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Abstract

Noninvasive data collection methods are increasingly used to

monitor endangered, cryptic, or otherwise difficult to observe

wildlife populations. Spatial capture‐recapture and count‐

based statistical methods are often used to model these data

to derive population estimates, each with their own advan-

tages. The goal of our study was to integrate these 2 data

sources and model structures to maximize the use of single‐

season surveys in which capture‐recapture and count‐based

data are collected. We formulated a Bayesian spatial, closed

integrated population model (cIPM) that leverages scat

DNA‐based spatial capture‐recapture and camera‐based spa-

tial count sub‐models to derive sex and age class‐specific

population estimates. Our cIPM has the advantage of sharing

the spatial scaling (σ) parameter directly between sub‐models

and drawing proposed individuals from the same data‐

augmented superpopulation for each sub‐model. This allows

for separate estimation of sex and age‐class groups simulta-

neously without any assumptions of population structure or

conversions between model output types. We applied our

cIPM to a wild population of Roosevelt elk (Cervus canadensis

roosevelti, Karuk: íshyuux) during winter 2018–2019 in their

winter range within Karuk Ancestral Territory in northern

California, USA. We also conducted a simulation study to test
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our cIPM on a known population consisting of 2 age classes

and 2 sexes. The cIPM was able to estimate most population,

detection, and σ parameters with good accuracy, including

population size. The assignment of sex and age was biased,

however, resulting in fewer juvenile males, more juvenile

females, and more adult males. Our cIPM applied to the

data estimated approximately 310 (95% CI = 235–411)

female adults, 90 (95% CI = 57–134) male adults, 75 (95%

CI = 43–149) female calves, and 23 (95% CI = 12–47) male

calves. These estimates were different from those that would

have been made had we relied on common assumptions such

as equal calf sex ratios, though this ratio was likely biased

towards females based on our simulation results. Our methods

are widely applicable and maximize the amount of information

available to managers and researchers from any single‐season

survey in which separate data sources capturing sex and

age‐class information are obtained.
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The estimation of wildlife population size is a core facet to ecological research, management, and conservation

endeavors worldwide (Leopold 1933, Buckland et al. 2000). For species that occur in forested and rugged

environments or are relatively cryptic, direct observation and counts are often unfeasible (Balme et al. 2009). In

these cases, the use of noninvasive sampling methodologies can alleviate issues with animal detectability. For

example, scat or hair‐based DNA tagging can capture and recapture individuals across time and space without an

observer ever directly seeing them. Similarly, methods using motion‐sensitive cameras can detect species presence,

derive counts, and potentially differentiate individuals that have unique visual patterning such as spots or stripes

(Royle et al. 2009, Linkie et al. 2013). To make use of these noninvasive data sources, a variety of statistical

methods have been adapted and developed to estimate population sizes based on individual capture‐recapture

data, animal count data, and animal presence‐absence data (Efford and Fewster 2013, Gilbert et al. 2020).

For species that are visually identifiable by sex (via camera images) or for which a sex‐specific primer has been

developed and analyzed (for noninvasive genetics), sex‐specific model parameters may be estimated (Gardner

et al. 2010). At the very least, the estimation of population sex ratios allows for a more detailed understanding of the

study population's ecology, potential recruitment rates, and viability (Bender 2006, Lounsberry et al. 2015). Information

on sex also allows for the specification of detection probability, space use (for spatial models), and other parameters of

interest that vary by sex, potentially enhancing model fit. Another important aspect of all populations is age structure,

especially for harvested species because managers must obtain separate estimates of adult and juvenile population sizes

to sustainably set harvest quotas (Bender 2006, Furnas et al. 2018). Noninvasive genetic capture‐recapture, widely

considered the gold standard for estimating population sizes in settings where wildlife is difficult to observe, is generally

unable to differentiate between age classes because of the similarity of scats and hair by age class.

