over the past century. The alpine chipmunk

(T. alpinus), which occupies the highest elevational zone,

retracted its lower elevational range upwards overtime.

Meanwhile, the lodgepole chipmunk (T. speciosus),

which occupies the midelevational zone, did not sig-

nificantly change its distribution. Finally, the shadow

chipmunk (T. senex), which occupies the low to mid-

elevational zone, experienced massive range collapse

and is now extremely rare in the study area. Moritz et al.

(2008) suggest warmer temperatures as the main driver

of the observed shifts for these species and the broader

community of small mammals, but did not explicitly

test alternative hypotheses or whether climate was

acting indirectly on distributions through changes in

vegetation or species interactions.

Interspecific competition is likely to be a factor where

chipmunk species co-occur (Heller, 1971; Chappell,

1978). However, the study species do differ in their

microhabitat preferences (Chappell, 1978; Waters &

Zabel, 1998; Waters et al., 2001). Laboratory physiologi-

cal studies of these species suggest they have compar-

able climatic tolerances (Heller & Gates, 1971; Heller &

Poulson, 1972), whereas field based physiological stu-

dies suggest that higher altitude chipmunks are slower

to recover from heat stress (Chappell et al., 1978). Given

the previous physiological and behavioral work on

Tamias species (Heller, 1971; Heller & Gates, 1971; Heller

& Poulson, 1972; Chappell, 1978; Chappell et al., 1978),

we hypothesize that climate, vegetation and species co-

occurrence all should be important predictors of the

changes in chipmunk distributions observed in Yose-

mite National Park. However, because of conflicting

reports and the dynamic nature of species’ geographic

boundaries, the relative importance of each of these

variables is not easily deciphered.

We use historical (1900–1940) and modern (1980–2007)

climate, vegetation, and species presence–absence local-

ity data to ‘forecast’ changes in chipmunk distributions.

Specifically, the objective of this study is to identify

drivers of observed distributional changes of three spe-

cies of chipmunks in Yosemite National Park. Our

approach is to include environmental variables both

separately (i.e., climate-only and vegetation-only) and

together to better understand their relative importance.

We examine the roles of climate and vegetation in both

single-species models (without congener co-occurrence)

and multi-species models (with congener co-occurrence)

to determine if accounting for the distribution of poten-

tial competitors improves model performance (Fig. 1).

Data and methods

Study area and species

This study took place in and around Yosemite National

Park, California (Fig. 2) and relied on data collected as

part of the ‘Grinnell Resurvey Project’ through the

Museum of Vertebrate Zoology (MVZ) at the University

of California, Berkeley (http://mvz.berkeley.edu/

Grinnell/index.html). Our study used data from the

resurvey of the ‘Yosemite transect’ published by Moritz

et al. (2008). Detailed descriptions of the original Grin-

nell mammal surveys (hereafter historical surveys)

from 1914 to 1915 and the modern resurvey of the small

mammals in the Yosemite Transect from 2003 to 2006

are given in Moritz et al. (2008) (supporting informa-

tion). For the modern dataset, we expand on the Moritz

Fig. 1 Conceptual model illustrating modeling framework and

the potential direct (black arrows) and indirect (dashed arrows)

roles climate can play in species’ distributions. Species interac-

tions (in this study, specifically, interspecific competition) and

habitat can play a direct or a climate-mediated (indirect) role in

limiting distributions. Middle boxes indicate environmental

variables and their abbreviations. For the vegetation models,

focal vegetation types are coded by species and modeling

approach: 1, Tamias alpinus single-species models; 2, Tamias

speciosus single-species models; 3, Tamias senex single species

models; 4, multi-species models.
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et al. (2008) data with results from targeted trapping of

chipmunks between May and August 2007. Because of

the limited availability of comparable vegetation data in

both eras, we restricted our study to 39 sites in the

historical dataset and 109 sites in the modern dataset.

