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Summary

1. The need to conserve and create linkages among fragmented habitats has given rise to a range of
techniques for maximizing connectivity. Methods to identify optimal habitat linkages face trade-
offs between constraints on model inputs and biological relevance of model outputs. Given the pop-
ularity of these methods and their central role in landscape planning, it is critical that they be reliable
and robust.

2. The most popular method used to inform habitat linkage design, least-cost path (LCP) analysis,
designates a landscape resistance surface based on hypothetical ‘costs’ that landscape components
impose on species movement, and identifies paths that minimize cumulative costs between locations.
3. While LCP analysis represents a valuable method for conservation planning, its current applica-
tion has several weaknesses. Here, we review LCP analysis and identify shortcomings of its current
application that decrease biological relevance and conservation utility. We examine trends in pub-
lished LCP analyses, demonstrate the implications of methodological choices with our own LCP
analysis for bighorn sheep Ovis canadensis nelsoni, and point to future directions in cost modelling.
4. Our review highlights three weaknesses common in recent LCP analyses. First, LCP models typi-
cally rely on remotely sensed habitat maps, but few studies assess whether such maps are suitable
proxies for factors affecting animal movement or consider the effects of adjacent habitats. Secondly,
many studies use expert opinion to assign costs associated with landscape features, yet few validate
these costs with empirical data or assess model sensitivity to errors in cost assignment. Thirdly, stud-
ies that consider multiple, alternative movement paths often propose width or length requirements
for linkages without justification.

5. Synthesis and applications. LCP modelling and similar approaches to linkage design guide con-
nectivity planning, yet often lack a biological or empirical foundation. Ecologists must clarify the
biological processes on which resistance values are based, explicitly justify cost schemes and scale
(grain) of analysis, evaluate the effects of landscape context and sensitivity to cost schemes, and
strive to optimize cost schemes with empirical data. Research relating species’ fine-grain habitat use
to movement across broad extents is desperately needed, as are methods to determine biologically
relevant length and width restrictions for linkages.

Key-words: animal movement, connectivity, corridor, dispersal, fragmentation, linkage
design, model validation

(Karieva 1987, Quinn & Harrison 1988). Fragmentation
increases a species’ risk of extinction from inbreeding and
Habitat fragmentation and isolation have long been consid- genetic and demographic stochasticity (Wilcox & Murphy
ered among the greatest threats to the persistence of species 1985; Mills & Smouse 1994), and limits the ability of popula-

tions to move in response to perturbations (e.g. harvest, habi-

tat degradation or disturbance). The effects of fragmentation
*Correspondence author. E-mail: ssawyer@berkeley.edu on dispersal and colonization, in particular, have received
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increasing attention as planners attempt to predict the
response of species to climate change (e.g. Thomas er al.
2004; McLachlan, Hellmann & Schwartz 2007). Efforts to
mitigate the impacts of habitat fragmentation by preventing
or reversing population isolation are encompassed within the
growing field of connectivity conservation (Crooks & Sanja-
yan 20006).

Promoting connectivity, the movement of species or genes
between habitats, alleviates problems associated with habitat
fragmentation (Crooks & Sanjayan 2006). Most efforts to con-
serve connectivity rely on the creation or protection of habitat
linkages; i.e. land that promotes movement or dispersal of
plants or animals between core habitats (Briers 2002; Beier,
Majka & Spencer 2008; Fig. 1). However, while researchers
generally agree that maintaining connectivity is essential to the
persistence of fragmented subpopulations, they often disagree
on the process by which linkages are designed for conservation
(Rothley 2005). Although placement of linkages/corridors
based on empirical observations of dispersal movement may
be the most reliable method for designing connectivity net-
works (Hilty & Merenlender 2004; Graves et al. 2007) such
data are sparse or non-existent for most species and most loca-
tions (Fagan & Calabrese 2006). As a result, conservation relies
heavily on models of connectivity that may have little empirical
basis. Conservation planners are faced with a critical question:
will such models improve placement of linkages/corridors by
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explicitly incorporating habitat effects on movement, or will
they result in misleading and potentially costly recommenda-
tions for conservation by concealing invalidated assumptions
(Chetkiewicz, St. Clair & Boyce 2006)?