Although integrating data from different sources is increasingly used to improve model precision (Gopalaswamy

et al. 2012, Clare et al. 2017, Ruprecht et al. 2021), very little work has been done to take advantage of model integration
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to estimate sex and age class‐specific abundance in a closed population setting. A notable example, however, is the

integration of scat‐based genetic spatial capture‐recapture (SCR) data with camera‐based site‐count data in a closed

integrated population model (cIPM) to derive separate estimates of adult female, adult male, and juvenile deer population

sizes (Furnas et al. 2018). While the integrated model of Furnas et al. (2018) represents substantial progress over single or

even sex‐specific population estimates of managed wildlife populations, the authors relied on fundamentally different

population sub‐models whose outputs had to be converted (non‐spatial site abundance to density) to be comparable and

relied on the assumption of equal juvenile sex ratios to derive their estimates (Furnas et al. 2018).

We advanced the ideas of Furnas et al. (2018) by deriving a DNA‐ and camera‐based cIPM in a Bayesian

framework that takes further advantages of model integration to derive parameter estimates (separate adult female,

adult male, juvenile female, and juvenile male population estimates) not identifiable by separate models alone (Plard

et al. 2019). Specifically, we formulated our cIPM with 2 main objectives: 1) leverage the DNA‐ and camera‐based

sub‐models to derive sex and age ratios directly estimated as probability distributions on the overall population and

2) make each sub‐model explicitly spatial so that spatial information could be shared across sub‐models without the

need to estimate effective sampling areas to convert between model outputs.

STUDY AREA

We fit our cIPM to data collected on a Roosevelt elk (Cervus canadensis roosevelti; Karuk: íshyuux) population along

the Klamath River in Karuk Ancestral Territory in northwestern California, USA. All our sampling took place in an

approximately 528‐km2 area consisting of private and national forest land between November 2018 and May 2019,

effectively capturing the overwintering habitat of a population of Roosevelt elk in the region. The drier summer

season lasts from approximately June through October, when elk in our study population spend time at higher

elevations in the Marble Mountains. Though historically much of the forests in this area were logged, there is

currently minimal logging activity but increasing prescribed burning to manage for culturally important natural

resources and reduce fuel loads. The rugged mountains and river valleys in this coastal range host a floristically

diverse community dominated by a coniferous overstory consisting of Douglas‐fir (Pseudotsuga menziesii var.

menziesii), incense cedar (Calocedrus decurrens), sugar pine (Pinus lambertiana), Jeffrey pine (P. jeffreyi), and white fir

(Abies concolor; Taylor and Skinner 2003). Other common large mammals (Karuk: mâakamkuuk) besides elk in the

area include black bear (Ursus americanus; Karuk: vírusur), black‐tailed deer (Odocoileus hemionus; Karuk: púufich),

and mountain lion (Puma concolor; Karuk: yupthúkirar). The climate is Mediterranean with temperatures ranging

from lows of around 0°C in December and January to highs of >30°C in August (Sawyer 2006). The Karuk Tribe

have inhabited the area for thousands of years, and historically used elk for sustenance, art, and religious ceremony.

Upon the arrival of Euro‐Americans to Karuk Ancestral Territory in the 1800s, however, elk were extirpated, and

the Karuk people were killed, displaced, and prevented from performing traditional fire‐based habitat management

practices for ungulates (Norgaard 2014).

Elk were reintroduced to the area over several translocation events starting in 1985 (Allison et al. 2007). By

1992, 232 had been reintroduced to the Klamath National Forest and Marble Mountain Wilderness areas by the

National Forest Service and the California Department of Fish and Wildlife (Allison et al. 2007). Most elk herds in

the area appear to undergo seasonal migration behavior, staying at relatively low elevations in the Klamath River

Valley and ascending to high elevations to graze in the adjacent Marble Mountains in summer. Generally, Roosevelt

elk exist in herds of adult females and juveniles, while adult males are more transient and frequently form smaller

groups of their own outside of the mating season, depending on population sizes (Weckerly 2020). While both

females and males may disperse from their natal herds and range as they mature, this behavior is heavily biased

towards males (Edge et al. 1986). Rough population estimates in recent years suggest that the reintroduction efforts

have been successful and that there are up to 3,000 Roosevelt elk across the wider region (California Department

of Fisheries and Wildlife [CDFW] 2018).
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METHODS

