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1  |  INTRODUC TION

Human activity can alter the behaviour of animals by amplify-
ing or dampening perceptions of risk, food availability, or safety 
(Gaynor et al., 2019; Geffroy et al., 2020; Hammond et al., 2020; 
Sih et al., 2011). Yet, complex behavioural feedbacks among multiple 
ecological players (i.e. predators, prey, competitors) have limited our 
ability to establish links between human- altered animal behaviour 

and broader ecological change, such as altered predator diet, preda-
tion rate, population demography, competitive exclusion, or trophic 
cascades. Although human activity— defined broadly here as human 
presence and infrastructure— is known to affect animal popula-
tions by changing species interactions, including predation (Gaynor 
et al., 2021), knowledge of these dynamics is largely anecdotal or 
context- specific (Wilson et al., 2020). Formally recognizing the ef-
fect of humans on predator– prey interactions is necessary to align 
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Abstract
1. Despite growing evidence of widespread impacts of humans on animal behaviour, 

our understanding of how humans reshape species interactions remains limited.
2. Here, we present a framework that draws on key concepts from behavioural and 

community ecology to outline four primary pathways by which humans can alter 
predator– prey spatiotemporal overlap.

3. We suggest that predator– prey dyads can exhibit similar or opposite responses to 
human activity with distinct outcomes for predator diet, predation rates, popula-
tion demography and trophic cascades. We demonstrate how to assess these 
behavioural response pathways with hypothesis testing, using temporal activity 
data for 178 predator– prey dyads from published camera trap studies on terres-
trial mammals.

4. We found evidence for each of the proposed pathways, revealing multiple pat-
terns of human influence on predator– prey activity and overlap. Our framework 
and case study highlight current challenges, gaps, and advances in linking human 
activity to animal behaviour change and predator– prey dynamics.

5. By using a hypothesis- driven approach to estimate the potential for altered spe-
cies interactions, researchers can anticipate the ecological consequences of 
human activities on whole communities.

K E Y W O R D S
animal behaviour, human activity, predator– prey, prey refuge, spatiotemporal overlap, trophic 
cascades

www.wileyonlinelibrary.com/journal/jane
mailto:
https://orcid.org/0000-0001-8638-935X
https://orcid.org/0000-0001-8753-4061
https://orcid.org/0000-0002-5747-0543
https://orcid.org/0000-0002-1618-7610
mailto:avanscoyoc@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2656.13892&domain=pdf&date_stamp=2023-02-07


    |  1125Journal of Animal Ecologyvan SCOYOC et al.

hypothesis testing with the range of potential effects of increasing 
human activity on the persistence and coexistence of wild animals 
(Mumma et al., 2018; Sinclair et al., 2003).

The field of behavioural ecology has long demonstrated that 
predators and prey influence each other's spatial distributions 
(Brown et al., 1999; MacArthur & Pianka, 1966) in a behavioural re-
sponse race, whereby predators seek to encounter prey while prey 
seek to avoid predators (Lima & Dill, 1990; Sih, 1984). Considerable 
research has established that contextual factors (e.g. patch size, 
habitat complexity, resources, and species functional traits) can give 
an advantage to either player in the predator– prey response race 
(Fretwell, 1972; Laundré, 2010; Luttbeg et al., 2020; Schmidt & 
Kuijper, 2015; Sih et al., 1998; Smith et al., 2019). These conceptual 
models have allowed ecologists to predict changes to the consump-
tive (e.g. predation) and non- consumptive (e.g. risk effects) dynamics 
of ecological communities. However, although classic behavioural 
response models have been extended to communities with multi-
ple predators (Sih et al., 1998) surprisingly few models have been 
broadened to describe how human activity influences the contest 
between predator and prey (but see Miller & Schmitz, 2019 and 
Muhly et al., 2011).

Understanding how human activity affects animal behaviour and 
species interactions is complex because animal responses to humans 
are rarely uniform. Many wild animals avoid humans by changing 
patterns of movement, activity, or consumption (Gaynor et al., 2018; 
Smith et al., 2015; Tucker et al., 2018), whereas others preferen-
tially use settings of human activity to gain resources or safety 
(Berger, 2007; Geffroy et al., 2015; Newsome & Van Eeden, 2017). 
Accounting for this variation in animal responses could be key to an-
ticipating shifts in predation and potential cascading trophic effects 
(Kuijper et al., 2016; Yovovich et al., 2021). Each player's (i.e. pred-
ator or prey) response to humans can vastly influence the ecologi-
cal outcome. For example, if a predator avoids human activity but 
its prey does not, predator and prey may encounter each other less 
often (Berger, 2007; Rogala et al., 2011), possibly reducing predation 
and/or non- consumptive effects. Alternatively, if both predator and 
prey perceive human activity as a threat, mutual avoidance of hu-
mans may force prey and predator to share space and time. The loss 
of spatiotemporal refuges that previously stabilized predator– prey 
coexistence (Schoener, 1974; Shamoon et al., 2018), may lead to the 
increase of predation and its non- consumptive effects.