There are more modern than historical sites because the

modern surveys were greater in their sampling extent at

each general site (i.e., more traplines in the general

vicinity of the historical locality) and included new

survey sites (i.e., sites not sampled in the past; Fig. 2).

The three focal species have overlapping but distinct

distributions in California and share several life history

traits (Table 1).

Species data

Original Grinnell survey results were georeferenced

from detailed field notes and maps (http://bscit.berkeley.

edu/mvz/volumes.html?). Traplines within 2 km and

100 m in elevation were aggregated within each era to

minimize spatial autocorrelation and account for the

uncertainty in the location of historical traplines (here-

after ‘aggregated traplines’ are referred to as ‘sites’).

Using detailed field notes on trap captures in the

historical and modern surveys, we were able to

calculate the probability of detection of each species at

each site following the methods of MacKenzie et al.

(2002), MacKenzie (2006). We did the calculations in-

cluding the 2007 data following Moritz et al. (2008)

(supporting information) with one exception, instead

of estimating the probability of false absence (PFA)

across elevational bands, we calculated PFA for each

specific site. We considered a site at which a particular

species was not detected to represent a ‘true absence’

for that species if the PFA was o10%. We used the

presence and ‘true absence’ data when validating the

models within and between eras.

Climate data

We used a climate dataset generated with the Anusplin

interpolation algorithm on weather station data at 1 km2

spatial resolution (Parra & Monahan, 2008). A compar-

ison of these interpolated layers of historical and pre-

sent climate indicated that our study area has become

drier and on average, the minimum monthly tempera-

ture has increased by about 11C. However, warming is

not consistent across sites; low elevation sites have

warmed from 0.8 to 2.9 1C and certain high elevation

sites have remained stable or become slightly cooler.

Fig. 2 State of California showing the distribution of (a) Tamias alpinus, (b) Tamias speciosus and (c) Tamias senex. Black rectangle shows

blow-up of study area. The gray shaded area is the study area and the black line shows Yosemite National Park boundary. Black dots

indicate historical mammal sites (1914–1916, n 5 39) and white dots show modern mammal sites (2003–2007, n 5 109).
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This variation is not unexpected given the topological

complexity of the area. The Anusplin interpolation is

consistent with the available climate station data from

each time period (National Climate Data Center, 2003;

see Appendix S1 for more details). Nineteen bioclimatic

variables were derived for each time period. We re-

moved variables that were highly correlated (cut-off

Pearson’s ro0.85, Elith et al., 2006) and selected a final

set of variables that were biologically relevant to the

study species. From previous research, we know that

winter temperatures and timing of spring snowmelt are

important factors for the survival and reproduction of

alpine plants (e.g., Dunne et al., 2003), nonhibernating

boreal mammals (e.g., pika: Smith & Ivins, 1983; Morri-

son & Hik, 2007; snowshoe hares: Odonoghue & Krebs,

1992) and hibernating sciurid mammals (marmots:

Inouye et al., 2000, red squirrels: Réale et al., 2003).

Therefore, we selected climatic variables based on the

life history of the study species and the resources upon

which they depend at emergence. Four biologically

relevant variables were considered in our models: TS,

temperature seasonality (standard deviation of mean

monthly temperature); ATR, annual temperature range

(maximum temperature of warmest month minus

minimum temperature of coldest month); PWe, preci-

pitation of wettest month; MinT, minimum temperature

of coldest month.

Vegetation data

The vegetation dataset used for this study was derived

from two vegetation maps of the area representing both

eras (historical: Wieslander, 1935 and modern: Nature-

Serve, 2003). The Wieslander Vegetation Type Map

(VTM) collection consists of plot data, plot maps and

vegetation maps which show hand drawn polygons of

forest type and their associated species across California.

The VTM collection has been digitized and is available

online (Kelly et al., 2005; Thorne et al., 2008) and a recent

analysis of spatial uncertainties in this dataset suggest

that the use of these data in environmental niche

modeling or multivariate analyses, such as this study,

alleviate spatial error concerns (Kelly et al., 2008).

