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Abstract

Species distribution models (SDMs) are increasingly used for extrapolation, or predicting suitable regions for species under
new geographic or temporal scenarios. However, SDM predictions may be prone to errors if species are not at equilibrium
with climatic conditions in the current range and if training samples are not representative. Here the controversial
‘‘Pleistocene rewilding’’ proposal was used as a novel example to address some of the challenges of extrapolating modeled
species-climate relationships outside of current ranges. Climatic suitability for three proposed proxy species (Asian elephant,
African cheetah and African lion) was extrapolated to the American southwest and Great Plains using Maxent, a machine-
learning species distribution model. Similar models were fit for Oryx gazella, a species native to Africa that has naturalized in
North America, to test model predictions. To overcome biases introduced by contracted modern ranges and limited
occurrence data, random pseudo-presence points generated from modern and historical ranges were used for model
training. For all species except the oryx, models of climatic suitability fit to training data from historical ranges produced
larger areas of predicted suitability in North America than models fit to training data from modern ranges. Four naturalized
oryx populations in the American southwest were correctly predicted with a generous model threshold, but none of these
locations were predicted with a more stringent threshold. In general, the northern Great Plains had low climatic suitability
for all focal species and scenarios considered, while portions of the southern Great Plains and American southwest had low
to intermediate suitability for some species in some scenarios. The results suggest that the use of historical, in addition to
modern, range information and randomly sampled pseudo-presence points may improve model accuracy. This has
implications for modeling range shifts of organisms in response to climate change.
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Introduction

Species distribution models (SDMs), also known as bioclimatic

or ecological niche models, climate envelope models and

predictive habitat distribution models, statistically relate known

species occurrences with environmental variables in order to

predict potential regions of suitability for species or communities

[1,2]. There are two common uses of SDMs: (1) interpolation, or

predicting entire distributions of organisms from limited occur-

rence data within the existing range and (2) extrapolation, or

predicting suitable regions for species under novel geographic or

temporal scenarios. SDMs are the most common tool used for

predicting the potential ranges of organisms, and they are

increasingly being employed to address biodiversity conservation,

especially in the context of climate change [3]. For example,

SDMs are used to identify areas outside known ranges that might

support important taxa [4], evaluate sites for reserve selection

[5,6], prioritize areas for reintroductions [7], predict the potential

range and rate of spread of invasives [8–11] and predict the

responses of existing species’ ranges to climate change [12,13]. An

important emerging application of SDMs is the prediction of

potential ranges of organisms undergoing ‘‘assisted migration,’’ or

deliberate introduction to areas outside of the present (and perhaps

historical) range, in order to more proactively manage rare or

threatened species in the face of climate change, habitat loss and

other pressures [14–17].

Despite the growing use of SDMs for extrapolation, substantial

uncertainties remain about the accuracy of model predictions

when transferred in space or time [18]. Sources of error in SDM

projections stem from violations of four key model assumptions

(Table 1). First, a species is assumed to be at equilibrium with

climatic conditions in the current range; i.e., a species is present in

almost all regions of the training area where climatic conditions

are suitable. However, biotic interactions can preclude a species

from occurring in climatically suitable regions (e.g., widespread

range contractions in mammals and birds linked to human

disturbance [19]) and dispersal limitation can prevent a species

from encountering suitable areas [20], resulting in biased training
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data. Second, it is assumed that the climatic niche is stable, such

that climatic factors that limit a species’ occurrence in the current

range will also be limiting in the extrapolated area [21]. In order

for this to be true, it is assumed that new ecological relationships

(e.g., competition, predation) and new behavioral and/or

evolutionary adaptations in the introduced area are negligible.

While new evolutionary adaptations are less likely to occur on

short timescales, unpredictable biotic interactions often lead to

ecological surprises [22] and behavioral adaptations, such as

migration, may occur quite rapidly [23]. Third, it is assumed that

training samples are representative of the environmental condi-

tions across the current range. In reality, species records used for

model training, usually consisting of localities from museum

collections, are often spatially clumped or incomplete and

therefore not representative of the full range of environmental

conditions in the current range [24–27]. Fourth, it is assumed that

climatic conditions in the current and extrapolated areas are

analogous. However, novel climatic conditions may exist in the

extrapolated area [22] and SDMs may inappropriately extrapolate

beyond the range of values for environmental predictors found in

the native range [28]. Violations of assumptions 1 and 3 are

expected to lead to increased errors of omission (false negatives) in

model predictions, while violations of 2 and 4 can lead to both

errors of omission or commission (false positives; Table 1). Several

studies have reported high errors of omission when SDMs are used

for extrapolation [29–34], suggesting that addressing these

violations of model assumptions, particularly those that cause

errors of omission, could improve model performance. Perfor-

mance is additionally influenced by model [35], variable [36] and

threshold [37,38] selection, among other factors.

Here we use the controversial ‘‘Pleistocene rewilding’’ proposal

[39,40] as a novel example to address some of the challenges of

extrapolating modeled relationships outside native ranges. The

proposal calls for introducing close extant relatives or ecological

surrogates of megafauna that went extinct at the end of the

Pleistocene to North America to restore lost ecological and

evolutionary processes, while simultaneously conserving species

currently threatened with extinction on other continents [40].