In this review, we evaluate the current use, strengths and
weaknesses of least-cost path (LCP) analysis (Fig. 1; see
Appendix S3 in Supporting information for a discussion of cur-
rent LCP terminology), the most widely used modelling
approach for design of habitat linkages (LaRue & Nielsen
2008; Phillips, Williams & Midgley 2008). We focus on applica-
tions of LCP analysis in which a single path or corridor is iden-
tified for placement between pairs of source patches. A detailed
description of the steps involved in LCP analysis is provided in
Figure 1. In short, LCP analysis evaluates potential animal
movement routes across the landscape based on the cumulative
‘cost” of movement (Chetkiewicz & Boyce 2009). Resistance of
each landscape unit (usually a grid cell on a raster map) is
intended to represent the sum of hypothetical energetic expen-
ditures, mortality risks, or other facilitating or hindering effects
of landscape elements on movement within the cell (Adriaensen
et al.2003; Fig. 1). In practice, resistance values in LCP models
are usually assigned on an arbitrary scale meant to reflect ‘high’
or ‘low’ suitability (with respect to movement) of different land-
scape factors (e.g. land cover, human activity, etc.). Resistance
values for each factor are weighted according to their perceived
importance and combined (e.g. by geometric mean) to produce
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Fig. 1. Introduction to important questions, steps and definitions for least-cost path modelling.
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a single resistance value. We call this series of choices the ‘cost
scheme’. The ‘effective distance’, or cost of a path between habi-
tat patches for a species, is the Euclidian distance weighted by
the cumulative resistance values of all cells traversed (Adriaen-
sen et al. 2003; Beier, Majka & Spencer 2008; Fig. 1). The LCP
is the combination of cells that minimizes effective distance
between two patches (Verbeylen e al. 2003) and is used to
inform optimal placement of a linkage (Fig. 1).

Least-cost path analysis is an attractive technique for analy-
sing and designing habitat corridors because it: (i) allows quan-
titative comparisons of potential movement routes over large
study areas, (ii) can incorporate simple or complex models of
habitat effects on movement and (iii) offers the potential to
escape the limitations of analyses based solely on structural
connectivity (i.e. designating areas simply as ‘patch’, ‘matrix’
or ‘corridor’) by modelling connectivity as it might be perceived
by a species on a landscape (‘functional connectivity’; Taylor,
Fahrig & With 2006). However, as with any modelling
approach, the effectiveness of LCP analysis is limited by the
quality of input data. For instance, modellers often use expert
opinion to assign resistance values to remotely sensed land-
scape traits (e.g. Adriaensen et al. 2003; see Fig. 1 & Table 1).
Thus, the accuracy and value of these models depends on how
strongly these coarse-grain habitat proxies and their assumed
resistances correlate with actual habitat use/movement by
focal species (Calabrese & Fagan 2004; Beier, Majka & Spencer
2008). Methods for defining habitat patches are often unclear
or based largely on human rather than animal perception of
habitats (Theobald 2006). In worst-case scenarios, LCP analy-
ses are little more than subjective interpretations of coarse hab-
itat maps, but the method has potential for much more. For
example, ideal applications of LCP analysis would employ
organism-centric approaches in which practitioners use spe-
cies- and landscape-specific empirical data to quantify behavio-
ural responses to finer-grain habitat elements (e.g. distribution
of critical resources, escape cover and threats), to: (i) consider
attributes of surrounding cells when assessing resistance of a
cell and (ii) assess the likelihood of use for a path of known
width and length (Adriaensen et al. 2003; Theobald 2006;
Graves et al. 2007). While a challenging standard, such organ-
ism-centric approaches have the potential to reduce researcher
bias and increase the replicability, defensibility and transpar-
ency of LCP and related analyses (Chetkiewicz & Boyce 2009).

In reviewing the use and application of LCP approaches we
set out to address the following questions: (i) do recent studies
employing LCP analysis shift emphasis from structural
towards functional connectivity by considering species-specific
behaviours and do they provide explicit, empirically derived
justification for their choices? (ii) do researchers using LCP
analysis attempt sensitivity analysis, model validation or com-
pare multiple model outputs to assess the robustness of their
projections? and (iii) how have researchers translated LCP
model outputs into optimal linkage or corridor placement for
their study areas?