S. Cameron, P. Moore, & J. Thorne (unpublished

results) reclassified both the historical and modern

vegetation maps into a matching classification scheme

(i.e., developed a vegetation ‘crosswalk’) using the

California Wildlife Habitat Relationship database (Cali-

fornia Department of Fish and Game & California

Interagency Wildlife Task Group, 2008). Twelve vegeta-

tion categories were recorded in the Yosemite area in

both time periods. From these 12, we chose four to six

vegetation types for each species using the habitat

associations recorded in the CWHR database and repre-

senting habitats that each species is known from field

observation to inhabit. Multi-species vegetation models

included four vegetation types that are overlapping

between at least two of the three species (Fig. 1).

Model development and evaluation

We developed correlative distribution models using

both single- and multi-species multivariate adaptive

regression splines (Friedman, 1991). We constructed

single- and multi-species models with different

combinations of predictor variables according to the

following framework: climate-only, vegetation-only and

climate 1 vegetation. All models were run in the statis-

tical package R 2.9.0 (R Development Core Team, 2009)

using the mda library and custom code written by Elith

Table 1 Elevational zone, observed distributional change (as recorded by Moritz et al., 2008), prevalence and habitat description of

study species in and around Yosemite National Park

Species

Elevational zone

in study area

Elevation shift

reported in Moritz

et al. (2008)

Prevalence in

historical era (#

detected/# sites)

Prevalence in

modern era (#

detected/# sites)

Habitat in study

area*

Tamias alpinus Above 3000 m Retracted 628 m up 10/39 (0.26) 18/109 (0.17) Mainly above treeline in open

granite slab areas, talus

slopes and at meadow

edges

Tamias speciosus 2000–3000 m Expanded 128 m down

and 65 m up

12/39 (0.31) 48/109 (0.44) Open lodgepole forest

stands; present at treeline

but rarely above

Tamias senex 1800–2300 m Retracted

1007 m up and 334 m

down

7/39 (0.18) 1/109 (0.01) Dense canopy old-growth

forests; Jeffrey Pine & Red

Fir; riparian vegetation

*Grinnell & Storer (1924), Johnson (1943), Waters & Zabel (1998), Waters et al. (2001).
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& Leathwick (2007). We developed 18 historical models

and 12 modern models. We have a reduced set

of modern models because the prevalence of

T. senex dropped from 0.18 in the historical survey to

o0.01 in the modern resurvey with comparable

detectability (Moritz et al., 2008, this study). Hence,

modern models were run for only T. alpinus and

T. speciosus.

We evaluated the accuracy of the models both within-

and between-eras. For the within-era scenario we pro-

jected the model onto the environmental landscape

from the era in which it was built. In the between-era

evaluation we projected models built in one era onto the

environmental landscape of the modern or past era and

then used the species data from the era into which it

was projected to evaluate the accuracy of the model.

Sites where focal species exhibited low detectability or a

PFA40.1 were removed from the historical and modern

test data sets.

The ‘best’ models were defined using two ap-

proaches. First, we calculated Akaike Information

Criterion (AIC, Burnham & Anderson, 2002) to select

the top model from three candidate models (i.e.,

climate-only, vegetation-only, and climate 1 vegeta-

tion). Models were ranked based on the lowest AIC

score for a given species and modeling technique

(single- vs. multi-species). Second, we assessed model

prediction accuracy by examining the area under the

receiver–operating characteristic curve (AUC), and the

true skill statistic (TSS). AUC varies from 0 to 1: a score

of 1 is perfect discrimination and a score of 0.5 is no

different from random. TSS is defined as sensitivity

(correctly classified presences) 1 specificity (correctly

classified absences) – 1 (Allouche et al., 2006). We set

the threshold for calculating TSS to the prevalence (# of

presences/# of sites) in the training dataset (Liu et al.,

2005). The values of the thresholds to calculate TSS for

each species are shown in Table 1.