However, most of the proposed proxy species originate from

tropical and sub-tropical Africa and Asia, thus North America’s

colder temperatures and greater seasonality may preclude

establishment. Here we assess the projected climatic suitability of

proposed North American introduction areas, the American

southwest and Great Plains, for four focal species from Africa

and Asia (Table 2) using pseudo-presence training data from

modern vs. historical native ranges and Maxent [41], a maximum

entropy model. Three of our focal species, the Asian elephant

(Elephas maximus), African cheetah (Acinonyx jubatus; hereafter

‘‘cheetah’’) and African lion (Panthera leo; hereafter ‘‘lion’’), were

among the 11 candidate species in the Pleistocene rewilding plan

[40]. For evaluation purposes, we included a fourth species not

included in the rewilding proposal, the Gemsbok (Oryx gazella;

hereafter ‘‘oryx’’), because it is an Old World mammal that was

introduced to New Mexico, U.S.A., in 1969 and has since

naturalized [42]. The primary aims of the study were to: (1) model

climatic suitability for each focal species in modern and historical

native ranges, assess model performance and identify the climate

variables that made the largest contributions to modeled

responses; (2) assess the sensitivity and accuracy of model outputs

in the native range to training points generated from modern vs.

historical ranges, training point variation and different thresholds

applied to the model outputs; (3) extrapolate models trained on

native modern and historical ranges to North America and

evaluate the concordance between predicted climatic suitability

and the proposed introduction regions from the Pleistocene

rewilding plan; and (4) use known localities where oryx have

Table 1. Four assumptions made in using species distribution models (SDMs) to extrapolate climatic suitability to new regions,
how these assumptions are violated, the consequences of violations for model performance and solutions to improve model
performance.

SDM assumptions Violations of SDM assumptions

Consequences of violating
SDM assumptions on model
performance

Solutions to improve SDM
performance

Assumption 1: Species is at
equilibrium with environmental
conditions in its native range

Native range is restricted by biotic
interactions (e.g., competition,
predation, human disturbance, etc.)

Underprediction of potential
regions of suitability

Use historical range information for
model training

Native range is restricted by
dispersal limitation

Underprediction of potential
regions of suitability

Assumption 2: Niche stability Evolutionary or behavioral
adaptation to environmental
conditions in introduced area

Underprediction of potential
regions of suitability

Shorten timescale of analysis

New ecological relationships in
introduced range

Overprediction or underprediction
of potential regions of suitability

Assumption 3: Training samples
are representative of environmental
conditions in native range

Training samples are biased Underprediction of potential
regions of suitability

Use design- or model-based environmental
stratifications to target underrepresented
areas for additional field data collection

Generate random pseudo-presence
points across native range

Few training samples are available Underprediction of potential
regions of suitability

Generate adequate number of random
pseudo-presence points from native range

Assumption 4: Climatic conditions
between training and introduced
areas are analogous

Novel climatic conditions occur in introduced
area; modeled responses extrapolate beyond
range of values for environmental predictors
found in native range

Overprediction or
underprediction of potential
regions of suitability

Use a clamping procedure to limit
predictions in regions with novel climatic
conditions

doi:10.1371/journal.pone.0012899.t001
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established in Texas and New Mexico to provide an independent

test of the modeling procedure.

Methods

Modeling Approach
The main goal of our modeling approach was to address two

violations of model assumptions and thereby improve model

performance. First, to address violation of the assumption of

equilibrium due to human-caused range contractions (Assumption

1, Table 1), we compared projected areas of climatic suitability

using training data from modern vs. historical ranges. Historical

range sampling allowed us to include training information from

areas that are presently unoccupied yet climatically suitable.

Including historical range information has improved model

performance in other cases [43], but the coarse resolution inherent

to historical range maps also has the potential to introduce bias. A

recent study used pooled modern and historical locality informa-

tion to improve model performance when extrapolating to a new

geographic area [31]. However, in our case it was unnecessary to

pool modern and historical data from the native range, because for

each focal species the historical range was larger and encompassed

all of the modern range. It was also not feasible to pool the native

and North American locality data for the oryx because its

introduced range was so restricted.

Second, to address violation of the assumption of representative

training samples (Assumption 3, Table 1) we used ‘‘pseudo-

presence data’’—points randomly sampled from across the range

of the focal species—rather than actual occurrence localities from

museums, herbaria, or field surveys. While using design- or model-

based environmental stratifications to target underrepresented

areas for additional field data collection has been suggested to

address the incomplete sampling problem [44], conducting

fieldwork is costly across large geographic areas. In contrast,

random pseudo-presence data can easily be generated using

Geographical Information System (GIS) software. Using pseudo-

presence data may lead to overpredictions in characterizing

climatic suitability because large-scale ‘‘extent-of-occurrence’’

geographical ranges include some unsuitable areas and thus tend

to exaggerate actual occurrence [45–47]. However, a recent study

concluded that some SDMs, including Maxent, are to some degree

robust to locational errors in occurrence data [48]. Since different

sets of randomly sampled training points should produce different

model outcomes, we assessed the effect of training point variability

on model performance.

