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Conflict between livestock producers and wild predators
has been an intractable problem for millennia, with high
stakes for both people and wildlife (Linnell, Odden, &
Mertens, 2012). A globally-expanding human footprint
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Abstract

Conflict between livestock producers and wild predators is a central driver of
large predator declines and simultaneously may imperil the lives and liveli-
hoods of livestock producers. There is a growing recognition that livestock-
predator conflict is a socio-ecological problem, but few case studies exist to
guide conflict research and management from this point of view. Here we pre-
sent a case study of coyote-sheep predation on a California ranch in which we
combine methods from the rapidly growing field of predation risk modeling
with participatory mapping of perceptions of predation risk. Our findings
reveal an important selection bias that may occur when producer perceptions
and decisions are excluded from ecological methods of studying conflict. We
further demonstrate how producer inputs, participatory mapping, and ecologi-
cal modeling of conflict can inform one another in understanding patterns,
drivers, and management opportunities for livestock—predator conflict. Finally,
we make recommendations for improving the interoperability of ecological
and social data about predation risk. Collectively our methods offer a socio-
ecological approach that fills important research gaps and offers guidance to
future research.

KEYWORDS

carnivore conservation, grazing management, human dimensions of wildlife, human-wildlife
coexistence, livestock—predator conflict, nonlethal control, participatory mapping, predation risk
model, predator—prey, socio-ecological systems

ensures that predators and livestock continue to encoun-
ter one another on landscapes increasingly defined
by scarcity, further intensifying conflicts (Drouilly,
Nattrass, & O'Riain, 2018; Kuijper et al., 2016; Ogutu
et al., 2016; Wolf & Ripple, 2017). For livestock pro-
ducers, the presence of predators on a landscape often
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poses a material threat to lives and livelihoods, leading to
preemptive or retaliatory killing of predators (Graham,
Beckerman, & Thirgood, 2005; Muhly & Musiani, 2009;
Treves & Karanth, 2003; Widman & Elofsson, 2018).
These killings hasten the decline of large predators
throughout the world and, combined with other drivers
of loss, threaten their continued existence (Ripple et al.,
2014). Large predator declines have far-reaching conse-
quences, as their disappearance can trigger drastic eco-
system alterations and collapse (Estes et al., 2011) or
engender social conflict (Brashares et al., 2014). While
research has traditionally considered livestock-predator
conflict from within disciplinary boundaries, there is a
growing recognition that it is fundamentally a socio-
ecological phenomenon, in which human beliefs and
practices are reciprocally intertwined with ecological pro-
cesses (Manfredo, 2008; Woodroffe, Thirgood, &
Rabinowitz, 2005). Important theoretical groundwork
has been laid, but there remains an important need for
case studies that test socio-ecological methods for under-
standing livestock—predator conflict (Dickman, 2010).
The risks of livestock predation in space—both actual
and perceived—are critical components of livestock-
predator conflict with important potential to link its social
and ecological dimensions. There exists a rich body of lit-
erature on the ecology of predation risk developed in nat-
ural systems (Gaynor, Brown, Middleton, Power, &
Brashares, 2019; Hebblewhite, Merrill, & McDonald,
2005; Laundre, 2010; Sih, 1984). Ecologists have demon-
strated that heterogeneous environments produce differ-
ential risks of predation, and that habitat characteristics,
topography, ambush points, and other such landscape fea-
tures are essential to the spatial patterning of predation
risk (Brown, 1999; Gaynor et al., 2019; Trainor, Schmitz,
Ivan, & Shenk, 2014). More recent research has applied
these ecological theories to livestock predation (Kluever,
Breck, Howery, Krausman, & Bergman, 2008; Kluever,
Howery, Breck, & Bergman, 2009; Laporte, Muhly, Pitt,
Alexander, & Musiani, 2010; Shrader, Brown, Kerley, &
Kotler, 2008; Wilkinson et al., in press). In particular, the
rapidly growing field of predation risk modeling uses sta-
tistical approaches from wildlife ecology to generate pre-
dictive, spatially explicit maps of livestock predation risk
as it varies over a landscape (Miller, 2015; Treves &
Naughton-Treves, 2004). Predation risk modeling is an
especially suitable component of a socio-ecological case
study as it is designed to be easily interpretable and
actionable by producers and conservation practitioners,
and its outputs are readily commensurable with quantita-
tive social data (Miller, 2015; Miller, Jhala, & Schmitz,
2016; Suryawanshi, Bhatnagar, Redpath, & Mishra, 2013).
To understand the social dimensions of risk, it is criti-
cal to expand research on the risk perceptions of livestock

