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Summary

1. The need to conserve and create linkages among fragmented habitats has given rise to a range of

techniques for maximizing connectivity. Methods to identify optimal habitat linkages face trade-

offs between constraints onmodel inputs and biological relevance of model outputs. Given the pop-

ularity of thesemethods and their central role in landscape planning, it is critical that they be reliable

and robust.

2. The most popular method used to inform habitat linkage design, least-cost path (LCP) analysis,

designates a landscape resistance surface based on hypothetical ‘costs’ that landscape components

impose on speciesmovement, and identifies paths that minimize cumulative costs between locations.

3. While LCP analysis represents a valuable method for conservation planning, its current applica-

tion has several weaknesses. Here, we review LCP analysis and identify shortcomings of its current

application that decrease biological relevance and conservation utility. We examine trends in pub-

lished LCP analyses, demonstrate the implications of methodological choices with our own LCP

analysis for bighorn sheepOvis canadensis nelsoni, and point to future directions in costmodelling.

4. Our review highlights three weaknesses common in recent LCP analyses. First, LCPmodels typi-

cally rely on remotely sensed habitat maps, but few studies assess whether such maps are suitable

proxies for factors affecting animal movement or consider the effects of adjacent habitats. Secondly,

many studies use expert opinion to assign costs associated with landscape features, yet few validate

these costs with empirical data or assessmodel sensitivity to errors in cost assignment. Thirdly, stud-

ies that consider multiple, alternative movement paths often propose width or length requirements

for linkages without justification.

5. Synthesis and applications. LCP modelling and similar approaches to linkage design guide con-

nectivity planning, yet often lack a biological or empirical foundation. Ecologists must clarify the

biological processes on which resistance values are based, explicitly justify cost schemes and scale

(grain) of analysis, evaluate the effects of landscape context and sensitivity to cost schemes, and

strive to optimize cost schemes with empirical data. Research relating species’ fine-grain habitat use

to movement across broad extents is desperately needed, as are methods to determine biologically

relevant length andwidth restrictions for linkages.

Key-words: animal movement, connectivity, corridor, dispersal, fragmentation, linkage

design, model validation

Introduction

Habitat fragmentation and isolation have long been consid-

ered among the greatest threats to the persistence of species

(Karieva 1987; Quinn & Harrison 1988). Fragmentation

increases a species’ risk of extinction from inbreeding and

genetic and demographic stochasticity (Wilcox & Murphy

1985; Mills & Smouse 1994), and limits the ability of popula-

tions to move in response to perturbations (e.g. harvest, habi-

tat degradation or disturbance). The effects of fragmentation

on dispersal and colonization, in particular, have received*Correspondence author. E-mail: ssawyer@berkeley.edu
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increasing attention as planners attempt to predict the

response of species to climate change (e.g. Thomas et al.

2004; McLachlan, Hellmann & Schwartz 2007). Efforts to

mitigate the impacts of habitat fragmentation by preventing

or reversing population isolation are encompassed within the

growing field of connectivity conservation (Crooks & Sanja-

yan 2006).

Promoting connectivity, the movement of species or genes

between habitats, alleviates problems associated with habitat

fragmentation (Crooks & Sanjayan 2006).Most efforts to con-

serve connectivity rely on the creation or protection of habitat

linkages; i.e. land that promotes movement or dispersal of

plants or animals between core habitats (Briers 2002; Beier,

Majka & Spencer 2008; Fig. 1). However, while researchers

generally agree that maintaining connectivity is essential to the

persistence of fragmented subpopulations, they often disagree

on the process by which linkages are designed for conservation

(Rothley 2005). Although placement of linkages ⁄ corridors
based on empirical observations of dispersal movement may

be the most reliable method for designing connectivity net-

works (Hilty & Merenlender 2004; Graves et al. 2007) such

data are sparse or non-existent for most species and most loca-

tions (Fagan&Calabrese 2006). As a result, conservation relies

heavily onmodels of connectivity thatmay have little empirical

basis. Conservation planners are faced with a critical question:

will such models improve placement of linkages ⁄ corridors by

explicitly incorporating habitat effects on movement, or will

they result in misleading and potentially costly recommenda-

tions for conservation by concealing invalidated assumptions

(Chetkiewicz, St. Clair &Boyce 2006)?