While not the focus of this study, we also attempted to minimize

violations of the other two model assumptions (Assumptions 2 and

4, Table 1). Since we were assessing short-term climatic suitability

relevant to the scale of a proposed species introduction program,

we assumed niche stability (i.e., negligible effect of new ecological

interactions and evolutionary or behavioral adaptation of focal

species to climatic conditions in the extrapolated range). Climatic

conditions in native vs. projected ranges (Africa and Asia vs. North

America, respectively) were not completely analogous, potentially

violating Assumption 4 (Table 1). However, Maxent implements a

procedure called ‘‘clamping’’ (see Modeling Procedure) that

prevents modeled responses from being extrapolated beyond the

range of values for environmental predictors found in native

range. We did not systematically address the problem of novel

climatic conditions, but this issue can be approached by examining

the edges of species’ climate envelopes [22].

Species Input Data
The model training data consisted of random pseudo-presence

points that were generated within the modern and historical

geographical distributions of the Asian elephant, cheetah, lion and

oryx. We did not distinguish between subspecies or races of the

focal species, but rather modeled each species as a single group.

Thus, for the oryx we lumped the three subspecies Oryx gazella

gazella, Oryx gazella beisa and Oryx gazella calliotis into a single group

for modeling. Note that an alternative classification system has the

Gemsbok as one species (Oryx gazella), and the East African Oryx as

another (Oryx beisa) with two subspecies of its own, the East African

Oryx ‘‘proper’’ (Oryx beisa beisa) and the Fringe-eared Oryx (Oryx

beisa calliotis) [49]. To ensure that the full range of climatic

conditions was sampled from each species’ distribution, we

examined the relationship between the number of points used in

model training and predictive performance and selected 100

points for subsequent model fitting (Text S1, Figure S1). Thus, for

each species and time period we generated ten sets of 100 random

pseudo-presence training points within the range using Hawth’s

Tools [50] in ArcMap 9.3.1 [51]. We obtained modern range

maps from the highest-resolution sources available at the time of

the analysis for the Asian elephant [52], cheetah [53], lion [54]

and oryx [55,56]. The dates of historical range maps varied by

species. The oldest localities included in the historical range data

for the Asian elephant dated from approximately 1700 BC [57],

for the cheetah from 0 AD [58] and for the lion from 480 BC [59].

The time period for the oryx’s historical range data was

unreported but is estimated to be no more than a few hundred

years [60,61].

Climate Input Data
We used climate data from WorldClim, ver. 1.4 (http://www.

worldclim.org/), a set of global climate layers that were generated

through interpolation of average monthly climate data from

weather stations tabulated from 1950–2000 [62]. We utilized

climate grids that were aggregated to a resolution of 2.5 minutes.

For all species we used ten bioclimatic variables as predictors:

MTEMP = annual mean temperature; TEMPR = mean

monthly temperature range; ISO = isothermality (mean monthly

temperature range/temperature annual range); TEMPS =

temperature seasonality (standard deviation of monthly tempera-

ture); MTWM = maximum temperature of the warmest month;

Table 2. Focal species examined in the study.

Common Name: Scientific Name: Continent of Origin: Pleistocene rewilding proxy for:

Asian elephant Elephas maximus Asia Mastodon, mammoth, gomphotheres

African cheetah Acinonyx jubatus Africa American cheetah

African lion Panthera leo Africa American lion

Oryx or gemsbok Oryx gazella Africa n.a.

doi:10.1371/journal.pone.0012899.t002
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MTCM = minimum temperature of the coldest month; PREC =

annual precipitation; PRECS = precipitation seasonality (coeffi-

cient of variation of monthly precipitation); PWQ = precipitation

of the wettest quarter; and PDQ = precipitation of the driest

quarter [62]. Further information about the extent of the climate

grids used in the modeling can be found in Text S2.

The WorldClim climate data were temporally matched with

modern ranges but not with all parts of historical ranges; e.g., for

the Asian elephant the oldest part of the historical range dated

from 3,700 cal yr B.P. The Holocene (approximately the last

11,500 years) lacked large Northern Hemisphere ice sheets and is

generally characterized as a warm and stable period with some

episodes of apparent rapid climate change, particularly during the

mid-Holocene extending from 7,000–5,000 cal yr B.P. [63,64]. By

about 4,000 cal yr B.P., Earth’s climate had become fairly similar

to today’s [65–67], thus we made the simplifying assumption that

pseudo-presence data sampled from historical ranges could be

adequately modeled using climate data from the latter half of the

twentieth century, especially when assessed in combination with

the results of the models trained on present-day ranges.

Modeling Procedure
We modeled climatic suitability for each focal species in its

native range and made predictions of climatic suitability in North

America using maximum entropy species distribution modeling

(Maxent ver. 3.3.0), a general-purpose machine learning method

[41,68]. Recent studies compared the performance of several

SDMs and Maxent outperformed many of the other methods

[9,35,69–71]. The Maxent model generation approach requires

only presence data (not absence data), can utilize both continuous

and categorical data, can incorporate interactions between

different variables and yields continuous outputs, allowing fine

distinctions to be made between the modeled suitability of different

areas. Starting with a set of samples from a distribution over some

defined space (species locations), as well as a set of features on this

space (environmental variables), Maxent estimates the target

distribution of predicted climatic suitability by finding the

distribution of maximum entropy, or closest to uniform, subject

to the constraint that the expected value of each feature under this

estimated distribution matches its empirical average [41]. This is

equivalent to finding the maximum likelihood Gibbs distribution.