Scat collection

Our noninvasive scat DNA surveys were focused on elk winter range around the Klamath River in winter of

2018–2019. We collected scat systematically between December 2018 and April 2019 in an area‐search

approach at 13 focal sites throughout this area and visited each site between 1 and 3 times with revisits

separated by at least 2 weeks (Figure 1). These area searches were informed by local Karuk traditional ecological

knowledge (TEK) of elk space and habitat use throughout the area to maximize detectability while maintaining

enough spatial extent to produce the recaptures across space for the SCR model. To facilitate SCR modeling in a

Bayesian framework, we converted the area‐search sampling effort to a virtual trapping grid with traps evenly

spaced at 250 m using the discretize function in the secr R package (Efford 2019, R Core Team 2019). In this

conversion, we assigned individuals identified through scat in the area search as caught in the nearest virtual

trap <125 m distant. We used 250‐m spacing of our virtual traps to balance spatial accuracy in capturing the

actual scat locations and computational efficiency in reducing the number of traps to iterate through in the

Bayesian model. We swabbed scat with a sterile cotton swab, which we then placed in test tubes containing

Longmire buffer for storage and later DNA extraction and analysis. We used 8 microsatellite loci targeted with

primers developed for tule elk (Cervus canadensis nannodes) for individual identification and a sex‐specific

marker (Sacks et al. 2016). To account for the potential of false alleles and allelic dropouts due to low‐quality

DNA, we repeated the genetic analysis of each sample twice and used the R package allelematch to assign

individuals based on probabilities of allele mismatches (Galpern et al. 2012). For a full description of the genetics

methods that we used, see Bach et al. (2022).

F IGURE 1 The study system, consisting of a core area of the Karuk Ancestral Territory inset on the state of
California, USA, during winter of 2018–2019. All swabbed Roosevelt elk scat locations, motion‐sensitive camera
locations, and cameras with elk capture locations used to fit our Bayesian closed, integrated population model are
presented.
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Camera grids

We established 4 hexagonal grid camera arrays across our study area in which we placed 15 cameras at the centers

of the hexagons approximately 500 m apart (Figure 1). These 4 grids corresponded to focal areas of the Western

Klamath Restoration Partnership's Somes Bar Integrated Project Area and were designed to monitor wildlife

responses to forest management actions (Berger and Colegrove 2018). We maximized the likelihood of capturing

wildlife by placing the cameras at approximately shoulder‐height and directing the viewshed along game trails or

areas with good visibility. We used Bushnell TrophyCam HD Aggressor cameras (Bushnell, Overland Park, KS, USA)

set to take 2 photos at the detection of any movement under the low sensitivity setting with a medium shutter

speed and a sleep time of 3 seconds between photo bursts. To match the temporal scope of the scat sampling

efforts and to sample the population across winter, we ran the cameras from the end of November 2018 to the end

of March 2019. We visited the cameras every 2 months to make sure they were operational and to collect and

replace the memory cards.

We separated images of elk female adults, male adults, and calves into separate folders by looking for

identifying traits including antlers and size. We then used the R package camtrapR to derive separate record tables

for each (Niedballa et al. 2016). We defined single occasions as individual weeks of our study period and derived

weekly counts of each class of elk by counting the maximum number of individuals in a single image over a 24‐hour

period and then summing those 7 24‐hour counts. We did this to avoid either over‐counting individuals that

remained in front of a motion‐sensitive camera for extended periods of time or under‐counting individuals that

occurred in the same image by defining that image as a single detected individual.

Closed integrated population model

Our Bayesian cIPM integrated scat‐based SCR and camera‐based unmarked SCR (uSCR, or spatial count) sub‐models

by directly linking their likelihoods to the same realized population drawn from a data‐augmented superpopulation