In this review, we evaluate the current use, strengths and

weaknesses of least-cost path (LCP) analysis (Fig. 1; see

Appendix S3 in Supporting information for a discussion of cur-

rent LCP terminology), the most widely used modelling

approach for design of habitat linkages (LaRue & Nielsen

2008; Phillips,Williams&Midgley 2008).We focus on applica-

tions of LCP analysis in which a single path or corridor is iden-

tified for placement between pairs of source patches. A detailed

description of the steps involved in LCP analysis is provided in

Figure 1. In short, LCP analysis evaluates potential animal

movement routes across the landscape based on the cumulative

‘cost’ of movement (Chetkiewicz & Boyce 2009). Resistance of

each landscape unit (usually a grid cell on a raster map) is

intended to represent the sum of hypothetical energetic expen-

ditures,mortality risks, or other facilitating or hindering effects

of landscape elements onmovementwithin the cell (Adriaensen

et al. 2003; Fig. 1). In practice, resistance values inLCPmodels

are usually assigned on an arbitrary scalemeant to reflect ‘high’

or ‘low’ suitability (with respect tomovement) of different land-

scape factors (e.g. land cover, human activity, etc.). Resistance

values for each factor are weighted according to their perceived

importance and combined (e.g. by geometric mean) to produce
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 Source patches: Areas 
that support or have 
potential to support the 
species of interest; 
sometimes restricted to 
breeding habitat 

 

Landscape variables:  
Habitat traits perceptible 
by- and likely to influence –
species’ movement 

 e.g. vegetation type, 
slope, elevation, water, 
human activities, food 
availability, escape cover  

 

Resistance:  a measure of  
reluctance to use habitat 
for movement (Adriaensen 
et al. 2003) or failure to 
move successfully 
 

Cost scheme:  Choice of 
resistance values and factor 
weights 
Resistance value: 
numerical score assigned 
to habitats or landscape 
traits to quantify resistance 
Factor weight: measure of 
importance of one habitat 
trait on movement 
decisions relative to other 
traits 
 

Effective distance:  
Composite measure of 
connectivity between 
patches representing 
geographic (Euclidian) 
distance weighted by 
resistance of landscape 
elements traversed on a 
given path (Adriaensen et 
al. 2003) 
 

Least-cost path: 
A swath of landscape that 
is one pixel wide and 
represents the lowest 
cumulative cost between 
two patches (Verbeylen et 
al. 2003) 
 

Corridor:  
A slice of landscape 
encompassing the most 
permeable percentiles of the 
cost surface  
Habitat linkage:  
Connective land that promotes 
movement/dispersal for 
multiple species between core 
habitats  
(Beier et al. 2008; 2009) 
 

Define source patches  
using: 

 Home ranges  
 e.g. minimum 

convex polygon, 
kernel density 
estimator 

 Point locations  
 e.g. direct 

observations, radio-
telemetry, nest/den 
evidence 

 Habitat suitability  
analysis  

 e.g. Percentage of 
most suitable habitat 

 Suitable habitat 
larger than a cut-off 

 Protected areas 
 Expert opinion 

 

Decisions can be based 
on: 

 Expert opinion 
resource selection 
functions (RSF) or  
habitat suitability  
index (HSI) 

 Derived from 
regression of 
occurrence data on 
environmental 
variables 

 Analyses of animal 
movement behavior 

 e.g., radio or 
satellite telemetry, 
snow tracking 

 Landscape genetic 
analyses 

 e.g., correlation 
of habitat elements 
with genetic 
differences 

Resistance may signify: 
 Mortality risks 

 
 Reproductive costs 

 
 Energetic costs 

 
 Physical resistance 

 
 Thermal stress 

 
 Habitat suitability 

 

Cost schemes can be 
determined using:  

 Expert opinion 
 Analytical 

Hierarchical Process 
 Mean response  
 Qualitative 

 Species habitat  
preferences 

 Compositional 
analysis: time spent in 
each habitat type 
relative to availability 

 RSF/HSI: 
Probabilistic map 
regressing presence on 
habitat variables 
 Analyses of animal 

movement behavior 
 Movement 

choice/speed in 
different habitat types 
and transitions 

 Gene flow: 
 Correlation of 

gene flow estimates 
with effective dist. of 
cost scheme  
 

The cost value in each cell 
represents effective 
distance to the source 
patch, measured in the 
least effort (lowest cost) of 
moving over the cost 
surface 
 

The model creates the 
most likely travel route by 
selecting a combination of 
cells that represent the 
shortest effective distance 
between two designated 
patches (LaRue and Nielsen

 
 

Corridors can be identified by:  
 Buffer/minimum width: 

 Buffer LCP to chosen 
width (e.g. home range 
size) 

 Least cost corridor/  
Probable movement zone:  

 Combine multiple low-
cost routes 
 Lowest percentile 

(10%, 20%, etc) of cost 
paths 

 Circuit theory:  
 Delineate areas of 

landscape with highest 
“conductance” between 
patches 
 Can incorporate patch 

characteristics 
 Can be used to rank 

potential corridors, 
explore alternative 
corridors, and identify 
bottlenecks  

(McRae and Beier 2007) 

 

 

What areas need to be 
connected?