Further discussion of Maxent and our application of the model,

specifically issues of regularization multipliers, feature types and

clamping, can be found in Text S3, Text S4 and Figure S2. The

software and complete information for this method are available

from http://www.cs.princeton.edu/̃schapire/maxent, or see Phil-

lips et al. (2006).

Model Evaluation and Thresholding
We separately generated pseudo-presence testing data in

Maxent to evaluate model outputs in native ranges (100 pseudo-

presence points per run per species per time period). Maxent

outputs the area under the Receiver Operating Characteristic

curve (AUC), a threshold-independent measure, as one measure of

model performance. AUC values range from 0 to 1 and measure

the ability of a model to discriminate between sites where a species

is present and sites where it is absent [72,73]. A score of 1 indicates

perfect discrimination while a score of 0.5 indicates discrimination

that is no better than a random guess. AUC is widely used to

evaluate SDM outputs, although its use has come under some

criticism [74]. AUC scores allowed us to assess how well the

modeled climatic suitability matched testing pseudo-presence

points from native modern and historical ranges, but could not

be used to evaluate projected climatic suitability in North America.

The spatial extent of the naturalized North American oryx

population was too small to obtain enough independent samples to

statistically test the projected North American oryx distribution.

Thus, we evaluated the accuracy of the projected oryx distribution

qualitatively by examining how well Maxent’s predictions of

suitability overlapped known localities where oryx have natural-

ized in New Mexico and Texas.

It is often desirable to convert a continuous surface representing

relative climatic suitability into a binary map that displays suitable

and unsuitable regions. A variety of thresholding criteria have

been developed for this purpose [37,38]. We converted the

continuous Maxent outputs of relative climatic suitability into

binary grid files using two threshold criteria: (1) the generous

minimum training presence (MTP) threshold, sometimes termed

‘lowest presence threshold;’ and (2) the more stringent maximum

training sensitivity plus specificity (MTSS) threshold. The MTP

threshold reduces errors of omission; cells were coded ‘‘suitable’’ if

the Maxent output suitability value was greater than or equal to

the lowest output value for the training occurrence points on any

of the ten runs for a given species and time period (modern or

historical). The MTSS threshold represents the Maxent output

suitability value that maximizes the sum of sensitivity and

specificity obtained from the error matrix [73] for the training

data. The MTSS threshold balances errors of omission and

commission and has found a high degree of support when

evaluated against other thresholding methods across a range of

prevalence values [37,38]. Cells with Maxent output values greater

than or equal to the MTSS threshold for any of the ten runs for a

given species and time period (modern or historical) were coded as

‘‘suitable.’’ We displayed the average logistic output values for

Maxent for each set of 10 runs, which can be interpreted as an

index of relative climatic suitability scaled from 0–1, the

cumulative MTP threshold (any cell with at least one run above

the MTP threshold = 1, otherwise = 0) and the cumulative MTSS

threshold (any cell with at least one run above the MTSS

threshold = 1, otherwise = 0) on each map to assist with

comparisons. All maps were produced using ArcMap 9.3.1 [51].

We evaluated the performance of the MTP and MTSS

thresholds using independently generated presence/absence test

data (see Text S5) and the Kappa statistic, or the proportion of

specific agreement [73]. The thresholded Maxent model outputs

generated using pseudo-presence points from the modern range

were evaluated using test files generated from the modern range.

Likewise, thresholded model outputs generated from the historical

range were evaluated using test files generated from the historical

range. We also evaluated model outputs generated from the

modern range using test files generated from the historical range to

see how well training data from contracted modern distributions

could predict historical distributions.

Results

Modeling Native Ranges
Maxent performed well at interpolating climatic suitability for

modern and historical time periods in native ranges (Table 3 and

Figures S3-S6). For models using pseudo-presence training points

generated within the modern range, Maxent predictions of

climatic suitability had high correspondence with pseudo-presence

testing points from the modern range for all focal species (mean

AUC values .0.91) and there was low variation in AUC scores

across the ten runs using different sets of pseudo-presence points

(Table 3). Similarly, for models using pseudo-presence training

points generated within the historical range, Maxent predictions of

climatic suitability had high correspondence with testing points

Climate Pleistocene Rewilding
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from the historical range (mean AUC values .0.80) with low

variation between runs (Table 3). MTSS thresholds outperformed

MTP thresholds across all species and time periods when there was

temporal correspondence between the training and testing data

(Table 3). By contrast, when models generated from contracted

modern ranges were used to predict more expansive historical

ranges, MTSS thresholds had slightly lower performance than

MTP thresholds for all species except the oryx (Table 3). For the

oryx, the more stringent MTSS threshold was more accurate in all

cases due to the fact that the oryx’s modern and historical ranges

were fairly similar.