(Royle and Dorazio 2012). This data‐augmentation approach draws actual members of the population from an

unrealistically large superpopulation (M) through a probability of inclusion parameter (ψ). We set M = 1,000 so that it

would not affect the realized population size estimates in the posterior distribution. The SCR and uSCR models follow

the same general formulation in that they estimate the density of animal activity centers (s; tracked explicitly from the

data in SCR and from a latent parameter in uSCR) across the study area. In SCR models, the probability of detecting an

individual i at a trap j (pi,j) is a function of a baseline detection probability (p0) and a spatial scaling parameter (σ) that

describes the decline in the probability of detecting an individual as the Euclidean distance (d) between that

individual's activity center (si) and the trap (ji) increases (Efford and Fewster 2013):







p p

d
= 0 × exp

−

2σ
.i j

si j
,

,
2

2

We then modeled the number of times an individual i was detected at a trap j as a Poisson random variable

(Royle and Young 2008, Royle et al. 2009):

y p z~ Poisson( × ),i j i j i, ,

where zi takes the value of 1 if the individual was drawn from the data‐augmented superpopulationM and 0 if it was

not, dictated by Bernoulli draws with probability of inclusion, ψ:

z ψ~ Bernoulli( )i
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Ultimately, the total population size is derived by summing the number of z = 1 individuals that are estimated to

have activity centers within the study area:

∑N z= .
i

M

i
=1

In uSCR models, probability of detection and spatial scaling parameters also apply in the same way, but as

opposed to modeling counts of an individual's detections, the count of the number of individuals detected at a trap

(j) are modeled instead (Chandler and Royle 2013):









d
Λ = λ0 × exp

−

2σ
,j

si j,
2

2

where λ0 is a probability of detection parameter specific to the motion‐sensitive camera data collection process,

but the spatial scaling parameter (σ) is directly shared with the SCR sub‐model. The trap‐specific counts are then

modeled as a Poisson random variable:

n ~ Poisson(Λ ).j j

We integrated the genetics‐based SCR and camera‐based uSCR sub‐models defined above in a Bayesian

framework with the following joint posterior distribution:

z ψ s n x genetics x camera[ , , σ, , p0, λ0|y , , . , . ]i i i j j j j,

∏ ∏ y f z ψ s x genetics∞ Genetic SCR: Poisson( | (p0, , , σ, , . ))
i

M

j

J

i j i i j
=1 =1

,

∏ ∏ n |f z ψ s x camera× Camera uSCR: Poisson( (λ0, , , σ, , . ))
i

M

j

J

j i i j
=1 =1

where x corresponds to the spatial coordinates of trap j.

Because both SCR and uSCR estimate the activity centers (s) of individuals in the population, those activity centers

could be directly integrated across sub‐models. Because our scat sampling and camera data collection efforts did not

cover exactly the same area (Figure 1), however, we proposed separate activity centers for the same individuals for

each sub‐model but shared the spatial scaling (σ) parameter between the sub‐models (Ruprecht et al. 2021). This

assumes that although the scat and camera arrays were covering slightly different areas, they were sampling the same

individuals in the same population. Given the relatively large winter home ranges of elk in the area (~20 km2; Connor

et al. 2022) compared to the relatively small spatial mismatch of the trapping arrays (<3 km; Figure 1), we think this

assumption that we sampled the same individuals through both data collection methods holds well.

We included a probability of being a male and a probability of being an adult parameter as draws from a

Bernoulli distribution. The SCR sub‐model informed the sex probability of each individual through the

amplification of a sex‐specific loci in the scat DNA data. The uSCR sub‐models provided the sex of adult

individuals and the age class probability of each individual based on identification from the camera data. Directly

integrating the sub‐models by sampling the same data‐augmented superpopulation and harnessing their

separate power to estimate sex and age class in this way allowed us to separately estimate the population sizes

of female adults, male adults, female calves, and male calves. To account for differences in space use and the

probability of detecting male adults versus female adults and calves, we estimated separate spatial scaling (σ)

and probability of detection parameters for adult males and adult females and calves. We grouped females and
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calves for these parameters because we expected their space use and probability of detection to be similar

(calves traveling with their maternal herd). We specified these separate σ values in the model by creating an

indicator for each individual in the Markov chain Monte Carlo (MCMC) iterations that specified if they were

either an adult male or an adult female or calf, and this indicator then pointed to which of the 2 σ values to

estimate and use for that individual.