What landscape 
traits affect species' 
movement between 

these areas?

How will variation in 
these landscape 
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movement?
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potential landscape 

effects be 
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How can a least-
cost path be 
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optimal linkage?
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Identify landscape 
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include in cost 

analysis

Rank variables 
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resistance to 

movement

Develope cost 
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resistance values 
and factor weights
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cumulative cost 

surface from 
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path (LCP) 

between source 
patches

Design least-cost 
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Analysis 
D

efinitions 
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ples 

2008) 

Fig. 1. Introduction to important questions, steps and definitions for least-cost pathmodelling.
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a single resistance value. We call this series of choices the ‘cost

scheme’. The ‘effective distance’, or cost of a path betweenhabi-

tat patches for a species, is the Euclidian distance weighted by

the cumulative resistance values of all cells traversed (Adriaen-

sen et al. 2003; Beier,Majka& Spencer 2008; Fig. 1). The LCP

is the combination of cells that minimizes effective distance

between two patches (Verbeylen et al. 2003) and is used to

informoptimal placement of a linkage (Fig. 1).

Least-cost path analysis is an attractive technique for analy-

sing and designing habitat corridors because it: (i) allows quan-

titative comparisons of potential movement routes over large

study areas, (ii) can incorporate simple or complex models of

habitat effects on movement and (iii) offers the potential to

escape the limitations of analyses based solely on structural

connectivity (i.e. designating areas simply as ‘patch’, ‘matrix’

or ‘corridor’) bymodelling connectivity as itmight be perceived

by a species on a landscape (‘functional connectivity’; Taylor,

Fahrig & With 2006). However, as with any modelling

approach, the effectiveness of LCP analysis is limited by the

quality of input data. For instance, modellers often use expert

opinion to assign resistance values to remotely sensed land-

scape traits (e.g. Adriaensen et al. 2003; see Fig. 1 & Table 1).

Thus, the accuracy and value of these models depends on how

strongly these coarse-grain habitat proxies and their assumed

resistances correlate with actual habitat use ⁄movement by

focal species (Calabrese&Fagan 2004; Beier,Majka&Spencer

2008). Methods for defining habitat patches are often unclear

or based largely on human rather than animal perception of

habitats (Theobald 2006). In worst-case scenarios, LCP analy-

ses are little more than subjective interpretations of coarse hab-

itat maps, but the method has potential for much more. For

example, ideal applications of LCP analysis would employ

organism-centric approaches in which practitioners use spe-

cies- and landscape-specific empirical data to quantify behavio-

ural responses to finer-grain habitat elements (e.g. distribution

of critical resources, escape cover and threats), to: (i) consider

attributes of surrounding cells when assessing resistance of a

cell and (ii) assess the likelihood of use for a path of known

width and length (Adriaensen et al. 2003; Theobald 2006;

Graves et al. 2007). While a challenging standard, such organ-

ism-centric approaches have the potential to reduce researcher

bias and increase the replicability, defensibility and transpar-

ency of LCP and related analyses (Chetkiewicz&Boyce 2009).

In reviewing the use and application of LCP approaches we

set out to address the following questions: (i) do recent studies

employing LCP analysis shift emphasis from structural

towards functional connectivity by considering species-specific

behaviours and do they provide explicit, empirically derived

justification for their choices? (ii) do researchers using LCP

analysis attempt sensitivity analysis, model validation or com-

pare multiple model outputs to assess the robustness of their

projections? and (iii) how have researchers translated LCP

model outputs into optimal linkage or corridor placement for

their study areas?

Finally, to demonstrate the challenges of LCP analyses and

highlight the sensitivity of LCP model outputs to input data,

we present a case study in which we conduct an LCP analysis

for desert bighorn sheep Ovis canadensis nelsoni (Merriam

1897) in southern California. We use our LCP analysis

between two bighorn populations to examine congruence of

outputs from two commonly used techniques for assigning

cost schemes (expert opinion and gene flow optimization; see

Figs. 1 and 2) and two scales of habitat suitability assessment

(regionally-significant topographic ⁄anthropogenic variables

and locally-specific habitat traits).