Temperature-associated variables made the largest contribu-

tions to the cheetah, lion and oryx models, while precipitation

variables made the largest contributions to the Asian elephant

models (Tables 4 and 5). Jackknife tests of single variables

generally confirmed the rankings of the variable contribution

values, although a few variables were much more effective at

predicting testing data alone than indicated by models built using

all variables (e.g., maximum temperature of the warmest month

for the cheetah models based on historical pseudo-presence data

and temperature seasonality for the cheetah models based on

modern data). Interestingly, there were within-species differences

in variable importance for models that used modern vs. historical

pseudo-presence data. For example, the cheetah and lion models

based on modern pseudo-presence data were affected the most by

isothermality, where suitability was highest at intermediate values,

while the cheetah and lion models based on historical pseudo-

presence data were affected the most by annual mean tempera-

ture, which had a positive association with suitability (Table 4).

The Asian elephant models based on modern pseudo-presence

data were affected the most by annual precipitation, which had a

positive association with suitability, while models based on

historical pseudo-presence data were affected the most by

precipitation of the wettest quarter, which had a also had a

positive association with suitability (Table 5). For the oryx,

isothermality contributed the most to models based on both

modern and historical data, where suitability was highest at

intermediate values, followed by precipitation of the wettest

quarter, which had a negative association with suitability in both

time periods (Tables 4 and 5).

Table 3. Performance of Maxent models in predicting climatic suitability in modern (m) or historical (h) native ranges.

Species AUC (mean ± SD) KappaMTP KappaMTSS KappaMTP* KappaMTSS*

Asian elephant (m) 0.97660.003 0.703 0.768 0.385 0.320

Asian elephant (h) 0.93560.007 0.499 0.703 - -

Cheetah (m) 0.91360.013 0.425 0.661 0.658 0.554

Cheetah (h) 0.80560.016 0.581 0.797 - -

Lion (m) 0.94460.004 0.512 0.690 0.403 0.376

Lion (h) 0.86560.011 0.410 0.600 - -

Oryx (m) 0.96160.005 0.465 0.780 0.543 0.779

Oryx (h) 0.95360.006 0.502 0.770 - -

Note: Models were tested using random pseudo-presence data that was generated separately from training data. The AUC values were averaged over 10 runs for each
species/time period. Kappa statistics were calculated from cumulative MTP and MTSS thresholded model outputs and a set of separately generated random pseudo-
presence and pseudo-absence points.
*Thesholded Maxent predictions generated using modern range training data were evaluated using test files that corresponded with historical ranges.
doi:10.1371/journal.pone.0012899.t003

Table 4. Percent contribution (mean 6 SD) of six temperature-associated bioclimatic variables1 to Maxent models of climatic
suitability.

Bioclimatic Variable: MTEMP TEMPR ISO TEMPS MTWM MTCM

Asian elephant (m) 1.661.6 5.662.7 11.562.2 2.163.2 0.860.7 4.365.7

Asian elephant (h) 30.266.5 4.462.9 1663.0 2.261.0 4.662.4 364.7

Cheetah (m) 11.669.8 14.664.9 42.4±10.4 5.362.8 4.462.6 1.961.1

Cheetah (h) 32.9±14.1 15.969.3 9.7612.8 2.561.1 8.668.8 12.269.3

Lion (m) 5.262.6 3.462.8 62.5±8.7 8.869.8 1.060.8 0.760.9

Lion (h) 23.9±12.3 6.263.4 23.3613.3 8.364.7 6.464.7 13.7616.3

Oryx (m) 1.561.3 4.361.9 43.6±2.8 2.561.4 8.164.3 261.6

Oryx (h) 261.6 2.961.5 47.5±2.6 2.761.1 8.162.7 1.160.8

Average 13.666.2 7.263.7 32.167.0 4.363.15 5.363.4 4.965.1

Note: Variable contributions were averaged over ten model runs for each species and time period. The variables with the largest contribution for each species and time
period are shown in bold; m = models trained with pseudo-presence data from the modern range; h = models trained with pseudo-presence data from the historical
range.
1MTEMP = Annual mean temperature; TEMPR = Mean monthly temperature range; ISO = Isothermality (mean monthly temperature range/temperature annual range);
TEMPS = Temperature seasonality (standard deviation of monthly temperature); MTWM = Maximum temperature of the warmest month; and MTCM = Minimum
temperature of the coldest month.

doi:10.1371/journal.pone.0012899.t004
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Model Projections in North America
Projections in North America from modern pseudo-presence

training points generally indicated low climatic suitability for the

Asian elephant and lion in the Great Plains, while the cheetah

projections had some areas above the MTSS threshold in Texas

and New Mexico (Figures 1A, 1C, 2A and 2C). Similarly low

climatic suitability was found in the American southwest for the

Asian elephant and lion, except for coastal California that had

some areas above the MTSS threshold (Figures 1A and 2A). The

cheetah had more extensive areas above the MTSS threshold in

Arizona, California, Nevada, New Mexico and Texas (Figure 1C).

For the oryx, the most suitable areas above the MTSS threshold

were in restricted regions in coastal California and in a small

region of the American southwest in New Mexico and Arizona,

while portions of the Great Plains were above the MTP threshold

(Figure 2C). All four localities where oryx have established in

North America were above the MTP threshold, but none were

above the MTSS threshold (Figure 2C).