Here, we present a framework that draws on theory and empir-
ical literature to conceptualize the behavioural pathways by which 
human activity can reshape the overlap between predators and prey. 
As a proof of concept, we review the literature to evaluate evidence 
for each pathway in terrestrial mammal predator– prey dyads, and 
conduct an analysis to test how human activity influenced predator– 
prey temporal overlap. Further, we highlight current challenges, gaps 
and advances in linking animal behaviour change to predator– prey 
interactions and ecological dynamics in settings with human activity. 
Our goal is to provide a testable framework that allows researchers 
to evaluate hypotheses and assess the potential for human- altered 
species interactions.

2  |  HUMAN- ALTERED PREDATOR– PRE Y 
OVERL AP

Humans are dominant actors in ecological communities around the 
world. Human presence and infrastructure, which we collectively refer 
to as human activity, alter sensory stimuli that animals may perceive as 
associated with risk or reward (e.g. smell, sound, light, movement; Ditmer 
et al., 2021; Francis & Barber, 2013). Varied stimuli can differentially 
reshape animals' perceptions of risk– reward trade- offs. For instance, 
different types of human activity can influence species differently, as 
when large mammal predators spatially avoided building density and 
temporally avoided human presence, whereas smaller mammal predators 
temporally avoided human presence but did not spatially avoid build-
ing density (Nickel et al., 2020). Animals may also only perceive altered 
risk– reward cues at a certain threshold of human activity. For instance, 
mule deer Odocoileus hemionus rarely used areas with greater than 3% 
surface disturbance from energy development during migration (Sawyer 
et al., 2020). An animal's experience with human activity (e.g. prior 
events, duration of exposure) and its functional traits (e.g. body size, pro-
pensity for learning, memory, boldness) may also influence perception 
of risk– reward cues and its corresponding behavioural response (Moiron 
et al., 2020; Ross et al., 2019). For instance, many species have learned 
to associate human activity with increased foraging opportunities (e.g. 
garbage, agriculture; Newsome et al., 2015).

In response to risk– reward cues, animals can adjust their spatial 
distribution or temporal activity to avoid or seek out human activity. If 
individuals in a given animal population consistently alter their spatio-
temporal distribution, we might expect reverberating impacts on closely 
interacting species, such as predators and their prey (Muhly et al., 2011; 
Wilson et al., 2020). Because predators and their prey can each respond 
to human activity along a continuum of attraction to avoidance, there are 
four behavioural pathways by which humans can increase or decrease 
predator– prey spatiotemporal overlap (hereafter, ‘overlap’; Figure 1). 
Changing the degree of overlap between predator and prey may tip the 
behavioural response race in favour of one player to affect consumptive 
or non- consumptive dynamics. Although linking predator– prey overlap 
to predation requires evaluating the full predation sequence (i.e., the 
encounter, pursuit, and successful capture of prey; Guiden et al., 2019; 
Lima & Dill, 1990; Suraci et al., 2022; Wootton et al., 2021), a predator 
and prey first must occupy the same space at the same time for an en-
counter to occur. We reduce this complexity to consider overlap a nec-
essary precursor to any predator– prey encounter (Prugh et al., 2019). 
While human activity can also change the densities of both predator and 
prey species through non- behavioural pathways (e.g. direct mortality, 
habitat degradation), here we focus on behaviourally mediated effects of 
humans on predators and prey.

2.1  |  Human activity increases predator– 
prey overlap

There are two behavioural pathways through which human ac-
tivity can increase the overlap between a predator and its prey, 

 13652656, 2023, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13892 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [14/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1126  |   Journal of Animal Ecology van SCOYOC et al.

potentially tipping the behavioural response race in favour of the 
predator. First, mutual attraction to human activity (i.e. synan-
thropy) may increase predator– prey encounter rates (Figure 1, 
quadrant I). For example, the attraction of black bears Ursus ameri-
canus to human- associated food led to increased predation of mu-
tually attracted red- backed voles Clethrionomys gapperi feeding 
nearby (Morris, 2005). Second, mutual avoidance of human activ-
ity may cause a predator and prey to increase overlap to avoid a 
shared perceived risk (Figure 1, quadrant III). For instance, in Manas 
National Park, India, tigers Panthera tigris and ungulate prey con-
strained their spatiotemporal activity to avoid humans in the park, 
thus increasing overlap with one another (Lahkar et al., 2020). If 
mutual attraction or mutual avoidance transpire in both space and 
time, the realized niche (Hutchinson, 1957) between predator and 
prey will be compressed and encounter rates may be amplified. 
This change may lead to increased predation rates or phenomena 
such as ecological traps (Gates & Gysel, 1978).