Materials and methods

SELECTION OF PAPERS

We limited our analytical review to studies with the stated aim of

designing optimal connectivity strategies for focal species. We per-

formed a search in ISIWeb ofKnowledge (ISI 2010) using the follow-

ing search terms: least-cost OR cost-distance OR least-cost path OR

least-cost-pathAND connectivityOR corridorOR linkageOR conser-

vation. To reflect current trends in the peer reviewed literature, we

restricted our search to 373 studies published between 2002 and 2010.

We then refined the list to the subject areas Biodiversity and Conser-

vation, Environmental Sciences and Ecology, and Genetics and

Heredity, which reduced our pool to 135 results. We then further

restricted our review to publications with the following keywords in

the study abstract: identify OR predict OR model OR delineate OR

place OR validate OR draw AND linkage OR corridor OR optimal

connectionOR key connectivity areaORmigration zone.We excluded

studies that used LCP analysis solely to predict occupancy, model

species distributions (e.g. Verbeylen et al. 2003; Magle, Theobald &

Crooks 2009), explain gene flow (e.g. Vignieri 2005) or predict how

landscape changes might affect focal species (e.g. Graham 2001) if

they did not explicitly aim to design or evaluate linkages. Finally, for

each study thatmet our criteria for inclusion, we evaluated the follow-

ing methodological choices: type of habitat data, choice of grain (cell

size) and study extent, determination of cost schemes and source

patches, consideration of effects of adjacent habitat, exploration of

different resistance values, sensitivity analysis for other modelling

choices and conversion of a ‘path’ to a ‘corridor’.

BIGHORN SHEEP CASE STUDY

To test the sensitivity of LCP model outputs to input data, we com-

pared two LCP models published for bighorn sheep populations in

the Mojave Desert of California (Epps et al. 2007; Penrod et al.

2008), and two additional LCP models based on modifications of

those published models. We chose two populations, San Gorgonio

and Cushenbury, that exhibit clear evidence of connectivity in the

recent past (Epps et al. 2010).

The ‘Expert’ model (Penrod et al. 2008) was based on a linkage

design for nearby Joshua Tree National Park. The Expert model esti-

mated resistance values using expert opinion and included dense

woody vegetation as determined from the CaliforniaWildlife Habitat

Relationship vegetation type (Mayer & Laudenslayer 1988). Areas of

flat topography, urban areas and areas with high road density were

all defined as highly resistant (up to 10 times more than the best habi-

tat). The final combinedmodel was calculated as:

CostEXPERT ¼ topography� 0�4þhabitat� 0�4þ road density� 0�2

where topography, habitat and road density were assigned resis-

tances between 1 and 10, as specified by Penrod et al. (2008, pp.

7–10).
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The ‘Optimized’ model (Epps et al. 2007; Appendix S1 Supporting

information) considered only topography and optimized resistance

values using observed gene flow among populations over the entire

study area, including those in our case study:

CostOPTIMIZED ¼ topography

where areas with >15% slope and <15% slope were assigned

resistances of 1 and 10 respectively.

Epps et al. (2007) recognized that their model was optimized for

the southern California population as a whole, and would not

account for locally specific habitat variables, such as the large amount

of wooded habitat in the vicinity of the San Gorgonio and Cushen-

bury populations. Bighorn sheep typically avoid wooded habitat, pre-

sumably because of higher predation risk (e.g. DeCesare & Pletscher

2006). Therefore, we developed a third model (‘Optimized Local’)

that added high resistance for any urban area (10 times higher) or

wooded area (10 times higher) and calculated the final model as:

CostOPTIMIZED LOCAL ¼ topography� 0�33þ wooded habitat

� 0�33þ urban area� 0�33

where areas with >15% and <15% slopes were assigned resis-

tances of 1 and 10, respectively, wooded habitat was assigned a

cost of 10, and urban habitat was assigned a cost of 10. Non-

wooded and non-urban areas were assigned a cost of 1.

Finally, to simulate the common situation where little is known

about dispersal, we constructed a fourth model (‘Incomplete’) that

was biologically relevant but omitted several important factors:

CostINCOMPLETE ¼ wooded habitat

where areas with and without tree cover were assigned a cost of

10 and 1 respectively.