producers (Dickman, 2010; Kansky & Knight, 2014;
Marchini & Macdonald, 2012; Suryawanshi et al., 2013;
Treves & Bruskotter, 2014; Treves, Wallace, Naughton-
Treves, & Morales, 2006). The conservation and recovery
of large predators throughout the world will depend as
much on perceptions and tolerance of them as the mate-
rial risks they pose (Behr, Ozgul, & Cozzi, 2017; Treves &
Karanth, 2003). Here we define “risk perceptions” as the
set of beliefs held by a producer regarding the spatial var-
iation in riskiness of the production landscape in terms
of predation. Studies may rely entirely on perceptions to
understand spatial patterns of livestock predation risk
when other data is unavailable (Broekhuis, Cushman, &
Elliot, 2017), and participatory maps of human-wildlife
conflict have formed an increasingly important part of
research and management toolkits for mitigating conflict
(Kahler, Roloff, & Gore, 2012; Treves et al., 2006). These
risk perceptions may (Miller et al., 2016) or may not
(Suryawanshi et al., 2013) align well with empirical
observations of predation likelihood, such as those pro-
duced by the predation risk models described above.
Regardless of their accuracy, perceptions of risk are
among the most important drivers of livestock husbandry
decisions, including retaliatory actions against predators
(Marchini & Macdonald, 2012; Moreira-Arce, Ugarte,
Zorondo-Rodriguez, & Simonetti, 2018; Scasta, Stam, &
Windh, 2017). Risk perceptions thus form critical compo-
nents of producer decisions that actively shape the spatial
pattern of predation risk by delimiting where livestock,
and thus predation, may occur.

Predation risk is thus a function of both ecological
characteristics and human decisions and the interactions
between the two, meaning that an accurate understand-
ing of livestock predation risk patterns must be gained
through a socio-ecological lens. Ecological studies of live-
stock predation are still in need, and have important
potential to reveal blind spots for livestock producers and
managers regarding the circumstances and drivers of
conflict (Wilkinson et al., in press). However, strictly eco-
logical approaches may suffer from selection bias, in
which available data do not represent the system, if they
do not explicitly incorporate producer decisions regarding
the distribution of livestock, and thus livestock predation.
This is likely a widespread yet underappreciated method-
ological issue, as we have found no other studies describ-
ing it in the literature. Simultaneously, better approaches
for quantifying risk perceptions and making them consis-
tent with ecological models is a critical need for socio-
ecological understandings of conflict (Dickman, 2010).
We have also found no studies that have explicitly tested
methods for improving interoperability between social
and ecological data on predation risk. These notable
research gaps stress the need for research that approaches
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livestock-predator conflict from a comprehensive, socio-
ecological point of view.

Here we present a case study on predation of domestic
sheep (Ovis aries) by coyote (Canis latrans) in California
that demonstrates the complementarity of social and eco-
logical approaches to studying livestock-predator conflict
and the cost of omitting either from consideration. First,
we constructed fine-scale predation risk models using a
unique 10-year dataset of livestock predation locations to
examine environmental correlates of predation and pro-
duce a predictive map of predation risk. Second, we con-
ducted a participatory mapping exercise with livestock
producers to quantify and map producer risk perceptions.
Third, we administered a questionnaire to the same pro-
ducers to quantify perceived environmental drivers of pre-
dation risk. Finally, we compared the maps produced by
each of these exercises to reveal the concordances and dis-
crepancies between them, and, more importantly, to show
the critical importance of socio-ecological approaches like
this one to future conflict research.

2 | METHODS

2.1 | Study area

We focused our research on coyote-sheep conflict in Cali-
fornia, United States. As a pastured animal, sheep pro-
vide a particularly strong example of the role of
husbandry decisions in determining predation risk. While
cattle are too large to be prey for many local predator spe-
cies, 28% of adult sheep losses and 36% of lamb losses in
the United States in 2014-2015 were attributed to preda-
tors, and primarily to coyotes (USDA, 2015). California is
the second-largest sheep producing state in the United
States, and predation risk is a growing concern locally.
After centuries of persecutions and extirpations
(Reynolds & Tapper, 1996), a series of economic, legal,
and cultural changes in California have led to large pred-
ator recoveries in the past few decades, heightening con-
cerns about conflict (Berger, 2006; Bergstrom, 2017;
Scasta et al., 2017). Coyotes have recovered more rapidly
than other large predators, and their generalist diet and
adaptability as predators have enabled the species to
flourish in human-dominated spaces. These characteris-
tics of predator, prey, and site make coyote-sheep conflict
in California an ideal case study site for examining con-
flict in the 21st century.

We conducted our study at the University of Cali-
fornia's 5,358 acre Hopland Research and Extension Cen-
ter (HREC), located in the Mayacamas Mountains in
Mendocino County, California. HREC lies between rural
agricultural production and wildlands, bounded by
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remote Bureau of Land Management lands to the north
and vineyards and suburban residences to the south. A
mosaic of representative California Coast Range habitat
types occurs on the property, including grasslands, oak
woodlands, and chaparral (Figure 1).