By contrast, projections in North America from historical

pseudo-presence training points showed higher levels and more

extensive areas of climatic suitability in the Great Plains and

American southwest than projections from modern range training

data for the Asian elephant, cheetah and lion (Figures 1B, 1D and

2B), while the oryx projections were similar but showed a slightly

smaller climatically suitable area (Figure 2D). The Asian elephant

projections indicated low to medium climatic suitability across a

wider region along the West coast and in portions of the American

southwest and the southern Great Plains (Figure 1B). The cheetah

and lion projections indicated medium and/or high climatic

suitability in portions of Oregon, Washington, Idaho, California,

Nevada, Arizona, New Mexico and Texas, with low climatic

suitability extending over most of the remaining Great Plains and

American southwest (Figures 1D and 2B). Again, all four localities

where oryx have established in North America were above the

MTP threshold, but none were above the MTSS threshold

(Figure 2D).

Discussion

The use of modern vs. historical training data had a substantial

effect on model predictions for all species except the oryx. Larger

zones of potential climatic suitability were predicted in North

America from models fit to historical training data compared to

those fit to modern training data for the Asian elephant, cheetah

and lion (Figures 1A, 1B, 1C, 1D, 2A and 2B). This result is

explained by the fact that all three species have contracted modern

ranges characterized by a loss of area in colder northern latitudes

(Figures S3, S4 and S5). In the native range, models fit to modern

training data for the same three species performed poorly when

evaluated with historical testing data (Table 3). The inability to

predict past distributions using training data from modern,

contracted distributions is consistent with previous findings

showing that the degree of sampling bias with respect to climatic

conditions has a negative effect on predictive accuracy [75]. By

contrast, for the oryx there was little difference in the predicted

zones of climatic suitability in North America between models fit

to modern vs. historical training data (Figures 2C and 2D),

resulting from the fact that its modern range was only slightly

reduced from its historical range (Figure S6). There was also no

difference in the ability of models fit to modern vs. historical

training data to predict the four North American oryx localities;

both model groups successfully predicted the localities at the

generous MTP threshold but failed to predict them with the more

stringent MTSS threshold. These results suggest that the use of

historical occurrence data for model training can improve

performance, at least in the native range, but the magnitude of

this effect is dependent on the degree to which modern and

historical ranges for each species differ.

The threshold criterion (MTP or MTSS) had a substantial effect

on model predictions for all species. The MTSS threshold

outperformed the MTP threshold for all focal species in the native

range (Table 3) and is recognized as one of the better-performing

threshold criteria [37,38]. However, none of the four North

American oryx localities were correctly predicted using MTSS,

while all four localities were correctly predicted when the lower

MTP threshold was applied using both modern and historical

training data (Figures 2C and 2D). This finding is reminiscent of

Peterson et al. [29], who found that Maxent models performed

poorly and exhibited overfitting (when a statistical model describes

random error or noise instead of the underlying relationship) when

used to project to unsampled regions at higher thresholds, but

successfully reconstructed distributions of species at lower

thresholds. Our results suggest that threshold criteria perform

differently when used for interpolation in the native range than

when used for extrapolation to new geographic areas; specifically,

lower thresholds may be more accurate that higher ones when

Maxent is used for extrapolation. Increasing the regularization

multiplier may also improve Maxent’s generalizability [76]. The

default regularization multiplier value of 1 yielded the highest

model performance for the oryx in the native range using modern

training data, while a value of 0.75 yielded the highest model

performance in the native range using historical training data

(Figure S2). Comprehensive guidelines for how to select appro-

priate thresholds and regularization multipliers when extrapolating

to new regions have yet to be developed.

Another possibility that might explain the relatively low

predicted climatic suitability for the North American oryx

localities could be novel combinations of climatic conditions that

are suitable for the oryx in North America but that do not occur in

Africa. We explored this possibility by plotting isothermality and

precipitation of the wettest quarter, the two variables that made

Table 5. Percent contribution (mean 6 SD) of four
precipitation-associated bioclimatic variables2 to Maxent
models of climatic suitability.

Bioclimatic Variable: PREC PRECS PWQ PDQ

Asian elephant (m) 35.1±8.1 1.561.3 28.7611.7 8.861.9

Asian elephant (h) 2.362.2 3.761.7 30.8±6.1 2.862.6

Cheetah (m) 6.462.7 6.064.8 1.861.3 5.664.6

Cheetah (h) 1.961.4 2.161.0 1.761.4 12.368.8

Lion (m) 8.062.3 6.961.8 1.360.9 2.161.7

Lion (h) 4.562.2 6.064.6 3.562.9 4.162.0

Oryx (m) 6.963.6 864.5 22.163.4 160.6

Oryx (h) 11.264 7.163.6 15.963.5 1.561.3

Average 9.563.3 5.262.9 13.263.9 4.862.9

Note: Variable contributions were averaged over ten model runs for each
species and time period. The variables with the largest contribution for each
species and time period are shown in bold; m = models trained with pseudo-
presence data from the modern range; h = models trained with pseudo-
presence data from the historical range.
2PREC = Annual precipitation; PRECS = Precipitation seasonality (coefficient of
variation of monthly precipitation); PWQ = Precipitation of the wettest
quarter; and PDQ = Precipitation of the driest quarter.

doi:10.1371/journal.pone.0012899.t005
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the largest contributions to the oryx models—totaling 64.6%