We determined the top performing model by exam-

ining its predictive power as measured by AUC and

TSS. An AUC40.8 and TSS40.50 suggest strong pre-

dictive power (Swets, 1988; Allouche et al., 2006). The

model for each species with the highest AUC and the

highest TSS (i.e., highest cumulative accuracy score)

was considered the most accurate at predicting the

species’ distribution either within or between eras.

AUC or TSS values that differed by 0.05 or less between

competing models were considered to have similar

predictive performance and in these cases the model

with the lowest AIC score was used to determine the

top model. All models with an AUCo0.70 and

TSSo0.40 were considered poor. For specific details of

the model settings, please refer to the supporting in-

formation (Appendix S2, S3).

Results

Based on AIC scores alone, the historical single- and

multi-species climate-only models were ranked as the

best models for all three species (Table 2a and b). The

same was true for the modern models with the excep-

tion of T. speciosus for which the climate 1 vegetation

model was ranked highest based on AIC for both

single- and multi-species models. For all species, across

eras and modeling approaches, the vegetation-only

models were ranked lowest by AIC. However, models

with high AIC rankings were not always the most

accurate as measured by AUC and TSS (Table 2a–d,

Fig. 3). The historical multi-species models did not

greatly improve the between era accuracy of models,

but the inclusion of co-occurrence did improve the

ability of modern models to predict distributions in

the past.

Within-era model accuracy

Results for the single-species models show that histor-

ical models with the top AIC score (climate-only

models) have high accuracy (Table 2a). The historical

climate 1 vegetation model was ranked second best by

AIC for all species and also did a good job of recovering

the input data. The lowest AIC-ranked model (vegeta-

tion-only) exhibited high accuracy for T. alpinus and

T. speciosus, but not for T. senex.

The modern climate-only model for T. alpinus had

high accuracy (Table 2c) whereas the highest AIC-

ranked climate 1 vegetation modern model for T. spe-

ciosus had low accuracy (Table 2c). In fact, all three

modern within-era models for T. speciosus performed

poorly indicating a weak model fit between the input

data and the predictor variables. The addition of species

co-occurrence in the multi-species models did not

significantly improve model performance within eras

(Table 2b and c).

Between-era model accuracy

Historical to modern. The historical single-species

climate-only model accurately predicted the eleva-

tional shift observed in T. alpinus (Fig. 3b). All three

historical T. alpinus models had high discriminatory

power when predicting this species’ distribution to

the present, but only the climate-only model had high

accuracy with both AUC and TSS. Predictive perfor-

mance was not improved by adding co-occurrence into

the historical T. alpinus models (Table 2b), but overall,

the multi-species climate-only model had higher

accuracy than either of the other two single-species

models (climate 1 vegetation and vegetation-only).
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In contrast to the high accuracy of the T. alpinus

models, all three historical T. speciosus models per-

formed poorly in predicting the stability of this species’

distribution to the present (Table 2b; Fig. 3e–h) and

in all cases an upwards shift in distribution was pre-

dicted. For T. speciosus, the multi-species models had

slightly greater discriminatory power (AUC) but the

distribution of this species was still grossly under-

predicted, as reflected in the low TSS scores. All six

historical models for T. speciosus predicted a modern

shift upwards in elevation that was not empirically

observed.

The third AIC-ranked vegetation-only model more

accurately predicted the range collapse of T. senex

than the top AIC-ranked climate-only model (Table 2a,

Fig. 3j). In fact, both the single-species and the multi-

species vegetation-only models are most accurate at

predicting the observed range collapse of T. senex. The

single-species climate 1 vegetation and the multi-spe-

cies climate-only models do have high discriminatory

power (AUC 5 1.0 and 0.89, respectively), but these

models do not perform well when examining the

threshold-dependent TSS. However, the low TSS score

is likely an artifact of the testing data, which includes

only one presence point. The incorrect classification of

this single point results in a sensitivity of zero. None-

theless, the predictive maps of these models both in-

dicate a northward contraction of T. senex, suggesting

that both climate and vegetation are related to the range

collapse of this species.