Both coyotes and sheep occur at this site. Before the
study site was donated to the University of California in
1951, HREC was a sheep ranch, and the university has
maintained sheep on the site since its acquisition. During
our study, 600 sheep on the site routinely grazed 34 of
HREC's 60 total pastures. Pastures at HREC range in size
from 3 to 263 ha, and are enclosed by fences of varying
types, heights, and ages. Though other large predators
including black bears (Ursus americanus), mountain lions
(Puma concolor), and bobcats (Lynx rufus) occur on the site,
coyotes account for the vast majority of all livestock preda-
tion, with estimates up to 98% (Blejwas, Sacks, Jaeger, &
McCullough, 2002; Conner, Jaeger, Weller, & McCullough,
1998; Jaeger, 2004; Neale, Sacks, Jaeger, & McCullough,
1998; Scrivner, Howard, Murphy, & Hays, 1985). We
reviewed logs recorded by livestock producers covering the
past 50 years of husbandry and found no confirmed preda-
tions by any species except coyote. Furthermore, neither
staff nor agents of Wildlife Services contracted by HREC
consider any other species as threats to the sheep at this site.

2.2 | Mapping observed and perceived
predation risk

To form a socio-ecological understanding of predation risk
at the study site, we employed multiple modes of analysis,
using maps as a commensurable format for quantifying
and comparing these spatially explicit approaches. First,
we built predation risk models following the principles of
resource selection functions to identify correlates of preda-
tion sites and make predictions about the spatial distribu-
tion of observed risk. Second, we developed participatory
risk perception maps drawn by producers that represented
their risk perceptions across the site's extent. Finally, we
administered a questionnaire to examine how producers
linked environmental and husbandry features to their risk
perceptions, and we produced a map based on the
answers provided in this exercise.

2.3 | Predation risk models of
observed risk
Data collection

231 |

We built predation risk models using livestock predation
data collected by livestock producers since 2008. At HREC,
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when producers suspected a sheep predation has occurred,
they filled out a data sheet detailing the location and time
of the kill, the predator suspected, and whether enough
evidence was available to confirm the species of predator.
Producers marked carcass locations on a topographic map
with 10 m contour intervals and demonstrated excellent
knowledge of the geography of the site. When we vali-
dated 10 test sites by returning to them with a GPS, we
found mapped carcasses to be within the GPS error (10 m)
of their reported location.

In this analysis, we included only livestock predations
for which producers felt there was sufficient evidence to
confirm the predator species. Additionally, we excluded
events in which producers did not provide a spatial loca-
tion or in which confidence in that location was low
(e.g., signs of a carcass being dragged after the kill). This
filtering yielded n = 91 predation events.

We created a database of 40 variables describing the
environment at and around the site of each predation
event (Supporting Information Table S1). We included

Experimental plot

FIGURE 1 The study took
place at the Hopland Research
and Extension Center (HREC),
in northern California. This
figure illustrates pasture
boundaries, grazing areas, and
major habitat types within the
study site
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variables that we hypothesized to affect the spatial pattern
of predation risk based on existing research on coyote-
sheep predation and discussions with producers at the
study site. We included human presence and husbandry,
topography, habitat, and pasture characteristics. We
imported all data to ArcGIS as either 10 m rasters or
pasture-level vectors (Supporting Information Table S2;
ESRI, 2018). This resolution reflected the approximate
error expected in the location of predation events by staff,
and the use of data at this resolution allowed us to explore
fine-scale variation in patterns of attack likelihood.

2.3.2 | Statistical modeling

Following methods from other predation risk modeling
studies (Miller, 2015; Treves, Martin, Wydeven, &
Wiedenhoeft, 2011) we built predation risk models based
on the approach of resource selection functions (Boyce,
Vernier, & Nielsen, 2002). Resource selection functions
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typically predict animal habitat use based on a logistic
regression comparing “use” locations drawn from obser-
vations or telemetry to “nonuse” locations, where ani-
mals could have but did not occur. In our case, “use”
locations were the 91 sites of sheep predation by coyotes,
and “nonuse” locations were 600 randomly generated
points (using the Create Random Points tool in ArcGIS)
occurring within pastures where sheep were grazed.

We modeled attack likelihood from the use and non-
use points based on the 40 variables collected at each site
using logistic regression in the program R (R Core Team,
2018). We used the “glmer” function in the Ime4 package
and included pastures as a random effect in our analysis
to account for differences in pasture residence times. We
used a hypothesis-driven approach to winnow down our
large number of variables. We grouped variables themati-
cally into categories of human presence and husbandry,
topography, habitat, and pasture characteristics. We used
model selection in a maximum likelihood framework to

Ajoumal of the Society for Conservation Biology

determine the most influential variables within each
group (Burnham & Anderson, 2002). We maintained all
variables that were included in models within 2 delta
AIC of the top model. We then combined these variables
into a single model, and again used a maximum likeli-
hood model selection approach to rank models. When we
excluded nonconverging models, a single top model
remained, which was also the most parsimonious model.
We calculated a variance inflation factor for all retained
variables and confirmed that multicollinearity was not
present in retained variables.