(Tables 4 and 5), for randomly sampled points within the native

modern oryx range, for random points sampled across Africa and

North America and for the four localities where oryx have

established in North America (Figure 3). For these two climatic

variables, it appears that the North American oryx localities are

indeed at the edge of the oryx climatic envelope, suggesting that

the oryx may be encountering regions with novel climates in North

America that have no analog in Africa. The issue of ‘‘non-analog

climates’’ presents a special challenge for species distribution

modeling across space and time and will become more

problematic with climate change [22,77]. It is difficult to test

predictions of climatic suitability for the oryx in North America

since it is recently established and has almost certainly not reached

Figure 1. Predicted climatic suitability for the Asian elephant and cheetah in North America. Climatic suitability for the Asian elephant
is based on pseudo-presence points from the modern (A) and historical (B) range, and for the cheetah on pseudo-presence points from the modern
(C) and historical (D) range. ‘‘Climatic suitability’’ is the average of ten Maxent logistic outputs per species per time period, where blue indicates low
suitability and red indicates high suitability. Regions above the MTSS threshold are shown as hashed areas, while regions below the MTP threshold
are shown in gray. The proposed introduction areas under the Pleistocene rewilding proposal (the Great Plains and American southwest) are
outlined.
doi:10.1371/journal.pone.0012899.g001
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the limits of its potential distribution. Future research should focus

on species that have invaded, established and spread throughout

new geographical areas with known non-analog climates.

Maxent performed well at interpolating modern and historical

distributions in native ranges for all species (Table 3). This is

consistent with previous findings that have demonstrated that

Maxent successfully predicts species’ native distributions using

occurrence data from within the same region [35,41,70]. The low

variation in AUC values between model runs that used different

random pseudo-presence data suggests that the points adequately

sampled the available environmental gradients for these species;

however, further research should determine the optimal amount of

sampling needed at different geographical scales relative to the

scale of the species occurrence data [78].

Figure 2. Predicted climatic suitability for the lion and oryx in North America. Climatic suitability for the lion is based on pseudo-presence
points from the modern (A) and historical (B) range, and for the oryx on pseudo-presence points from the modern (C) and historical (D) range. Four
localities where oryx have established wild populations are shown as white circles. ‘‘Climatic suitability’’ is the average of ten Maxent logistic outputs
per species per time period, where blue indicates low suitability and red indicates high suitability. Regions above the MTSS threshold are shown as
hashed areas, while regions below the MTP threshold are shown in gray. The proposed introduction areas under the Pleistocene rewilding proposal
(the Great Plains and American southwest) are outlined.
doi:10.1371/journal.pone.0012899.g002
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Like all species distribution modeling exercises, our results are

correlative and there were inherent sources of bias at each step of

the modeling process. Sources of error include the uneven

distribution of climate stations that were the source of the

WorldClim climate data, imperfect modern and historical range

maps, the temporal mismatch between the historical range maps

and the climate data and numerous decisions made during model

development and implementation (see Text S1-S5, Figures S1 and

S2). Since our predictions related to continental-scale distributions,

we only used climatic explanatory variables, which are thought to

be the main determinants of species’ distributions at these very

large scales [79]. The climatic variables that we used as predictors

were for the most part only proximate factors, not direct

(physiological) factors. Our results should be interpreted, therefore,

only in the context of broad-scale climatic suitability. Future

analyses of potential focal species distributions at finer spatial

scales, e.g., to assess the suitability of introduction sites or to

delineate protected areas, would greatly benefit from incorporat-

ing landscape- or regional-scale factors such as land use,

topography, geology, vegetation type, available prey populations

and human population density. Land use datasets, digital elevation

models, satellite imagery, soil maps, etc. are now available in

digital format and could be incorporated into a GIS model for this

purpose. Additional ecological effects, e.g., trophic cascades, as

well as societal/ethical considerations, such as wildlife-human

conflict and the risk of colonizing populations introducing

infectious diseases, a serious hazard to both the original host and

other spillover species [80], just to name a few issues, would need

to be considered as part of a comprehensive assessment for any

proposed introductions. These considerations would likely greatly

reduce the potential geographical scope of introductions for

rewilding species within areas that appear climatically suitable.

Proposals for introducing Asian elephants, cheetahs and lions to

the American southwest and Great Plains should take climate into

consideration. The importance of temperature in the modeling

results, particularly annual mean temperature and isothermality,

suggests that North America’s overall cooler and more seasonal

climate compared to Africa and southern Asia would place limits

on the successful establishment of these focal species. From our

results, most of the American southwest and Great Plains had low

suitability for the Asian elephant, with some moderately suitable

areas indicated in California, the Pacific Northwest, Texas and

Oklahoma (Figures 1A and 1B). For the cheetah and lion, more

extensive regions of the American southwest and southern Great

Plains appeared to be suitable based purely on climatic factors,

especially from models fit to historical training data (Figures 1C,

1D, 2A, 2B). If the MTP threshold has higher performance than

the MTSS threshold in model projections to North America, as

suggested by the oryx results, then much larger regions of the

western United States may indeed be climatically suitable for

cheetahs and lions than the Maxent logistic output values of

relative climatic suitability indicate. The expansion of the tropical

belt with climate change [81] could further increase the suitability

of some regions in North America for these focal species over time.