Modern to historic. The single-species modern climate-

only model for T. alpinus did not accurately predict the

species’ historical distribution (Table 2c). Although it had

a high discriminatory power (AUC), the model under-

predicted the true historical range of T. alpinus based on

TSS. The single-species model that showed the highest

accuracy in predicting the distribution back in time was

the vegetation-only model, a model that did poorly at

predicting the distribution within era (Table 2c). Overall,

the best performing modern T. alpinus model at predicting

the species’ distribution in the past was the multi-species

modern climate-only model (Table 2c, Fig. 3c).

The best modern single-species model based on AIC

for T. speciosus was the climate 1 vegetation model, but

this model showed lower overall accuracy at predicting

the historical range of T. speciosus in the past than

both the vegetation-only and the climate-only models

(Table 2c). The most accurate modern model was the

multi-species climate-only model. The climate 1 vege-

tation multi-species model, which was ranked as best in

terms of AIC, did an inadequate job at predicting the

historical range. In general, the best modern T. speciosus

models did a better job at predicting historical distribu-T
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tions than the historical models did at predicting into

the present (Table 2c, Fig. 3e–h).

Predictor variables

The variables included in the best models for predicting

species’ distributions varied by species, modeling

approach (single- vs. multi-species) and era (Table 2a–

d). The most common climate variables selected for the

historical single-species models were ‘minimum tem-

perature of coldest month’ (MinT) and ‘precipitation of

wettest month’ (PWet). The climate variables selected

for the historical multi-species models were ‘TS’, MinT,

and ‘ATR’ and this did not change when vegetation was

included in the model (Table 2b).

The most common climate variables selected for the

modern single-species models were ATR and MinT. The

set of predictor variables for each species in the histor-

ical era was not the same set of variables that were

selected by the models for the modern era. For example,

the T. alpinus historical single-species climate-only mod-

el included TS and MinT but the modern model of the

same type included TS, MinT and ATR. Overall, TS

appears to be a more important predictor of species’

Historical Modern

T. alpinus

Historical Modern

T. speciosus

Model development era

Historical

AUC = 1.0
TSS = 0.55

AUC = 1.0
TSS = 1.0

AUC = 1.0
TSS = 0.86

AUC = 0.98
TSS = 0.77

AUC = 0.92
TSS = 0.72

T. senex

AUC = 1.0
TSS = 1.0

AUC = 0.92
TSS = 0.72

AUC = 1.0
TSS = 0.69

(a) (c)

(b) (d)

(e) (g) (i)

(j)

20 km 20 km 20 km

(f) (h)

AUC = 0.80
TSS = 0.48

PresenceProbability of
Presebce Absence

AUC = 0.68
TSS = 0.14
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to
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a

Fig. 3 Predictive distribution maps of most accurate models [based on area under the receiver-–operating characteristic curve (AUC) and

true skill statistic (TSS)] for Tamias alpinus (a–d), Tamias speciosus (e–h) and Tamias senex (i–j). The ‘model development era’ along the

horizontal axis of the figure refers to the timeframe in which the model was built; the ‘model evaluation era’ along the vertical axis refers

to the timeframe in which the model was tested. All models evaluated in the historical era were tested with the historical P/A points. All

models evaluated in the modern era were tested with modern P/A points. Black dots represent presences and open circles represent

absences. Mapped top models are as follows: T. alpinus (a) historical single-species climate-only on historical environment; (b) historical

single-species climate-only on modern environment; (c) modern multi-species climate-only on historical environment; (d) modern multi-

species climate-only on modern environment; T. speciosus (e) historical single-species climate-only on historical environment; (f)

historical multi-species climate-only on modern environment; (g) modern multi-species climate-only on historical environment (h)

modern multi-species climate 1 vegetation on modern environment; T. senex (i) historical single-species climate-only on historical

environment; (ii) historical single-species vegetation-only on modern environment.
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distributions in the present than in the past and MinT

maintained its importance as a predictor in both eras.