We set uninformative prior distributions on ψ (probability of inclusion), sex probability, and age probability

using beta distributions with both shape parameters = 1. We set a weakly informative prior on σ using a uniform

distribution bounded by 0 and 5,000 m, capturing possible corresponding home range sizes from 0 to 471 km2. We

used weakly informative priors on both baseline detection probabilities (scat and camera) defined as the logit

transformation of a draw from a uniform distribution bounded by −6 and 1. We conducted all analyses using the

Nimble language in R (de Valpine et al. 2017, R Core Team 2019). We ran MCMC chains for 60,000 iterations with

default random walk settings for all parameters, and a burn‐in of 20,000 for chains to converge. We assessed chain

convergence using the Monte Carlo standard error as a percentage of the posterior standard deviation (MCEpc)

diagnostic, and a visual inspection of the MCMC trace plots.

Simulation study

To test the performance of our cIPM under known conditions, we simulated a sex‐ and age‐structured population

followed by both SCR and count sampling of that population. We used the sim.capthist function of the secr R

package (Efford 2019) to facilitate this simulation for each of 4 sex‐age classes (adult females, adult males, juvenile

females, juvenile males) in 3 steps: 1) simulate animal activity centers across an area of 136,900m2, 2) simulate

capture‐recapture sampling of those animals across a 15 by 15 square grid of 100 artificial traps spaced 20 m apart,

and 3) derive counts for adult females, adult males, and juveniles (grouped) at each trap by summing the number of

individual captures at each trap. We set the p0 and σ parameters, which along with simulated density determines

the capture history at each trap, as follows: a p0 of 0.3 for all sex and age classes, and a σ value of 15 m for adult

females and juveniles and 20 m for adult males. We were especially interested in the ability of our model to

estimate the sex of individuals when the sex ratios differed between age classes, so we simulated population

densities so that there were 3 adult females (15/ha) per adult male (5/ha) but a 1 to 1 (even) sex ratio in juveniles

(3.75/ha for each sex). We used the same specifications and priors in fitting the cIPM as described in our empirical

study but ran only 13,000 MCMC iterations with 3,000 used as a burn‐in.

RESULTS

We located 748 elk scats across the 10 sampling sites; 289 were successfully genotyped. From these 289 samples,

we identified 114 unique individuals captured between 1 and 13 times each, resulting in an average capture rate of

2.54 captures/individual. Of the 61 deployed motion‐sensitive cameras, 21 captured images of elk on at least one

occasion. Specifically, 12 cameras captured female adults with occasion‐level counts ranging from 1 to 31, 10

cameras captured male adults with occasion‐level counts ranging from 1 to 4, and 8 cameras captured calves with

occasion‐level counts ranging from 1 to 12.

Our Bayesian cIPM showed good convergence, with low MCEpc values and adequate mixing in the trace plots

(Figure S2, available in Supporting Information). The model estimated 523 elk (mean of the posterior) across our

study area (95% CI = 422–639; Table 1; Figure 2), corresponding to a density of about 0.92 elk/km2. The estimated

sex ratio was skewed towards female (0.78:0.22), and the estimated age class ratio was skewed towards adults

(0.79:0.21; Table 1). The female‐biased sex ratio was in both adult and calf age classes but was larger in the adult

age class. The estimated spatial scaling (σ) parameter was 1.02 km (95% CI = 0.91–1.12) for female adults and
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2.52 km (95% CI = 1.93–3.43) for adult males, corresponding to an average circular home range (using the

conversion home range radius = 2.45 × σ) of approximately 19.62 km2 and 119.75 km2, respectively. There was a

lower probability of detecting adult males by scat DNA (0.19, 95% CI = 0.09–0.30) and cameras (0.05, 95%

CI = 0.02–0.10) compared to adult females and calves (scat DNA: p0 = 0.56, 95% CI = 0.44–0.70; cameras:

λ0 = 0.68, 95% CI = 0.56–0.72; Table 1).