We tested the robustness of this model by boo-
tstrapping a calculation of the area under the receiver
operating characteristics curve (AUC) (Pearce & Ferrier,
2000). We split the data, with 80% as training and 20% as
testing data, and calculated the AUC 100 times using the
“performance” function in the ROCR package in R, gen-
erating a range of values, a mean, and a standard devia-
tion for assessing goodness of model fit.

TABLE 1 Spatial variables for three models of livestock predation risk
Variable Predation risk model Participatory map Questionnaire score (1-5)
Habitat
Chaparral area within 120 m 0.40 3.50
Proportion of chaparral in a pasture 4.00
Vernal pool area within 120 m 0.26 1.13
Woodland area within 120 m 2.63
Grassland area within 120 m -0.23 2.63
Proportion of grassland in a pasture 4.00
NDVI —0.48 2.50
Distance to water (squared) -0.33 2.00
Distance to habitat patch edge 0.27 1.38
Topography
Ruggedness (500 m window) —0.95 3.63
Ruggedness (30 m window) 0.74 0.79 3.71
Pasture characteristics
Pasture size 2.47 3.67
Perimeter to area ratio of pasture 2.38
Human presence and husbandry
Height of nearest fence —0.54 3.38
Condition of nearest fence 3.75
Distance to bedding sites 3.38
Distance to site boundary (squared) —0.35 1.13
Average number of guardian dogs —0.58 4.75
Distance to adjacent BLM property 3.13

Note: Values for the predation risk model (logistic regression) and participatory map (linear regression) show estimates from the top models of these analyses.
Values for the questionnaire score show the mean of respondent answers on a 1-5 scale regarding the importance of each variable to livestock predation from

not important (1) to critically important (5). Blank boxes indicate that variables were not retained in model selection.
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Using the “predict” function in the car package in R,
we mapped the results of this model across the extent of
the study site. We reclassified the resulting 0-1 risk prob-
abilities using two different schemes: an equal interval
classification with low (0-0.33), medium (0.33-0.67) and
high (0.67-1.0) values and a geometric interval with low
(0-0.11), medium (0.11-0.33), and high (0.33-1.0) values.
We initially chose an equal interval classification to
match the format in which we asked livestock producers
to share their perceptions of risk (described below). How-
ever, our initial results suggested that producers might
have a low tolerance for risk, making a geometric interval
that allows for more high-risk areas a better model
analog.

Our discussions with producers led us to hypothesize
that risk perceptions might be driven by the riskiest sites
in a given pasture. Thus, we also created a coarser model
at the pasture level in which risk across an entire pasture
was defined by the riskiest 10 m cell within it.

2.4 | Participatory maps of risk
perceptions
We invited all 10 available current and former livestock

producers at the study site to map their risk perceptions
across the study site, in both grazed and ungrazed

el , o)

Predation sites

|:| Pasture boundaries
W Grazed pastures
Predation Risk Model

Equal Interval

.~ | 000-033
A [ ] 0.33-067

0.67 - 1.00

pastures. We recognize that this sample size is perhaps
not large enough to represent the full variation of per-
ceived risk across producers in the region. However, it
likely captures well the experience of producers making
management decisions at the study site and suitably dem-
onstrates our general approach. Of the producers invited
to participate, nine agreed and one declined. We first
conducted unstructured interviews with each producer.
These interviews informed the breadth of variables
included in our predation risk model (described above),
established rapport with the producers, and primed them
to think about how attack likelihood varies in space.

We presented each producer with a 150 cm X 75 cm
hardcopy map of the study site showing a high-resolution
aerial imagery base map, pasture boundaries, roads, and
other major identifying landmarks. We asked producers
to draw areas of high, medium, and low risk for sheep
with regard to coyote predation using red, yellow, and
green permanent markers respectively (Supporting Infor-
mation Figure S1). We clarified that these categories
should be proportional to one another, such that they
might be translated to a scale ranging from 1 to 3. We
allowed interviewees to include as much detail in their
maps (i.e., at any spatial resolution) as they felt necessary
to represent risk gradations across the landscape. We dig-
itized these hand-drawn perception maps in ArcGIS and
assigned each color a score of 1 (low risk), 2 (medium

FIGURE 2 Spatial variation in likelihood of coyote predation on sheep, as predicted by the top predation risk model, classified into
three categories using (a) an equal interval and (b) a geometric interval. While we asked producers to score risk according to an equal

interval classification, the geometric interval appears to better replicate low risk tolerances and high sensitivities in increases in risk
experienced by producers. Inset blowup maps, framed in blue, highlight areas of high predicted risk, according to the predation risk model
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risk), or 3 (high risk). We combined these individual
maps into a summary raster at 10 m resolution, with
each cell representing the mean risk score across all
interviewees.

We also identified environmental correlates for this
summary risk perception map. Using ArcGIS, we gener-
ated 2,000 random points at the study site, each with a
value (1, 2, or 3) drawn from the summary risk percep-
tion map. We conducted linear regression and model
selection with the 40 environmental variables described
above and in Supporting Information Table S1 to deter-
mine what environmental features were most strongly
associated with perceptions of predation risk.