All input grids were re-sampled to 100 m resolution before combin-

ing into final cost grids. We calculated a single LCP for each model

using Pathmatrix (Ray 2005). We used ArcMap and Corridor

Designer (http://www.corridordesign.org/) to generate ‘least-cost

corridors’ (Beier, Majka & Newell 2009; Fig. 1) representing the

lowest 10% of possible least-cost paths for each model and estimated

the area of overlap of those least-cost corridors.

Results

L ITERATURE REVIEW

Twenty-four studies met our criteria for review. Each of the 24

used remotely-sensed land cover or habitat type as a proxy for

habitat suitability and movement of focal species (Table 1).

Study extent ranged from 10 to 4 000 000 km2; and study

grain (cell size) varied from 1 to 1 km2 but most commonly

corresponded with the grain of freely available Landsat imag-

ery (900 m2; see Table S1 in Supporting information for a

complete summary of reviewed studies’ methodological

choices). Two studies distinguished only two types of habitat

while all others included at least three habitat categories

(Table 1). None of the 24 studies directly considered more

organism-centric measures of microhabitat suitability, includ-

ing those identified by authors as affecting animal habitat selec-

tion ⁄movement, such as percentage habitat cover or

distribution of food (Binzenhofer et al. 2005), presence of

nutrient sources such as salt licks (Beazley et al. 2005),

denning ⁄nesting habitats (Singleton, Gaines & Lehmkuhl

2004), prey availability (Rabinowitz & Zeller 2010) or cover or

escape terrain for predator avoidance (Wang et al. 2008).

While some studies stated that habitat types serve as reliable

proxies for predator presence and ⁄or abundance of preferred
foods (e.g.Driezen et al. 2007; Shen et al. 2008), no studies val-

idated this assumption or included habitat distribution models

of either predator or prey species.

Fourteen of the 24 studies evaluated in our review based

their LCP analysis cost schemes (Fig. 1) on expert opinion,

published literature, or both, although explanations of cost

surface derivation were often lacking in sufficient detail to rep-

licate analyses (Table 1). Of those, only three attempted to sys-

tematically and objectively translate expert opinion into cost

schemes [e.g. using analytic hierarchy process or similar

approaches (Banaikashani 1989; see Table S1 Supporting

information)]. Six studies used telemetry or trapping (presence)

data to designate costs. Three studies used relative gene flow,

or combined gene flow and telemetry data, and two studies

assigned resistance values using behavioural data from focal

species. Across the surveyed studies, source habitat patches

were variably defined as ‘known population ⁄ individual loca-
tions’ (10 studies), habitat deemedmost ‘suitable’ by size, habi-

tat type, or both (nine studies), or ‘key conservation areas’ (one

study). Four studies did not define their source patches

(Table 1). Eight studies included some effect of surrounding

habitat in their cost designation (Table 1). Six studies partially

based pixel cost on distance to particular habitat types or

human activities. Kindall & Van Manen (2005) included

forest ⁄agriculture edge density in their cost measures while

Wikramanayake et al. (2004) considered all areas within 1 km

of agriculture or population centres to be ‘poor habitat’,

regardless of habitat type.

Only four studies (17%) quantitatively assessed sensitivity

of model-selected paths to different cost schemes for all vari-

ables, and these four consistently found their model outputs to

be highly sensitive to input decisions (Table 1). Larkin et al.

(2004) found overlap of only 0–51% among paths generated

using different cost schemes. Stevens et al. (2006) and Epps

et al. (2007) used multiple measures of gene flow to test LCP

models and discovered that models were highly sensitive to dif-

ferent resistance values. Driezen et al. (2007) showed that the

measurement of a species’ ability to find low-cost sites depends

heavily on the cost scheme used. Three other studies conducted

partial sensitivity analysis: Schadt et al. (2002) found that

changing resistance values of the matrix led to significantly

different LCPs while Shen et al. (2008) discovered high model

sensitivity to costs of bamboo and land cover. Kautz et al.

(2006) did not detect model sensitivity to costs of roads and

water. Only nine of the 24 studies attempted some form of

model validation in the published results (Table 1). Four stud-

ies examined relative support for cost schemes based on gene

flow. Four studies used presence data (telemetry or trapping)

to validate their models, while one used presence and absence

data (Beazley et al. 2005).