Finally, to demonstrate the challenges of LCP analyses and
highlight the sensitivity of LCP model outputs to input data,
we present a case study in which we conduct an LCP analysis

for desert bighorn sheep Ovis canadensis nelsoni (Merriam
1897) in southern California. We use our LCP analysis
between two bighorn populations to examine congruence of
outputs from two commonly used techniques for assigning
cost schemes (expert opinion and gene flow optimization; see
Figs. 1 and 2) and two scales of habitat suitability assessment
(regionally-significant topographic/anthropogenic variables
and locally-specific habitat traits).

Materials and methods

SELECTION OF PAPERS

We limited our analytical review to studies with the stated aim of
designing optimal connectivity strategies for focal species. We per-
formed a search in ISI Web of Knowledge (ISI 2010) using the follow-
ing search terms: least-cost OR cost-distance OR least-cost path OR
least-cost-path AND connectivity OR corridor OR linkage OR conser-
vation. To reflect current trends in the peer reviewed literature, we
restricted our search to 373 studies published between 2002 and 2010.
We then refined the list to the subject areas Biodiversity and Conser-
vation, Environmental Sciences and Ecology, and Genetics and
Heredity, which reduced our pool to 135 results. We then further
restricted our review to publications with the following keywords in
the study abstract: identify OR predict OR model OR delineate OR
place OR validate OR draw AND linkage OR corridor OR optimal
connection OR key connectivity area OR migration zone. We excluded
studies that used LCP analysis solely to predict occupancy, model
species distributions (e.g. Verbeylen et al. 2003; Magle, Theobald &
Crooks 2009), explain gene flow (e.g. Vignieri 2005) or predict how
landscape changes might affect focal species (e.g. Graham 2001) if
they did not explicitly aim to design or evaluate linkages. Finally, for
each study that met our criteria for inclusion, we evaluated the follow-
ing methodological choices: type of habitat data, choice of grain (cell
size) and study extent, determination of cost schemes and source
patches, consideration of effects of adjacent habitat, exploration of
different resistance values, sensitivity analysis for other modelling
choices and conversion of a ‘path’ to a ‘corridor’.

BIGHORN SHEEP CASE STUDY

To test the sensitivity of LCP model outputs to input data, we com-
pared two LCP models published for bighorn sheep populations in
the Mojave Desert of California (Epps et al. 2007; Penrod et al.
2008), and two additional LCP models based on modifications of
those published models. We chose two populations, San Gorgonio
and Cushenbury, that exhibit clear evidence of connectivity in the
recent past (Epps et al. 2010).

The ‘Expert’ model (Penrod ez al. 2008) was based on a linkage
design for nearby Joshua Tree National Park. The Expert model esti-
mated resistance values using expert opinion and included dense
woody vegetation as determined from the California Wildlife Habitat
Relationship vegetation type (Mayer & Laudenslayer 1988). Areas of
flat topography, urban areas and areas with high road density were
all defined as highly resistant (up to 10 times more than the best habi-
tat). The final combined model was calculated as:

CostgxperT = topography x 0-4 + habitat x 0-4 4+ road density x 0-2
where topography, habitat and road density were assigned resis-

tances between 1 and 10, as specified by Penrod ez al. (2008, pp.
7-10).
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The ‘Optimized” model (Epps et al. 2007; Appendix S1 Supporting
information) considered only topography and optimized resistance
values using observed gene flow among populations over the entire
study area, including those in our case study:

CostoprimizED = topography

where areas with >15% slope and <15% slope were assigned
resistances of 1 and 10 respectively.

Epps et al. (2007) recognized that their model was optimized for
the southern California population as a whole, and would not
account for locally specific habitat variables, such as the large amount
of wooded habitat in the vicinity of the San Gorgonio and Cushen-
bury populations. Bighorn sheep typically avoid wooded habitat, pre-
sumably because of higher predation risk (e.g. DeCesare & Pletscher
2006). Therefore, we developed a third model (‘Optimized Local’)
that added high resistance for any urban area (10 times higher) or
wooded area (10 times higher) and calculated the final model as:

CostopriMizED LocaL = topography x 0-33 + wooded habitat
% 0-33 + urban area x 0-33

where areas with >15% and <15% slopes were assigned resis-
tances of 1 and 10, respectively, wooded habitat was assigned a
cost of 10, and urban habitat was assigned a cost of 10. Non-
wooded and non-urban areas were assigned a cost of 1.

Finally, to simulate the common situation where little is known
about dispersal, we constructed a fourth model (‘Incomplete’) that
was biologically relevant but omitted several important factors:

CostincompLeTE = wooded habitat

where areas with and without tree cover were assigned a cost of
10 and 1 respectively.