2.5 | Questionnaire

To go beyond producer intuition reflected in participatory
maps and further explore the drivers of perceptions of
predation risk, we sent a follow-up questionnaire to all
producers we interviewed. We presented them with a list
of environmental and husbandry features that had been
mentioned in unstructured interviews or included in our

FIGURE 3
risk perception map, depicting
the spatial variation in
likelihood of coyote predation
on sheep, as perceived by
livestock producers. We took
mean scores of individual maps
in which we asked producers at
the study site to draw the risk of
livestock predation in equal
categories of low (1), medium
(2), and high (3) risk at the
study site

Summarized

Ajoumal of the Society for Conservation Biology

predation risk model. We asked them to rank on a 1-5
scale from not important (1) to critically important
(5) how influential each feature was in determining the
predation risk of a site. We calculated means of these
individual scores for each feature and used these means
as weights of their corresponding raster layers. We
summed these weighted rasters to produce a single 10 m
raster layer that represented a questionnaire-based spatial
model of perceived risk. As with our predation risk
model, we reclassified the range of values produced in
this exercise using both equal interval and geometric
interval classification schemes to compare their fit with
the participatory maps of risk perception.

2.6 | Comparing approaches

We classified data across these three approaches (preda-
tion risk modeling, participatory perception maps, and
questionnaire) into the same categories of low (1),
medium (2), and high (3) risk. This enabled us to directly
compare differences across these three models by sub-
tracting one model from another using the raster

: Predation sites
P E Pasture boundaries
’ % Grazed pastures
- Low perceived risk (1)
|:| Medium perceived risk (2) |

- High perceived risk (3)
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calculator in ArcGIS. This exercise produced 10 m raster
layers with values ranging from —2 to 2. A value of 0 indi-
cates agreement between models; negative values indi-
cate that perceptions show higher values of risk than the
compared model; positive values indicate that percep-
tions show lower values of risk than the compared
model.

3 | RESULTS

3.1 | Predation risk models
The top predation risk model retained ten variables
(Table 1 and Supporting Information Table S2). Our
bootstrapped AUC results ranged from 0.72 to 0.94, with
a mean value of 0.86 and a standard deviation of 0.04,
indicating a strong model fit (Pearce & Ferrier, 2000).
When we used this model to predict the spatial varia-
tion in predation likelihood across the study site, we
found that most of the site was scored as low risk
(Figure 2). When an equal interval classification was used,
96.0% of the site received a score of 1 (low risk), 3.8% of
the site received a score of 2 (medium risk), and only 0.2%
received a score of 3 (high risk). When a geometric inter-
val was used, there was a larger percentage of high (4.0%)
and medium (28.3%) scores on the site, but low risk areas
(67.7%) still dominated. Both of these maps identify a few

Predation sites

\:| Pasture boundaries

| % Grazed pastures
Questionnaire answers

| 10m resolution

| I Low risk

| 5 R

salient high-risk features, including steep-sided ravines
highlighted in the blowup maps in Figure 2.

3.2 | Participatory perception maps

In contrast with the results of the predation risk models
above, the summary risk perception map codes the large
majority of our study site as high risk (Figure 3). This
summary map scores 82.1% of the study site as high risk,
14.1% as medium risk, and 3.8% of the site as low risk.
Only 7 of the study site's 34 grazed pastures are coded as
predominantly high risk in this summary perception
map. Only one pasture that is not currently grazed is
coded as predominantly medium risk, and none of the
ungrazed pastures are coded as predominantly low risk
(Figure 3). Producers were largely in consensus with their
designations of perceived risk, with only a few areas of
disagreement occurring in some of the more frequently
grazed pastures.

Linear regression modeling of the summarized partic-
ipatory map produced a parsimonious model which
retained only four variables (Table 1). Pasture size was by
far the variable most strongly associated with high risk
perceptions. Pastures with more guard dogs and a higher
proportion of grassland were associated with lower risk
perceptions, while ruggedness within 30 m was associ-
ated with higher risk assignments.

Predation sites
D Pasture boundaries

3 W Grazed pastures
| Questionnaire answers
| Pasture level

| I Low risk

Medium risk

{ I High risk

2 Kilometers |

FIGURE 4 Spatial variation in likelihood of coyote predation on sheep, modeled based on factors that livestock producers associated
with risk. We used mean questionnaire scores regarding the importance of environmental variables in driving risk to weight spatial layers

and produce summary maps. (a) 10 m resolution map using a geometric interval to reclassify results. (b) Pasture-level map using a geometric

interval to reclassify results
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3.3 | Questionnaire

Mean questionnaire scores (Table 1) indicated that pro-
ducers roundly regarded the number of guard dogs in a
pasture as the most important factor in determining pre-
dation risk (mean score 4.8 out of 5). Producers also gave
high scores to ruggedness within a 30 m window (3.7)

mal of the Society for Conservation Biology

and 500 m window (3.6), as well as to the proportion of
chaparral (4.0) and grassland (4.0) in a pasture. The con-
dition (3.8) and height (3.4) of the nearest fence also
received high mean scores. While producers scored pas-
ture size highly (3.7), it did not rank at the top of vari-
ables in this questionnaire as it did in the linear
regression of the participatory map scores.