Only 10 of the 24 studies we evaluated attempted to move

beyond a single-pixel wide path to consider more biologically

relevant (Majka, Jenness & Beier 2007) least-cost corridors
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(LCC; see Fig. 1) either by including minimum acceptable

widths, buffering paths or selecting a percentage of least-cost

cells (Table 1). Two studies included a minimum acceptable

width cut-off. Kautz et al. (2006) found that one-pixel wide

paths can go through extremely unsuitable habitat, and there-

fore buffered LCPs and rejected paths that passed through

poor-quality habitat types. Four additional studies buffered

their LCPs to make them wider. Three studies took a percent-

age of lowest grid cell values to make a least-cost corridor.

However, empirical justifications for most of these analytical

choices, such as buffer width, were not presentedwhen defining

LCCs.

CASE STUDY: LCP ANALYSIS OF BIGHORN SHEEP

The four LCPmodels compared in our analysis of two popula-

tions of desert bighorn sheep produced LCPs that varied

widely in location and length (Fig. 2). Along-path distances

for the four paths were 34Æ6 km (Expert), 21Æ6 km (Optimized),

31Æ7 km (Optimized Local) and 28Æ5 km (Incomplete); those

paths overlapped<2%of total length (Fig. 2). Least-cost cor-

ridors overlapped from 0 to 44% (average 13%; Table 2).

Discussion

L ITERATURE REVIEW

Although LCP modelling has been touted as combining

detailed geographical information with animal behaviour to

move beyond structural towards functional connectivity

San Gorgonio

Cushenbury

0 5 102· km5

Populations
EXPERT path
INCOMPLETE path
OPTIMIZED path
OPTIMIZED LOCAL path
EXPERT corridor
INCOMPLETE corridor
OPTIMIZED corridor
OPTIMIZED LOCAL corridor
Roads

Fig. 2. A comparison of four least-cost path models between two bighorn sheep populations in southern California highlights the sensitivity of

results tomodel inputs. Cost surfaces used to produce the four paths incorporate the following landscape characteristics: topography alone (Opti-

mized model); wooded habitat alone (Incomplete model); topography, habitat and road density (Expert model); or topography, wooded habitat

and urban areas (Optimized Local model). Total least-cost path length overlapped less than 2%; least-cost corridors based on the lowest 10% of

the resistance surface overlapped from 0 to 44%.

Table 2. Percentage overlap of least-cost corridors based on four

connectivitymodels between two bighorn sheep populations

Model

Incomplete

(%)

Expert

(%)

Optimized

(%)

Expert 0 – –

Optimized 5 44 –

Optimized Local 30 0 0
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analysis (Adriaensen et al. 2003; Theobald 2006), our review

suggests current LCPmodel implementation often ignores fac-

tors that affect how animals utilize landscapes. Nearly, all

recent LCP analysis-based studies employed coarse-grain envi-

ronmental data layers to determine habitat connectivity, an

approach that is often biased by researcher-perceived struc-

tural connectivity and runs the risk of missing important bio-

logical aspects of species’ connectivity (Mortelliti & Boitani

2008). For instance, although scale of analysis has been shown

to greatly impact strength of detected relationships, study grain

was typically dictated by freely available remotely sensed data

(see Table S1 Supporting information) rather than species per-

ceptions of landscape features (Cushman & Lewis 2010; see

Appendix S2 in Supporting information for recommendations

on improving application of LCP analysis).

Overall, the strength of the correlation between remotely-

sensed habitat layers and species’ movement is relatively

unknown and poorly validated (Chetkiewicz, St. Clair &Boyce

2006; Beier, Majka & Spencer 2008). Our analysis in no way

rejects the utility of coarse proxy data, especially given the

need to model movement over large landscapes, but illus-

trates the need to explore effects of scale, explicitly justify

choice of scale, and conduct model sensitivity and validation

(see Appendix S2 Supporting information). In many cases,

remotely-sensed proxies may provide adequate coverage at

limited cost, and may prove to be efficient for conservation

planning in the face of limited time and funding [e.g. fishers

(Martes pennanti): Caroll, Zielinski & Noss 1999; large car-

nivores: Schadt et al. 2002; bighorn sheep: Epps et al. 2007].

However, animals frequently select high-quality microhabi-

tats in areas that appear unsuitable at a macro-level (Mortel-

liti & Boitani 2008). Animals often select against low quality

habitat within largely suitable areas as well, and accounting

for the presence of low quality habitat within otherwise

high-quality habitat patches may significantly improve

model predictions (e.g. Wang et al. 2008).