SDMs are increasingly used to predict climatic suitability in novel

geographic or temporal scenarios and require improvements in

performance. Here we incorporated the use of modern and

historical range information and pseudo-presence data to enhance

predictions of climatic suitability across continents. Our predictions

based on modern vs. historical range information led to substantially

different projections of climatic suitability in three out of four focal

species. Applications of SDMs that currently use only occurrence

data from the modern range may be improved by incorporating

historical information, when available, to account for range

contractions due to non-climatic factors such as human disturbance.

While species locality data is increasingly available online for some

taxa, particularly mammals and birds (e.g., Manis and Ornis

databases, respectively), this locational data may still be biased and/

or sparse. The use of random pseudo-presence points generated

from range maps is an economical approach that can address the

problem of biased or incomplete sampling. This approach may be

particularly useful for widespread generalist species with well-

defined ranges but few museum records, especially as many SDMs

are sensitive to small sample sizes [26,82]. Pseudo-presence data are

not, however, a substitute for having accurately georeferenced

museum specimens, especially for narrow-ranging species and

ecological specialists with narrow niche breadth. Species distribu-

tion modeling will continue to play an important role in adaptive

management and conservation planning as complex challenges,

such as predicting range shifts of organisms in response to climate

change, are addressed. The method that we present here aimed to

provide both generous and conservative predictions of climatic

suitability. Our most generous predictions minimized errors of

omission by using historical range information, randomly sampled

pseudo-presence data and a generous threshold criterion (MTP).

Our most conservative predictions minimized errors of commission

by using modern range information and a more conservative

threshold criterion (MTSS). The balanced nature of our procedure

makes it a useful model for other applications of SDMs in ecology,

evolution and conservation biology where the goal is to assess

potential climatic suitability in new geographic regions or times.

Supporting Information

Text S1 Determining the number of random pseudo-presence

points.

Found at: doi:10.1371/journal.pone.0012899.s001 (0.03 MB

DOC)

Figure 3. Plot of isothermality vs. precipitation in the wettest
quarter for regions in Africa and North America with and
without Oryx gazella. Isothermality is plotted against the precipitation
of the wettest quarter for random points sampled within the native
modern oryx range, for random points sampled across Africa and North
America and for the four localities where oryx are established in North
America.
doi:10.1371/journal.pone.0012899.g003
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Text S2 Geographical extent of climate grids.

Found at: doi:10.1371/journal.pone.0012899.s002 (0.03 MB

DOC)

Text S3 Additional information on Maxent.

Found at: doi:10.1371/journal.pone.0012899.s003 (0.03 MB

DOC)

Text S4 Determining the regularization multiplier.

Found at: doi:10.1371/journal.pone.0012899.s004 (0.03 MB

DOC)

Text S5 Model evaluation.

Found at: doi:10.1371/journal.pone.0012899.s005 (0.03 MB

DOC)

Figure S1 The effect of the number of random pseudo-presence

points on Maxent model performance. Model performance

measured as average AUC; m = modeled with modern range

data; h = modeled with historical range data.

Found at: doi:10.1371/journal.pone.0012899.s006 (6.08 MB TIF)

Figure S2 The effect of regularization on Maxent model

performance. Model performance measured as average AUC; m

= modeled with modern range data; h = modeled with historical

range data.

Found at: doi:10.1371/journal.pone.0012899.s007 (6.08 MB TIF)

Figure S3 Modeled climatic suitability for the Asian elephant in

the native range. Climatic suitability based on pseudo-presence

points from the modern (A) and historical (B) range. ‘‘Climatic

suitability’’ is the average of ten Maxent logistic outputs per time

period, where blue indicates low suitability and red indicates high

suitability. Regions above the MTSS threshold are shown as

hashed areas, while regions below the MTP threshold are shown

in gray.

Found at: doi:10.1371/journal.pone.0012899.s008 (3.07 MB TIF)

Figure S4 Modeled climatic suitability for the cheetah in the

native range. Climatic suitability based on pseudo-presence points

from the modern (A) and historical (B) range. ‘‘Climatic

suitability’’ is the average of ten Maxent logistic outputs per time

period, where blue indicates low suitability and red indicates high

suitability. Regions above the MTSS threshold are shown as

hashed areas, while regions below the MTP threshold are shown

in gray.

Found at: doi:10.1371/journal.pone.0012899.s009 (3.63 MB TIF)

Figure S5 Modeled climatic suitability for the lion in the native

range. Climatic suitability based on pseudo-presence points from

the modern (A) and historical (B) range. ‘‘Climatic suitability’’ is

the average of ten Maxent logistic outputs per time period, where

blue indicates low suitability and red indicates high suitability.

Regions above the MTSS threshold are shown as hashed areas,

while regions below the MTP threshold are shown in gray.

Found at: doi:10.1371/journal.pone.0012899.s010 (3.35 MB TIF)

Figure S6 Modeled climatic suitability for Oryx gazella in the

native range. Climatic suitability based on pseudo-presence points

from the modern (A) and historical (B) range. ‘‘Climatic suitability’’

is the average of ten Maxent logistic outputs per time period, where

blue indicates low suitability and red indicates high suitability.

Regions above the MTSS threshold are shown as hashed areas,

while regions below the MTP threshold are shown in gray.

Found at: doi:10.1371/journal.pone.0012899.s011 (2.38 MB TIF)
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