(a) Perception minus predation risk model (b) Perception minus maximum predation

risk model value per pasture

£

i
e

FIGURE 5 Differences in
spatial patterns of risk between
the summary perception map

and other analyses presented in

.

7

0 1 2 Kilometers

this study. Scores of 0 indicate

no difference. Scores of +2

indicate areas of high (c) Perception minus 10m

(d) Perception minus pasture level

. ) questionnaire scores
disagreement, where risk -

perceptions are high but

comparing maps show low risk.

questionnaire scores

Scores of —2 also indicate areas
of high disagreement, but they
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perceptions are low and
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As with the predation risk model results above, we
found stark differences in mapping the results of ques-
tionnaire scores at a 10 m resolution using an equal inter-
val compared with a geometric interval. The former
coded most of the study site as low or medium risk with
only small pockets of high risk, while the latter displayed
only a few areas of low risk among large areas of medium
and high risk (Figure 4). The questionnaire scores we
mapped at the pasture scale yielded larger areas of high
and low risk, with medium risk covering a smaller area
compared to the 10 m resolution map (Figure 4).

3.4 | Comparison of models and
perceptions

There were stark differences between the predation risk
models and the summary participatory risk map
(Figure 5). Even when we applied a geometric interval,
only 8.7% of our study site showed agreement
(a difference of 0) between these two maps (Figure 5a).
Across 57.0% of the study site, perceptions indicated high
risk where the predation risk model indicated low risk
(a difference of +2), and only 3.0% of the site featured
predation risk model scores that were higher than per-
ceptions (differences of —1 or —2; Figure 5a). When we
applied the highest predation risk model score to its
entire containing pasture, we found much higher areas of
agreement with perception maps (Figure 5b). Using the
predation risk model reclassified by geometric interval,
we found that areas with a difference of 0 cover the
majority of the study site (81.2%), while strong disagree-
ment (differences of —2 or +2) was comparatively rare
(3.2% and 0.9%, respectively).

Mapped questionnaire scores showed large areas of
agreement with the summary perception map (Figure 5).
When mapped at a 10 m resolution using a geometric
interval to reclassify results, we found 62.0% of our study
site had a difference of 0, and less than 1.0% showed
strong differences of —2 or +2 (Figure 5c). Questionnaire
scores mapped at the pasture level showed even larger
areas of agreement with perception maps, with 75.0% of
the study site having a difference of 0. Strong differences
of —2 or +2 were also rare (<1.0%; Figure 5d). Agreement
was most widespread in ungrazed pastures, while grazed
pastures had greater areas of difference, including the only
pasture with a majority of its area characterized as +2.

4 | DISCUSSION

This case study examines novel approaches by which to
combine ecologically-driven predation risk models and

producer risk perceptions. The similarities and differ-
ences between the multiple maps we produced demon-
strate the complexity of wunderstanding livestock
predation risk and the utility in applying socio-ecological
approaches to managing human-wildlife conflict. Our
results contribute several important findings, both in
terms of specific management takeaways for the study
site and broader guidance for future research and man-
agement of conflict from a socio-ecological perspective.
The strong contrast between predation risk models and
producer maps of risk perceptions highlights shortcom-
ings of relying solely on either approach, demonstrates
opportunities for applying these approaches in tandem,
and reveals an important but often overlooked case of
selection bias. The strong agreement between pasture-
level models and producer perceptions (Figure 5b,d)
offers a window into the scale at which producers con-
ceptualize risk and points to potential opportunities for
targeted management interventions at fine scales. Our
different methods highlight diverse drivers of risk, which
suggests that ecologically-driven models and producer
perceptions complement one another. Finally, our exami-
nation of different risk classification systems for our
models offers further insight into the risk perceptions of
producers and provides guidance for connecting social
and ecological data on predation risk.

The most striking contrast among the different
approaches to quantifying risk of livestock predation was
between the predation risk model, which classified much
of our study site as low risk, and the summary risk per-
ception map, which revealed that producers consider
most of the site as high risk (Figure 5a). While previous
research has taken such discrepancies to indicate misun-
derstandings in the perceptions of producers
(Gillingham & Lee, 2003; Suryawanshi et al., 2013), we
propose a different interpretation of the results at this
study site. Producer familiarity with the geography and
ecology of the study site appears to be high, as evidenced
by the accuracy of their mapping of carcass locations in
data forms at the study site. Additionally, questionnaire
answers reflect producers’ understanding of the underly-
ing drivers of their own risk perceptions, and these
answers map well onto their intuitive drawings of risk
perceptions (Figure 5c,d). This consistency suggests that
producers are familiar enough with the site and its ecol-
ogy to make accurate causal links between perceived
drivers of risk and its patterning in space. We find it
unlikely that producers with such site familiarity would
misidentify the patterns of risk as severely as the contrast
between the predation risk model and the risk perception
maps might suggest.