We suggest that those using LCP analysis should strive to

evaluate the predictive power of coarse-grain proxies for focal

species movement over a portion of the study range before

constructing analytical models (see Appendix S2 Supporting

information). For species and linkages above the scale of rapid

dispersal movements, using resource selection function models

(RSF) with LCP analysis appears to be a step forward from

more arbitrary methods (e.g. Chetkiewicz & Boyce 2009).

Hypothesis testing and model selection that compares critical

scales of habitat use or movement for taxa will help to build a

stronger foundation for linkage-design methodology. Better

understanding of a species’ perception of its environment will

help modellers to identify appropriate scales of analysis and,

thus, provide more reliable and accurate model outputs for

practitioners (With, Gardner & Turner 1997; Uezu,Metzger &

Vielliard 2005; Cushman&Lewis 2010).

LCP ANALYSIS OF BIGHORN SHEEP

OurLCP analysis of bighorn sheep in California demonstrated

many of the challenges and uncertainties we highlight above.

The four models used to identify LPCs for desert bighorn

sheep were derived at different scales (e.g. metapopulation vs.

population level) and yielded very different paths (Fig. 2). Use

of 10% least-cost corridors for each scheme did little to reduce

differences between the models (Fig. 2, Table 2). For instance,

the corridor suggested by the Optimized model (developed

over a much larger geographic area) did not overlap with the

Optimized Local model, which included wooded and urban

habitat (Fig. 2). The Optimized model only partly overlapped

the Expert model corridor, which was based only on coarse

habitat maps and expert opinion (Fig. 2). This case study

makes clear that reasonable alternative models can lead to

strikingly different conclusions regarding prioritization of land

acquisition, easements or other management actions for link-

age conservation.

HOW CAN WE IMPROVE LCP MODELL ING?

Organisms respond differently to landscape elements depend-

ing on their perceptive range and characteristics of surround-

ing areas (Coulon et al. 2008; Richard & Armstrong 2010).

Species’ movements in one habitat type will often be affected

by nearby disturbances such as man-made structures and light

pollution (Beier 1995; Coulon et al. 2008), width of habitats

(Laurance&Laurance 1999; Hilty &Merenlender 2004), traits

of and distance to adjacent habitat (Binzenhofer et al. 2005;

Anderson, Rowcliffe & Cowlishaw 2007; Richard & Arm-

strong 2010), and level of perceived cover and safety (Rizkalla

& Swihart 2007; Beier,Majka & Spencer 2008). However, only

2 of 24 studies in this review were able to validate their model

with behavioural data (Stevens et al. 2006; Driezen et al.

2007). Given the sensitivity of least-cost models to incorrect

resistance specification, the best way to evaluate model perfor-

mance would be comparison of predictions based on multiple

methods and independent data sets (e.g. radiotelemetry move-

ment data and landscape genetics: Cushman & Lewis 2010).

Testing the role of individual behaviour, preference and per-

ceptual range in habitat selection or movement decisions (e.g.

radio or global positioning system tracking: Beier 1995; Cush-

man, Chase & Griffin 2010; Driezen et al. 2007; Richard &

Armstrong 2010; experimental data: Stevens et al. 2006; Had-

ley & Betts 2010) and using model selection to better integrate

these behavioural with ecological and landscape data will

greatly improve connectivity design (seeAppendix S2 Support-

ing information).

Determining the relationship between movement or gene

flow and effective distance under a given cost scheme, and thus

the maximum effective distance at which a corridor is useable

by a given species, may be the most biologically important and

widely ignored aspect of LCP and other connectivity analyses.

Even the best-supported paths will not function as planned if

their lengths exceed the movement capability of a focal species.

For example, gene flow estimates (Epps et al. 2005, 2007) sug-

gest that in our bighorn sheep example, only the corridors pro-

duced by the Optimized and Incomplete models would serve a

connective function (21Æ6 and 28Æ5 km along-path lengths

respectively) while the Expert and Optimized Local models
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would result in corridors too long to promote connectivity (35

and 31Æ7 km respectively). Yet, only two studies reviewed here

(Schadt et al. 2002; Singleton, Gaines & Lehmkuhl 2004) con-

sidered cut-offs for maximum useable effective distance (the

greatest effective distance a species can travel between patches)