The posterior distributions of most of the parameters in the cIPM fit to our simulated population closely

matched the parameters used to simulate the population, but there was some error in correctly assigning sex and

age classes (Figure S1; Figure 3). While the overall population size was estimated accurately (within 1.5% of the

simulated values), adult males and juvenile females were overestimated, whereas juvenile males were

underestimated, resulting in a skewed juvenile sex ratio with over double the estimated females compared to

males (Figure 3; Table S1, available in Supporting Information). Most of the p0 and σ parameters were estimated

accurately, with only the probability of detection for adult males in the uSCR count process estimated at more than

10% off the simulated value (estimated at 0.26 and simulated at 0.3; Table S1).

DISCUSSION

Our Bayesian cIPM has several advantages over existing methods for the monitoring and management of ungulate

populations. First, directly integrating scat DNA‐based and camera‐based sub‐models through the use of SCR and

uSCR methods allowed for the joint estimation of the σ parameter. Because σ is notoriously difficult to compare

across data sources and spatial modeling methods, directly linking it in a cIPM increases the relevancy of spatial

sub‐models to each other and helps identify it in sub‐models relying on data with inherently little space‐use

TABLE 1 Parameter estimates from the posterior distributions of a Bayesian closed, integrated population
model fit to data from Roosevelt elk in Karuk Ancestral Territory, California, USA, during winter of 2018–2019.

Parametera x̄ SD
Lower credible interval
(2.5% quantile)

Upper credible interval
(97.5% quantile)

Total population size 523 55.77 422 639

Female adults 310 45.27 235 411

Male adults 90 19.94 57 134

Female calves 89 27.55 43 149

Male calves 27 9.79 11 49

Adult male p0 scat 0.19 0.05 0.09 0.30

Female adult and calf p0 scat 0.56 0.07 0.44 0.70

Male adult λ0 cameras 0.05 0.02 0.02 0.10

Female adult and calf λ0 cameras 0.68 0.05 0.56 0.72

Male adult σ (km) 2.32 0.37 1.93 3.43

Female adult and calf σ (km) 1.02 0.05 0.91 1.12

Sex ratio (probability male) 0.22 0.04 0.14 0.32

Age class ratio (probability adult) 0.79 0.06 0.64 0.89

ap0 = probability of detection via scat, λ0 = probability of detection via camera, σ = space use parameter describing decline
in probability of detection over increasing distance.
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F IGURE 2 Posterior distributions of the population size estimates from the Bayesian closed, integrated
population model fit to empirical data collected on Roosevelt elk in Karuk Ancestral Territory, California, USA,
during winter of 2018–2019 by sex and age class.

F IGURE 3 Posterior distributions of the population density (D) estimates from the Bayesian closed, integrated
population model fit to simulated data by sex and age class. Vertical dotted lines represent the true population
density of a simulated elk population.
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information such as uSCR (Ramsey et al. 2015, Ruprecht et al. 2021). Further information on animal movement,

such as global positioning system (GPS) collar telemetry data, could also be used to inform σ through a prior

distribution (Furnas et al. 2018) or directly integrated in the IPM to help estimate σ (Ruprecht et al. 2021).

Additionally, the direct integration of our scat DNA‐based SCR and camera‐based uSCR models had

the advantage of unlocking population estimates for sex and age classes unidentifiable by the sub‐models alone

(Riecke et al. 2019). For example, although camera‐based uSCR models can produce separate estimates of female

adults, male adults, and calves, the sex of calves generally cannot be determined through camera images (Macaulay

et al. 2020). Conversely, although the age class of individuals is generally unknown through scat‐based DNA, the

sex of every individual can be identified (Sacks et al. 2016). By integrating both data sources and sub‐models

directly in an IPM, each sex and age class can be separately estimated. This is a potential advantage over previous

closed‐population IPMs that must assume equal sex ratios in juveniles (Furnas et al. 2020).

Although our estimated population size of 523 individuals is less than the approximately 3,000 individuals

estimated throughout the region in past years, our study area was only 568 km2, translating to an estimated density

of 0.92 elk/km2. If we extrapolate this finding to the area that falls within the approximate elk winter range in Karuk

Ancestral Territory, the population for that area is estimated at an unrealistic >50,000. This extrapolated region

likely includes large areas of poor elk habitat compared to our study area, and more sampling efforts across wider

areas of Karuk Ancestral Territory and the Marble Mountain elk management zone are needed to get a fuller and

more nuanced understanding of the Roosevelt elk populations that reside there. Because of the difficultly in

conducting many traditional ungulate sampling methods in the rugged and forested terrain, robust population

estimates have been difficult to derive in the region (CDFW 2018). In solving this issue through noninvasive

sampling informed by local expertise, our study advances multiple goals in California's elk management plan,

including developing robust methods for population estimation and increasing collaboration with California's Tribes

(CDFW 2018).