Therefore, we instead suggest that this contrast high-
lights an important form of selection bias that is often
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overlooked in livestock predation research. Risk percep-
tions are an important driver of producer decisions
(Marchini & Macdonald, 2012; Moreira-Arce et al., 2018;
Scasta et al., 2017). Producers at our site avoided grazing
livestock in pastures they perceived to be high risk, and
grazed almost all the sites they perceived to be low or
medium risk (Figure 3). Almost half of the study site was
excluded from grazing due to predation concerns, includ-
ing the largest pastures, which producers associated with
high risk. These producer decisions about husbandry,
which are powerfully driven by their risk perceptions,
thus have a strong effect on where livestock predation
can occur. The data that we used to build our predation
risk model were thus already exposed to selection bias by
these perception-driven producer decisions. This kind of
selection bias has been identified in the ecology of preda-
tion risk (Moll et al., 2017) and explored more deeply in
other fields (Hernan, Hernandez-Diaz, & Robins, 2004),
but it requires greater attention in the field of livestock-
predator conflict. This selection bias likely affects many
study systems, especially those, like this study site, where
animals are pastured, producers have freedom to use or
avoid areas they deem risky, and where models like ours
extrapolate findings to areas that producers have chosen
to avoid.

Due to this selection bias, we believe inherent pat-
terns of risk at the study site are best identified through a
combination of producer risk perceptions and the preda-
tion risk model. In areas that producers have already
selected against, producer risk perceptions are likely the
most accurate reflections of inherent landscape risk.
However, within pastures that producers have chosen to
graze, predation risk models can make an important con-
tribution to understanding risk, especially at fine spatial
scales. Many producers chose to draw their risk percep-
tion maps by identifying risk for entire pastures
(Figure 3). When we applied each pasture's highest value
from the predation risk model to the entire pasture, there
was strong agreement between this model and risk per-
ceptions (Figure 5b). This agreement suggests that pro-
ducers may subscribe to a similar process in evaluating
risk, taking a pasture's riskiest elements and applying
them to the whole. Interestingly, this line of thinking cre-
ates opportunities for targeted, fine-scale management
interventions. Within grazed pastures, the predation risk
model does not suffer from the selection bias described
above, and can thus offer a fine-scale, subpasture window
into patterns of predation risk. Identifying hotspots of
risk within pastures may identify new management
opportunities that would not emerge from a pasture-level
management viewpoint. For example, the predation risk
model identified a network of steep ravines in a pasture
as high risk (Figure 2, inset blowup), representing one of
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the few areas where the predation risk model assigned a
higher risk score than that of the risk perception map
(Figure 5a). A site like this represents a strong candidate
for targeted management and further research, such as
through temporary fencing to cordon this potentially
high-risk area (Macon, Baldwin, Lile, Stackhouse, & Riv-
ers, 2018).

In addition to mapping spatial patterns of risk, we
also identified environmental correlates of risk and risk
perceptions. Here too, contrasts between risk perceptions
and our predation risk model reveal opportunities for
complementary socio-ecological insights. In the preda-
tion risk model, habitat variables explained the bulk of
variation in likelihood of coyote predation on sheep
(Table 1 and Supporting Information Table S2). Model
results suggest that coyotes may use the cover of locally
rugged terrain, dense surrounding chaparral, and neigh-
boring properties with less aggressive predator manage-
ment to initiate attacks on sheep. Strong associations
between predation risk and vernal pools and water
sources suggest that these features may concentrate live-
stock prey, especially in spring when the pools are fullest
and lambs are most vulnerable. While canids are typi-
cally considered coursing predators, several of the vari-
ables of our predation risk model suggest that coyotes
may locally adopt ambush predation strategies when
landscape features are amenable to this hunting
approach (Preisser, Orrock, & Schmitz, 2007; Sacks &
Neale, 2002). Interestingly, previous research has shown
important connections between drought and conflict
(O'Loughlin et al., 2012; Saberwal, Gibbs, Chellam, &
Johnsingh, 1994), and given that our study took place
during one of the worst droughts in California history
(Griffin & Anchukaitis, 2014), the unusually dry condi-
tions could be mediating this behavioral adaptation by
concentrating livestock prey.