Allinput grids were re-sampled to 100 m resolution before combin-
ing into final cost grids. We calculated a single LCP for each model
using Pathmatrix (Ray 2005). We used ArcMap and Corridor
Designer (http://www.corridordesign.org/) to generate ‘least-cost
corridors’ (Beier, Majka & Newell 2009; Fig. 1) representing the
lowest 10% of possible least-cost paths for each model and estimated
the area of overlap of those least-cost corridors.

Results

LITERATURE REVIEW

Twenty-four studies met our criteria for review. Each of the 24
used remotely-sensed land cover or habitat type as a proxy for
habitat suitability and movement of focal species (Table 1).
Study extent ranged from 10 to 4 000 000 km?; and study
grain (cell size) varied from 1 to 1 km?> but most commonly
corresponded with the grain of freely available Landsat imag-
ery (900 m?; see Table S1 in Supporting information for a
complete summary of reviewed studies’ methodological
choices). Two studies distinguished only two types of habitat
while all others included at least three habitat categories
(Table 1). None of the 24 studies directly considered more
organism-centric measures of microhabitat suitability, includ-
ing those identified by authors as affecting animal habitat selec-
tion/movement, such as percentage habitat cover or
distribution of food (Binzenhofer et al. 2005), presence of
nutrient sources such as salt licks (Beazley et al. 2005),
denning/nesting habitats (Singleton, Gaines & Lehmkuhl
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2004), prey availability (Rabinowitz & Zeller 2010) or cover or
escape terrain for predator avoidance (Wang et al. 2008).
While some studies stated that habitat types serve as reliable
proxies for predator presence and/or abundance of preferred
foods (e.g. Driezen et al. 2007; Shen et al. 2008), no studies val-
idated this assumption or included habitat distribution models
of either predator or prey species.

Fourteen of the 24 studies evaluated in our review based
their LCP analysis cost schemes (Fig. 1) on expert opinion,
published literature, or both, although explanations of cost
surface derivation were often lacking in sufficient detail to rep-
licate analyses (Table 1). Of those, only three attempted to sys-
tematically and objectively translate expert opinion into cost
schemes [e.g. using analytic hierarchy process or similar
approaches (Banaikashani 1989; see Table SI Supporting
information)]. Six studies used telemetry or trapping (presence)
data to designate costs. Three studies used relative gene flow,
or combined gene flow and telemetry data, and two studies
assigned resistance values using behavioural data from focal
species. Across the surveyed studies, source habitat patches
were variably defined as known population/individual loca-
tions’ (10 studies), habitat deemed most ‘suitable’ by size, habi-
tat type, or both (nine studies), or ‘key conservation areas’ (one
study). Four studies did not define their source patches
(Table 1). Eight studies included some effect of surrounding
habitat in their cost designation (Table 1). Six studies partially
based pixel cost on distance to particular habitat types or
human activities. Kindall & Van Manen (2005) included
forest/agriculture edge density in their cost measures while
Wikramanayake et al. (2004) considered all areas within 1 km
of agriculture or population centres to be ‘poor habitat’,
regardless of habitat type.

Only four studies (17%) quantitatively assessed sensitivity
of model-selected paths to different cost schemes for all vari-
ables, and these four consistently found their model outputs to
be highly sensitive to input decisions (Table 1). Larkin ez al.
(2004) found overlap of only 0-51% among paths generated
using different cost schemes. Stevens et al. (2006) and Epps
et al. (2007) used multiple measures of gene flow to test LCP
models and discovered that models were highly sensitive to dif-
ferent resistance values. Driezen et al. (2007) showed that the
measurement of a species’ ability to find low-cost sites depends
heavily on the cost scheme used. Three other studies conducted
partial sensitivity analysis: Schadt ez al. (2002) found that
changing resistance values of the matrix led to significantly
different LCPs while Shen ez al. (2008) discovered high model
sensitivity to costs of bamboo and land cover. Kautz et al.
(2006) did not detect model sensitivity to costs of roads and
water. Only nine of the 24 studies attempted some form of
model validation in the published results (Table 1). Four stud-
ies examined relative support for cost schemes based on gene
flow. Four studies used presence data (telemetry or trapping)
to validate their models, while one used presence and absence
data (Beazley et al. 2005).