Model results suggested that a minimum tempera-

ture of approximately �10 1C during the coldest month

of the year is required for T. alpinus to occupy an area

(Fig. 4a). Sites that did not exhibit this threshold had

low probability of presence. This threshold temperature

was present in both the historical and modern model

results. The modeled probability of presence for

T. speciosus shows a unimodal pattern in both eras,

suggesting that there are lower and upper thresholds

for critical temperatures; however, these limits were not

constant over time (Fig. 4b). Currently, T. speciosus

occupies both warmer and colder environments than

it did in the past.

The vegetation variables included in models were

different for each species as described in the methods.

There were two cases where vegetation-only models

outperformed or were comparable to climate models

between eras. One was in predicting the range collapse

observed in T. senex. The historical single- and multi-

species vegetation-only models for T. senex selected red

fir (RFR), Juniper (JUN) and Montane Chapparal-Mixed

Chaparral (MCP_MHC), and RFR and JUN respec-

tively. The other case is the single-species modern

vegetation-only model for T. alpinus. When projected

back in time, this model performed nearly as well as the

multi-species modern climate-only model. The vegeta-

tion variables in this model were barren (BAR) and

Subalpine Conifer (SCN).

Discussion

This study evaluated the role of climate, habitat and

occurrence of congeners in predicting known changes

in chipmunk distributions over the past century. Over-

all, we found that even with the inclusion of biotic

predictors, climate alone is the dominant predictor

explaining the distribution of the study species within

a time period, and this was particularly true for the

historical era. However, climate was not consistently an

adequate predictor of changes in all three species’

distributions across time. The top model accurately

predicted the observed elevational shift upslope for

T. alpinus, but also predicted a similar upslope shift in

T. speciosus that was not observed. Climate alone did an

adequate job of explaining the distribution of T. senex in

the historical era but it did not predict its collapse as

accurately as models including vegetation.

Direct vs. indirect effects of climate on chipmunk
distributions

Animals and plants that live on mountaintops are

thought to be especially vulnerable to climate change

for two reasons: they are more extinction prone due to

limited dispersal options (McDonald & Brown, 1992),

and often have relatively narrow tolerances to tempera-

ture (e.g., pika, Macarthur & Wang, 1973). T. alpinus is

an example of an alpine animal that has retracted its

distribution upwards in elevation over the past century.

Our results strongly support the hypothesis that a

warmer modern climate is the major driver of this

elevational shift rather than factors such as vegetation

and competition with other chipmunk species. In parti-

cular, our results show that a minimum winter tem-

perature, approximately �10 1C during the coldest

month of the year, is an important limiting factor for

T. alpinus within the study area. The elevation at which

this minimum temperature occurs appears to have

moved upslope over the past century and this species

has tracked it through time. Recently, as part of the

Grinnellian resurvey of Californian birds, Tingley et al.

Fig. 4 The multivariate adaptive regression spline (MARS) predicted probability of presence of Tamias alpinus (left), and Tamias speciosus

(right), across minimum monthly temperatures (MinT) in the historical (black circles), and modern (open circles) models. MARS

probabilities generated from historical and modern single-species climate-only models.
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(2009) found that several species of birds have also

tracked their ‘climatic niche’ over the past century.

It is important to note, however, that although it

appears that MinT is a limiting factor in T. alpinus’

distribution, our approach cannot determine causation.

Our climate data estimate air temperatures, which are

known to be important cues for hibernating sciurid

mammals, particularly for springtime arousal (Inouye

et al., 2000), but other biologically important factors

related to climate were not directly measured in this

study and also vary with elevation, such as snowpack.