In contrast to the spatial risk map, which highlighted
habitat variables associated with risk, producers consid-
ered husbandry factors as central determinants of risk, as
shown in both the questionnaire answers and linear
regression of the summary perception map (Table 1).
During interviews, producers typically discussed habitat
in the light of husbandry practices, rather than as mean-
ingful in isolation. For example, producers stated that
ruggedness and habitat mattered to the extent that they
limited or facilitated guardian dog movements and sight-
lines for both sheep and producers. In contrast to the pre-
dation risk model, producers described coyotes as a
coursing predator, susceptible to chase by dogs and reli-
ant on grassland habitats and large pastures to success-
fully carry out attacks. The predation risk model thus
points to specific sites and strategies for testing new man-
agement strategies for coyotes as an ambush predator,
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especially during severe drought conditions. For example,
producers might place additional guardian dogs or non-
lethal deterrents at vernal pools and along property
boundaries where coyotes appear to concentrate attacks.
Beyond these specific recommendations, the predation
risk model highlights predator adaptability, which, as
other studies have shown, necessitates dynamic, adaptive
management to mitigate conflict (Stone et al., 2017; van
Eeden et al., 2018; Wilson, Bradley, & Neudecker, 2017).

One of the strongest points of disagreement between
livestock producer perceptions and the predation risk
model was the importance of guardian dogs. Producers
repeatedly emphasized the importance of guardian dogs
during interviews, and both questionnaire answers and
the linear regression of the summary perception map fur-
ther reflected their importance to producer risk percep-
tions. These perceptions are well founded by research,
which has demonstrated the effectiveness of guardian
dogs in reducing livestock predation (Andelt, 1992;
Coppinger & Coppinger, 1988; Gehring, Vercauteren,
Provost, & Cellar, 2010; Green, Woodruff, & Tueller,
1984; van Bommel & Johnson, 2012). The predation risk
model did not retain guardian dogs as a predictor of risk,
however, and it had only a very weak effect in intermedi-
ate models before its exclusion. This omission may mask
its importance, and shed light on the difficulty of under-
standing livestock-predator conflict without input from
producers. While our model takes the landscape as a
static snapshot of a 10-year period, producers dynami-
cally respond to conditions over the course of the year.
They commonly deploy more guardian dogs in pastures
that they perceive to be riskiest. If the producers are cor-
rect about both the high inherent risk of these pastures
and the effectiveness of the dogs, then these counter-
vailing effects may be in part responsible for masking the
dogs from the predation risk model. Examples of the
complexity of mapping risk are common in ecological
studies (Gaynor et al., 2019; Moll et al., 2017), but deserve
greater attention in the field of livestock-predator con-
flict. Here, understanding producer perceptions and their
associated husbandry decisions reveals not only factors
that models may omit, but also reveals a more dynamic
landscape that is difficult to capture in a static model. We
suggest that future risk mapping exercises account for
ongoing management practices and interpret model
results in consultation with producers.

Increasing exchange between disciplines when under-
taking socio-ecological questions is an important goal for
supporting future research and management of livestock
predation (Dickman, 2010). We adopted multiple meth-
odological approaches that we expected to facilitate easy
and meaningful exchange between social and ecological
data. To this end, we asked producers to conceptualize

risk in equal intervals of low, medium, and high, and we
classified our predation risk model and questionnaire
data accordingly. However, we found that questionnaire
data matched perception maps much better when we used
a geometric interval (Figure 5c), which sets much lower
thresholds for high risk. Our predation risk model also
displayed greater agreement with perception maps when
we used a geometric interval (Figure 5a), and we believe
this is well supported by the psychology of risk percep-
tions. Risk perception and tolerance are difficult to inter-
nally quantify and are extremely context dependent
(Starr, 1969). Risk perceptions of wildlife in particular are
easily inflated by feelings of vulnerability and lack of con-
trol, which typify livestock production (Carter, Riley, &
Liu, 2012; Naughton-Treves & Treves, 2005; Skogen,
Mauz, & Krange, 2008). We recommend that ecologically-
driven risk models explore and potentially adopt geomet-
ric interval or other similar classifications of risk data to
account for low risk tolerances and heightened percep-
tions of livestock predation risk among producers.

In this study, we address several important gaps in the
science of livestock—predator conflict and develop a series
of complementary methods for considering conflict as a
socio-ecological process. Our comparisons of socio-
ecological data demonstrate an important but unreported
form of selection bias and stress the importance of incorpo-
rating producer perceptions and decisions to avoid inaccu-
rate inferences resulting from this bias. Combining
producer perceptions and model data has untapped prom-
ise for improving understandings of livestock predation
risk. Such a combination should consider using producer
perceptions in locations that producers deem too risky to
graze livestock, while making targeted management inter-
ventions at fine scales based on predation risk model out-
puts. Additionally, predation risk models can reveal
underlying ecological dynamics—in this case the identifi-
cation of coyotes adapting an ambush predation strategy—
that may then inform specific management responses.
However, other important drivers of risk—in this case the
presence of guardian dogs—may be masked in empirical
models by dynamic husbandry practices on a complex eco-
logical landscape. We offer a guideline for quantifying risk
perceptions that better reflects the psychology of risk per-
ceptions and promotes interoperability between social and
ecological data. Involving livestock producers in the sci-
ence of predator-livestock conflict from start to finish has
great promise to produce the most accurate and actionable
understandings of conflict and to build trust that will sup-
port both wildlife and human livelihoods.
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