Only 10 of the 24 studies we evaluated attempted to move
beyond a single-pixel wide path to consider more biologically
relevant (Majka, Jenness & Beier 2007) least-cost corridors
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Fig. 2. A comparison of four least-cost path models between two bighorn sheep populations in southern California highlights the sensitivity of
results to model inputs. Cost surfaces used to produce the four paths incorporate the following landscape characteristics: topography alone (Opti-
mized model); wooded habitat alone (Incomplete model); topography, habitat and road density (Expert model); or topography, wooded habitat
and urban areas (Optimized Local model). Total least-cost path length overlapped less than 2%; least-cost corridors based on the lowest 10% of

the resistance surface overlapped from 0 to 44%.

(LCC; see Fig. 1) either by including minimum acceptable
widths, buffering paths or selecting a percentage of least-cost
cells (Table 1). Two studies included a minimum acceptable
width cut-off. Kautz et al. (2006) found that one-pixel wide
paths can go through extremely unsuitable habitat, and there-
fore buffered LCPs and rejected paths that passed through
poor-quality habitat types. Four additional studies buffered
their LCPs to make them wider. Three studies took a percent-
age of lowest grid cell values to make a least-cost corridor.
However, empirical justifications for most of these analytical
choices, such as buffer width, were not presented when defining
LCCs.

CASE STUDY: LCP ANALYSIS OF BIGHORN SHEEP

The four LCP models compared in our analysis of two popula-
tions of desert bighorn sheep produced LCPs that varied
widely in location and length (Fig. 2). Along-path distances
for the four paths were 34-6 km (Expert), 21:6 km (Optimized),
317 km (Optimized Local) and 285 km (Incomplete); those

paths overlapped <2% of total length (Fig. 2). Least-cost cor-
ridors overlapped from 0 to 44% (average 13%:; Table 2).

Discussion

LITERATURE REVIEW

Although LCP modelling has been touted as combining
detailed geographical information with animal behaviour to
move beyond structural towards functional connectivity

Table 2. Percentage overlap of least-cost corridors based on four
connectivity models between two bighorn sheep populations

Incomplete Expert Optimized
Model (%) (%) (%)
Expert 0 - -
Optimized 5 44 -
Optimized Local 30 0 0
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analysis (Adriaensen et al. 2003; Theobald 2006), our review
suggests current LCP model implementation often ignores fac-
tors that affect how animals utilize landscapes. Nearly, all
recent LCP analysis-based studies employed coarse-grain envi-
ronmental data layers to determine habitat connectivity, an
approach that is often biased by researcher-perceived struc-
tural connectivity and runs the risk of missing important bio-
logical aspects of species’ connectivity (Mortelliti & Boitani
2008). For instance, although scale of analysis has been shown
to greatly impact strength of detected relationships, study grain
was typically dictated by freely available remotely sensed data
(see Table S1 Supporting information) rather than species per-
ceptions of landscape features (Cushman & Lewis 2010; see
Appendix S2 in Supporting information for recommendations
on improving application of LCP analysis).

Overall, the strength of the correlation between remotely-
sensed habitat layers and species’ movement is relatively
unknown and poorly validated (Chetkiewicz, St. Clair & Boyce
2006; Beier, Majka & Spencer 2008). Our analysis in no way
rejects the utility of coarse proxy data, especially given the
need to model movement over large landscapes, but illus-
trates the need to explore effects of scale, explicitly justify
choice of scale, and conduct model sensitivity and validation
(see Appendix S2 Supporting information). In many cases,
remotely-sensed proxies may provide adequate coverage at
limited cost, and may prove to be efficient for conservation
planning in the face of limited time and funding [e.g. fishers
(Martes pennanti): Caroll, Zielinski & Noss 1999; large car-
nivores: Schadt et al. 2002; bighorn sheep: Epps et al. 2007].
However, animals frequently select high-quality microhabi-
tats in areas that appear unsuitable at a macro-level (Mortel-
liti & Boitani 2008). Animals often select against low quality
habitat within largely suitable areas as well, and accounting
for the presence of low quality habitat within otherwise
high-quality habitat patches may significantly improve
model predictions (e.g. Wang et al. 2008).