based on knowledge of species dispersal. One study used gene

flow estimates to determine maximum effective distance (Epps

et al. 2007; Appendix S1 Supporting information). We recom-

mend that wherever possible, defensible estimates ofmaximum

useable effective distance should be developed by analysing

genetic ormovement data as functions of effective distance (see

Appendix S2 Supporting information). An alternative

approach is to define resistance more explicitly in terms of bio-

logical parameters, such asmortality risk or energy expenditure

based on demographic, diet or metabolic data, and use move-

ment models based on those parameters to explore modelling

choices (see Chetkiewicz, St. Clair & Boyce 2006). In general, a

more explicit discussion of resistance in each study would

improve linkage design and interpretation. For instance, does

the resistance value used in an LCP analysis reflect the physical

costs of moving through a cell, its mortality risk, or habitat

value? Each definition may be defensible depending on the

goals and scale of analysis, but each will have different implica-

tions, especiallywhen consideringmaximumpath lengths.

Individual animals rarely use a single optimum route, and

single-pixel-wide LCPs are of limited biological value (Majka,

Jenness & Beier 2007; McRae & Beier 2007; McRae et al.

2008; Pinto & Keitt 2009). Although alternative paths with

comparable costs may exist on a landscape, studies regularly

failed to consider larger swaths of low-cost grid cells (i.e. a

least-cost corridor). Recently, circuit theory has been used to

incorporate multiple pathways and patch characteristics when

evaluating connectivity designs (McRae & Beier 2007; McRae

et al. 2008). This method allows modelling alternative link-

ages, ranking potential corridors and reassigning values as

pathways are removed (Fig. 1; see Appendix S2 Supporting

information), but it is equally reliant on a biologically realistic

resistance surface. Alternatively, researchers can select lowest

percentiles of cost surfaces (Beier, Majka & Newell 2009; this

study Fig. 2) or combine multiple low-cost routes in an LCP

analysis to delineate ‘probable movement zones’ (Rayfield,

Fortin & Fall 2010; see Appendix S2). While these alternatives

may increase robustness to uncertainty in model parameters,

selection of a percentile cut-off (e.g. lowest 10%) or combining

a number of low-cost routes is still a subjective decision with

unclear biological justification. Some of the techniques we

describe above for optimizing or validating models of effective

distance should also be applied to this problem.

Few studies examined in this review conducted sensitivity

or uncertainty analyses, which are essential to the landscape

planning process and should be a requirement of any LCP or

related connectivity model (Beier, Majka &Newell 2009; Ray-

field, Fortin & Fall 2010). Studies that conducted sensitivity

analyses (Table 1) found that different cost schemes (both

choice of factors incorporated in the resistance surface, as well

as the weights and resistance values assigned) produced very

different LCPs, although Beier, Majka & Newell (2009) found

their models robust to uncertainty. Indeed, Beier, Majka &

Newell (2009) methods for evaluating uncertainty should

prove useful where data for optimizing cost schemes are sparse

(see Appendix S2 Supporting information). Sensitivity to the

choice of habitat factors, factor weights, resistance values,

grain and definitions of least-cost corridors should all be

considered (see Appendix S2 Supporting information). Our

LCP analysis for desert bighorn sheep highlights the disparity

of LCPs based on expert opinion, gene flow optimization

models, and other reasonable combinations, as well as the

point that models optimized over large areas may still need

local modifications. Researchers should strive for replicability,

objectivity and organism-centred methodology to improve

efficacy of LCP and other models in connectivity conservation

planning (see Appendix S2 Supporting information). To avoid

accusations of ‘black-box’ modelling (e.g. Shrader-Frechette

2004), studies must clearly address details of model construc-

tion, assumptions and uncertainties. Through these improve-

ments, connectivity science will more ably inform landscape

planning.

Least-cost path analysis and other connectivity conservation

approaches should be viewed as one piece of a larger landscape

conservation puzzle. Least-cost modelling cannot fully incor-

porate quality, size or importance of individual source patches,

thus, it is best applied as part of a wider conservation strategy

for focal species. A current debate questions whether connec-

tivity conservation strategies like LCP analysis bear consider-

ation in conservation planning, or simply detract focus from

more certain measures to protect high-quality breeding habi-

tats (Doerr, Barrett & Doerr 2011; Hodgson et al. 2011). This

debate promotes a dichotomy between high-quality breeding

habitat and habitats designated for connectivity that may rep-

resent an overly simplistic view of connective habitats. Regard-

less, recent summaries (e.g.McLachlan, Hellmann& Schwartz

2007; Hodgson et al. 2011) emphasise that conservation of

diverse and connected habitat mosaics is likely to be the safest

approach for sustaining species on our rapidly changing

planet.
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