Snowpack provides a critical insulating layer for small

mammals and is an important factor for overwinter

survival (Vaughan et al., 2000). Our results suggest that

T. alpinus inhabits some colder areas now than it did in

the past (Fig. 4). One explanation of this is that the

higher the elevation the lower the MinT, but the tem-

perature inside the hibernacula during the winter is

likely warmer at higher elevations with deep snowpack,

than lower elevations with less snowpack. This example

demonstrates the multidimensional nature of climate-

species interactions but also stresses the potential lim-

itations of using interpolated bioclimatic variables as

biologically relevant proxies.

Interestingly, the modern multi-species climate-only

model is more accurate at predicting the historical

distribution of T. alpinus than the equivalent single-

species model. The multi-species model is based solely

on MinT, further supporting evidence that minimum

temperature is an important factor delimiting the eleva-

tional zonation of these species, and T. alpinus in parti-

cular. This result also suggests that perhaps simpler

models with few biologically relevant predictor vari-

ables are more accurate at predicting across time than

more complex models (the single-species modern cli-

mate-only model selected three: TS, MinT, and PWet). It

is also possible that single-species within era models are

subject to model-overfitting and therefore suffer re-

duced performance when projected between eras.

A key weakness of species distribution models is

their high prediction error rate when projecting into

novel environments and/or non-analog climates (Fitz-

patrick & Hargrove, 2009). This occurs because the

correlations between the environmental variables and

species data in the training model may not exist in those

combinations in the new environmental space (Thuiller

et al., 2004). An alternative hypothesis for the large

prediction error when predicting a distribution across

time is that the predictor variables selected by the

model in one era are not tracked by the species across

time and space (Broennimann et al., 2008). In other

words, what limits a species distribution in one era

may be different than what limits its distribution in

another (e.g., Monahan & Hijmans, 2008). This appears

to be the case for T. speciosus. The single-species histor-

ical climate-only model did an adequate job of recover-

ing the species distribution within the historical era, but

the climate-only model did not perform well when

forecasting the current distribution or simply recover-

ing the modern distribution from the modern input

data. However, both the single- and multi-species mod-

ern climate-only models accurately predicted the his-

torical distribution of T. speciosus. These results suggest

that the historical distribution of T. speciosus in the study

area was delineated by climate, primarily by minimum

winter temperature and secondarily by seasonality.

However, this correlative relationship between tem-

perature and the species’ distributional limit no longer

exists. T. speciosus appears to now occupy both warmer

and colder habitats than it did in the past. Perhaps this

suggests that it is no longer limited by temperature;

however, a more likely explanation is that it was not

and is not in a stable equilibrium state with respect to

these environmental variables, a simplifying assump-

tion of most distribution models.

It is possible that the historical distribution of

T. speciosus was in fact limited indirectly by interspecific

competition and not by climate as the models suggest. It

meets two congeners at both distributional boundaries:

T. senex at the lower elevational boundary and T. alpinus

at the upper boundary. Our results provide strong

evidence that T. alpinus is limited by climate and mod-

erate evidence that both climate and vegetation have

played a role in the range collapse of T. senex. With the

retraction of both of these species, T. speciosus may have

been released from competition and responded by

filling the space left following the contraction of the

other two species, hence moving into both cooler

and warmer areas. In addition, there was greater

opportunity for interspecific interactions in the past,

because the species’ distributions had greater geo-

graphic overlap.

Using the historical surveys, we calculated that

T. senex and T. speciosus were found together at 27% of

sites out of all sites where at least one of the species was

found. Currently, both species were only detected at one

site (2%), the single site where we detected T. senex.