We suggest that those using LCP analysis should strive to
evaluate the predictive power of coarse-grain proxies for focal
species movement over a portion of the study range before
constructing analytical models (see Appendix S2 Supporting
information). For species and linkages above the scale of rapid
dispersal movements, using resource selection function models
(RSF) with LCP analysis appears to be a step forward from
more arbitrary methods (e.g. Chetkiewicz & Boyce 2009).
Hypothesis testing and model selection that compares critical
scales of habitat use or movement for taxa will help to build a
stronger foundation for linkage-design methodology. Better
understanding of a species’ perception of its environment will
help modellers to identify appropriate scales of analysis and,
thus, provide more reliable and accurate model outputs for
practitioners (With, Gardner & Turner 1997; Uezu, Metzger &
Vielliard 2005; Cushman & Lewis 2010).

LCP ANALYSIS OF BIGHORN SHEEP

Our LCP analysis of bighorn sheep in California demonstrated
many of the challenges and uncertainties we highlight above.
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The four models used to identify LPCs for desert bighorn
sheep were derived at different scales (e.g. metapopulation vs.
population level) and yielded very different paths (Fig. 2). Use
of 10% least-cost corridors for each scheme did little to reduce
differences between the models (Fig. 2, Table 2). For instance,
the corridor suggested by the Optimized model (developed
over a much larger geographic area) did not overlap with the
Optimized Local model, which included wooded and urban
habitat (Fig. 2). The Optimized model only partly overlapped
the Expert model corridor, which was based only on coarse
habitat maps and expert opinion (Fig. 2). This case study
makes clear that reasonable alternative models can lead to
strikingly different conclusions regarding prioritization of land
acquisition, easements or other management actions for link-
age conservation.

HOW CAN WE IMPROVE LCP MODELLING?

Organisms respond differently to landscape elements depend-
ing on their perceptive range and characteristics of surround-
ing areas (Coulon et al. 2008; Richard & Armstrong 2010).
Species’ movements in one habitat type will often be affected
by nearby disturbances such as man-made structures and light
pollution (Beier 1995; Coulon ef al. 2008), width of habitats
(Laurance & Laurance 1999; Hilty & Merenlender 2004), traits
of and distance to adjacent habitat (Binzenhofer et al. 2005;
Anderson, Rowcliffe & Cowlishaw 2007; Richard & Arm-
strong 2010), and level of perceived cover and safety (Rizkalla
& Swihart 2007; Beier, Majka & Spencer 2008). However, only
2 of 24 studies in this review were able to validate their model
with behavioural data (Stevens et al. 2006; Driezen et al.
2007). Given the sensitivity of least-cost models to incorrect
resistance specification, the best way to evaluate model perfor-
mance would be comparison of predictions based on multiple
methods and independent data sets (e.g. radiotelemetry move-
ment data and landscape genetics: Cushman & Lewis 2010).
Testing the role of individual behaviour, preference and per-
ceptual range in habitat selection or movement decisions (e.g.
radio or global positioning system tracking: Beier 1995; Cush-
man, Chase & Griffin 2010; Driezen er al. 2007; Richard &
Armstrong 2010; experimental data: Stevens et a/. 2006; Had-
ley & Betts 2010) and using model selection to better integrate
these behavioural with ecological and landscape data will
greatly improve connectivity design (see Appendix S2 Support-
ing information).

Determining the relationship between movement or gene
flow and effective distance under a given cost scheme, and thus
the maximum effective distance at which a corridor is useable
by a given species, may be the most biologically important and
widely ignored aspect of LCP and other connectivity analyses.
Even the best-supported paths will not function as planned if
their lengths exceed the movement capability of a focal species.
For example, gene flow estimates (Epps et al. 2005, 2007) sug-
gest that in our bighorn sheep example, only the corridors pro-
duced by the Optimized and Incomplete models would serve a
connective function (21:6 and 28-5 km along-path lengths
respectively) while the Expert and Optimized Local models
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would result in corridors too long to promote connectivity (35
and 31-7 km respectively). Yet, only two studies reviewed here
(Schadt ez al. 2002; Singleton, Gaines & Lehmkuhl 2004) con-
sidered cut-offs for maximum useable effective distance (the
greatest effective distance a species can travel between patches)
based on knowledge of species dispersal. One study used gene
flow estimates to determine maximum effective distance (Epps
et al. 2007; Appendix S1 Supporting information). We recom-
mend that wherever possible, defensible estimates of maximum
useable effective distance should be developed by analysing
genetic or movement data as functions of effective distance (see
Appendix S2 Supporting information). An alternative
approach is to define resistance more explicitly in terms of bio-
logical parameters, such as mortality risk or energy expenditure
based on demographic, diet or metabolic data, and use move-
ment models based on those parameters to explore modelling
choices (see Chetkiewicz, St. Clair & Boyce 2006). In general, a
more explicit discussion of resistance in each study would
improve linkage design and interpretation. For instance, does
the resistance value used in an LCP analysis reflect the physical
costs of moving through a cell, its mortality risk, or habitat
value? Each definition may be defensible depending on the
goals and scale of analysis, but each will have different implica-
tions, especially when considering maximum path lengths.