Going beyond grouped population estimates and considering sex and age structure, our results indicate that

assuming even sex ratios in juveniles in this population would be invalid, and that there are more female calves

compared to male calves. Because the sex ratio for calves was nearly as female‐skewed as that of adults is puzzling

because we expected the sex ratio to be relatively more equal at younger ages before extensive dispersal behavior

(Petersburg et al. 2000). Potential biological reasons for the skewed sex ratio in calves that we estimated include

higher birth rates for female calves and lower male calf survival rates due to behavioral differences in calves by sex,

or behavioral and physiological differences in mothers influencing calf survival by sex (Kohlmann 1999,

Cunningham et al. 2009). Additionally, early dispersal events, a behavior likely biased towards the male calves,

could result in more male calves leaving our study area entirely and facing higher mortality during dispersal (Smith

and Anderson 2001).

Though there are potential biological reasons for the skewed juvenile sex ratio, our simulation study also

suggests that our model has the tendency to falsely estimate skew in the juvenile sex ratio when the adult sex ratio

is skewed (as is common in ungulate populations; Berger and Gompper 1999). While overall population density

estimates were accurately estimated, the even juvenile sexes were generally estimated at around 40% fewer males

and 34% more females than expected. The adult males were overestimated at a rate similar to which the juvenile

males were underestimated, suggesting that correcting this biased male age class assignment in the model would

largely solve the issue. Improving the σ estimation for adult males through the incorporation of GPS telemetry data

could correct the issue (Furnas et al. 2020, Ruprecht et al. 2021). These results suggest a significant bias and the

need to more accurately separate juvenile and adult sex ratios in future implementations of our cIPM. That said,

separately estimating female and male calf population sizes in our empirical study using our cIPM likely produced

results with about the same bias compared to assuming an even juvenile sex ratio, given the very large differences

(~3 times the juvenile females compared to males) we found. If our empirical study had a bias of the same

magnitude evident in our simulation study, the real probability of being male in the juvenile age class was

approximately 0.37.
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In addition to improving the separation of juvenile and adult sex ratios, perhaps through the integration of other

data sources like GPS telemetry, there is room for further improvements and advancements. Modeling of animal

activity centers as a function of environmental covariates on the landscape would provide ecological inference on

the factors influencing population density and allow for the projection of the cIPM to estimate population sizes

across wider areas (Furnas et al. 2018, Connor et al. 2022). Also, the use of multiple years of SCR and spatial count

data would allow for the specification of a novel spatial open‐population IPM that estimates both population size

and demographic rates by sex and age class (Plard et al. 2019).

MANAGEMENT IMPLICATIONS

Wildlife managers and conservationists must make decisions based on the best available information and often

considering diverse perspectives. We posit that our Bayesian cIPM, as presented here, leverages commonly

collected noninvasive genetics and motion‐sensitive camera datasets to maximize the amount of biological

information that can be derived in a single‐season survey. For harvested populations in particular, our separation of

population estimates by sex and age class provides critical information that can help set harvest regulations based

on population structure. For example, if few juvenile females are detected in a given year, adult female harvest

could be reduced to account for the smaller number of incoming females to that age class in subsequent years and

subsequent lower reproductive potential of the population. The application of Karuk TEK was an important piece of

our study that increased the feasibility of fitting effective SCR models through increased detectability of elk. Such

local knowledge is invaluable for effective conservation and management through enhanced data collection as

described here, but also the interpretation and application of findings derived from wildlife surveys in a given study

system. In conclusion, the methods we developed can be applied to any population for which simultaneous

individual capture‐recapture and spatial count data is collected across the study area of interest, and their careful

application will improve the monitoring and management of difficult‐to‐observe wildlife populations.
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