There was a similar trend with T. alpinus. In the past,

T. alpinus and T. speciosus were caught at the same site

35% of the time whereas today, we only caught both

species at 18% of sites out of all sites where at least one

was captured. Interestingly, in the past there was one

site (elevation 2455 m) where all three species were

detected whereas currently, only T. speciosus was de-

tected at that site. Although T. speciosus’ distribution has

generally remained stable overtime, Moritz et al. (2008)

did report an elevational expansion up by 65 m and

down by 128 m, which provides some evidence consis-
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tent with competitive release of this species at its

elevational boundaries. T. speciosus was ‘likely the most

common chipmunk’ in Yosemite National Park during

Grinnell surveys (Grinnell & Storer, 1924) and today,

trap captures corrected for effort suggest that it has

increased in relative abundance since the original sur-

veys across the park (Rubidge, unpublished data).

Based on this evidence and our results, it is possible

that T. speciosus’ distribution in the study area is not

limited by climate but by interspecific interactions with

the other two chipmunk species. However, the environ-

mental change in the study area appears to have had an

indirect and positive effect on T. speciosus by removing

its competitors at its distributional limits.

Our study area captures the southern-most tip of the

T. senex range. Local populations at range edges are

expected to experience higher extinction rates and

possess lower genetic diversity than those at the center

because they tend to occur in less favorable habitats

(Lawton, 1993). The local populations at the rear edge

are at particular extinction risk under climate change

scenarios because they already represent the warmest

conditions a species inhabits (e.g., Parmesan, 1996), and

perhaps do not possess the genetic variation required

for adaptation to a change in conditions (Kirkpatrick &

Barton, 1997; Case & Taper, 2000). Grinnell & Storer

(1924) describe T. senex as a ‘common resident’ in

Yosemite National Park; today, T. senex has virtually

disappeared from the area. The collapse of T. senex’s

distribution in Yosemite is likely another example of a

poleward range shift in response to warming that has

been observed in other taxa (reviewed in Parmesan &

Yohe, 2003). Resurvey efforts in other parts of California

including a site just 190 km north of our study area

report capture rates of T. senex similar to the historical

surveys in the same area (Chris Conroy, pers. comm.).

T. senex is the largest of the three study chipmunks and

previous studies suggest that it selects dense closed-

canopy old growth Jeffrey pine and Red Fir forests

(Sharples, 1983; Coppeto et al., 2006) and riparian habi-

tat (Waters & Zabel, 1998). A recent study reported that

between 1930 and 1990, large diameter tree density in

Yosemite declined by 24% (Lutz et al., 2009). Jeffrey Pine

(Pinus jeffreyi), in particular, suffered disproportionately

greater losses of large-diameter trees in the lower-eleva-

tion portions of their range. Lutz et al. (2009) attribute

the death of old growth trees in Yosemite to increased

water stress. The direct impact of climate change on

vegetation has indirect effects on the species that de-

pend upon these habitats. According to our model

results, the documented change in the vegetation struc-

ture of the forests of Yosemite, as well as warming,

have likely played a role in the northward retraction of

the T. senex range. However, because this species has

become so rare in the study area our power to validate

the model is low.

Conclusions

Species are responding to climate change by shifting

their distributions both by latitude and elevation (Par-

mesan, 2006). Correlative distribution models can be

useful for predicting where species will occur under

future climates, but the correlations do not necessarily

hold through time. This study was able to assess the

predictive accuracy of correlative species distribution

models over a century of climate change, but we were

also able to include habitat and species co-occurrence

predictors to determine their relative importance. Our

results demonstrate that correlative distribution models

are useful in understanding species’ potential responses

to environmental change, but also show how changes in

species-environment correlations through time can lim-

it the predictive performance of models. With recent

developments in biodiversity informatics and the in-

creasing availability of spatiotemporally explicit data

(Graham et al., 2004), studies like this that are able to

validate models in a projection environment, and in-

clude both abiotic and biotic predictor variables, will

allow us to develop a more complete mechanistic

understanding of which species respond directly or

indirectly to climate change.
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