Individual animals rarely use a single optimum route, and
single-pixel-wide LCPs are of limited biological value (Majka,
Jenness & Beier 2007; McRae & Beier 2007; McRae et al.
2008; Pinto & Keitt 2009). Although alternative paths with
comparable costs may exist on a landscape, studies regularly
failed to consider larger swaths of low-cost grid cells (i.e. a
least-cost corridor). Recently, circuit theory has been used to
incorporate multiple pathways and patch characteristics when
evaluating connectivity designs (McRae & Beier 2007; McRae
et al. 2008). This method allows modelling alternative link-
ages, ranking potential corridors and reassigning values as
pathways are removed (Fig. 1; see Appendix S2 Supporting
information), but it is equally reliant on a biologically realistic
resistance surface. Alternatively, researchers can select lowest
percentiles of cost surfaces (Beier, Majka & Newell 2009; this
study Fig. 2) or combine multiple low-cost routes in an LCP
analysis to delineate ‘probable movement zones’ (Rayfield,
Fortin & Fall 2010; see Appendix S2). While these alternatives
may increase robustness to uncertainty in model parameters,
selection of a percentile cut-off (e.g. lowest 10%) or combining
a number of low-cost routes is still a subjective decision with
unclear biological justification. Some of the techniques we
describe above for optimizing or validating models of effective
distance should also be applied to this problem.

Few studies examined in this review conducted sensitivity
or uncertainty analyses, which are essential to the landscape
planning process and should be a requirement of any LCP or
related connectivity model (Beier, Majka & Newell 2009; Ray-
field, Fortin & Fall 2010). Studies that conducted sensitivity
analyses (Table 1) found that different cost schemes (both
choice of factors incorporated in the resistance surface, as well
as the weights and resistance values assigned) produced very
different LCPs, although Beier, Majka & Newell (2009) found

their models robust to uncertainty. Indeed, Beier, Majka &
Newell (2009) methods for evaluating uncertainty should
prove useful where data for optimizing cost schemes are sparse
(see Appendix S2 Supporting information). Sensitivity to the
choice of habitat factors, factor weights, resistance values,
grain and definitions of least-cost corridors should all be
considered (see Appendix S2 Supporting information). Our
LCP analysis for desert bighorn sheep highlights the disparity
of LCPs based on expert opinion, gene flow optimization
models, and other reasonable combinations, as well as the
point that models optimized over large areas may still need
local modifications. Researchers should strive for replicability,
objectivity and organism-centred methodology to improve
efficacy of LCP and other models in connectivity conservation
planning (see Appendix S2 Supporting information). To avoid
accusations of ‘black-box’ modelling (e.g. Shrader-Frechette
2004), studies must clearly address details of model construc-
tion, assumptions and uncertainties. Through these improve-
ments, connectivity science will more ably inform landscape
planning.

Least-cost path analysis and other connectivity conservation
approaches should be viewed as one piece of a larger landscape
conservation puzzle. Least-cost modelling cannot fully incor-
porate quality, size or importance of individual source patches,
thus, it is best applied as part of a wider conservation strategy
for focal species. A current debate questions whether connec-
tivity conservation strategies like LCP analysis bear consider-
ation in conservation planning, or simply detract focus from
more certain measures to protect high-quality breeding habi-
tats (Doerr, Barrett & Doerr 2011; Hodgson et al. 2011). This
debate promotes a dichotomy between high-quality breeding
habitat and habitats designated for connectivity that may rep-
resent an overly simplistic view of connective habitats. Regard-
less, recent summaries (e.g. McLachlan, Hellmann & Schwartz
2007; Hodgson et al. 2011) emphasise that conservation of
diverse and connected habitat mosaics is likely to be the safest
approach for sustaining species on our rapidly changing
planet.
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