2.2  |  Human activity decreases predator– 
prey overlap

There are two behavioural pathways by which human activity can 
decrease the overlap between a predator and its prey, potentially 

tipping the behavioural response race in favour of prey. First, pred-
ators may avoid human activity while prey do not, creating a spa-
tial or temporal prey refuge (Figure 1, quadrant IV; Berger, 2007; 
Muhly et al., 2011). Prey refuges (also called ‘human shields’) occur 
in environments where the absence of large predators for fear of 
people allows prey species to reduce their anti- predator behaviour 
(Shannon et al., 2014) or selectively use human- occupied habitats 
that predators avoid (Gaynor et al., 2022). Second, prey may avoid 
human activity while predators do not (Fleming & Bateman, 2018). 
This case may entail predator attraction (Figure 1, quadrant II), 
whereby predators select settings of high human activity, afford-
ing human- avoidant prey a refuge. Predator use of human settings 
may be driven by prey switching and the selection for synanthropic 
or domestic prey, or other human food subsidies, such as garbage 
or agriculture (Murdoch, 1969; Murdoch & Oaten, 1975; Newsome 
et al., 2015). For instance, in Maharashtra, India, 87% of leopard 
Panthera pardus diet in human- dominated areas consisted of do-
mestic animals, reducing consumption of wild species (Athreya 
et al., 2016). If prey refuge or predator attraction transpire in both 
space and time, the realized niche (Hutchinson, 1957) between 
predator and prey will be relaxed, and predation encounter rates 
may be reduced. This can lead to decreased predation rates, al-
tered population dynamics, or phenomena such as mesopredator 
release (Crooks & Soulé, 1999).

F I G U R E  1  Humans can alter predator and prey behaviour, spatiotemporal overlap and encounter probability via four major pathways: 
mutual attraction, mutual avoidance, prey refuge, and predator attraction. Predator (y- axis) and prey (x- axis) respond to human activity 
along a continuum of attraction to avoidance. Similar responses of predator and prey to human activity are predicted to result in increased 
predator– prey overlap and possible encounters, whereas opposite responses are predicted to reduce overlap and possible encounters.
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2.3  |  Human activity does not alter predator– 
prey overlap

Human activity may have no clear effect on the overlap among pred-
ators and prey, obscuring “winners” or “losers” in the predator– prey 
behavioural response race. This condition is likely to emerge when 
neither ecological player responds to human activity. Such lack of 
response could indicate at least four underlying mechanisms (Smith 
et al., 2021) including, but not limited to, high tolerance thresh-
olds for human activity, perception of humans as non- threatening, 
intrinsic or extrinsic constraints on behavioural adjustments, and 
temporary transitions between avoidance and attraction. A true 
lack of response can only be measured when an animal does not 
alter its behaviour despite consistency in the density of competi-
tors, predators, and resources across a human- use gradient. Because 
community composition also generally varies with anthropogenic 
disturbances (Ordeñana et al., 2010), fully characterizing the con-
ditions underlying non- response to humans may require additional 
non- observational approaches, such as experiments (e.g. Suraci 
et al., 2019) or simulations (e.g. Thompson et al., 2018). Comparative 
studies of predator and prey spatiotemporal overlap in settings with 
and without human activity, or along gradients of human activity, 
may help to shed light on which behavioural pathways are most com-
mon. Such studies may also reveal whether functional traits, such as 
body size, influence an animal's behavioural response.

3  |  C A SE STUDY: ME A SURING HUMAN 
INFLUENCE ON PREDATOR– PRE Y 
TEMPOR AL OVERL AP

Our framework formalizes four behavioural pathways for how 
human activity may alter predator– prey overlap; yet, it remains im-
portant to test support for related hypotheses. To demonstrate how 
researchers can apply empirical data to our framework, we evalu-
ated these four hypotheses in a literature review and analysis, and 
tested whether the behavioural response patterns were generaliz-
able based on functional traits of each predator and its prey. We 
selected studies that measured temporal activity and overlap of 
predators and prey at paired settings of high and low human activity 
(for full Methods, see Supporting Information). Briefly, we limited 
our analysis to terrestrial mammals with a body mass >1 kg in line 
with recent research suggesting that medium and large- bodied ter-
restrial mammals exhibit varied responses to human activity (Frey 
et al., 2020; Suraci et al., 2021). We focused our review on published 
camera trap studies that reported predator– prey temporal overlap, 
given that the temporal dimension is often overlooked, more eas-
ily standardized than the spatial dimension, and is potentially more 
critical to predicting a predation event (Moll et al., 2017). In total, we 
reviewed 6646 abstracts and 405 papers to identify available data 
for 178 predator– prey dyads from 19 camera trap studies. These 19 
studies spanned five continents and included forest, savanna, shrub-
land and desert ecosystems (see Supporting Information).

For each species in each study, we calculated the relative differ-
ence in the diurnal activity ratio (i.e. the proportion of daytime activ-
ity) at paired settings of high and low human activity. This calculation 
allowed us to visualize the difference between the temporal niche of 
each predator and its prey, relative to the diurnal human niche. Next, 
given that functional traits can influence an animal's perception of 
risk– reward cues, we tested whether functional traits (including prey 
order, body size, predator hunting mode, trophic level, predator guild 
and circadian rhythm) influenced the difference in diurnal activity of 
predator– prey dyads between paired settings of low and high human 
activity. Finally, to estimate how human activity altered the overlap 
between predator and prey, we calculated the difference in temporal 
overlap coefficients of predator– prey dyads between paired settings 
of low and high human activity (see Supporting Information).

We found evidence to suggest that mammalian predator– prey 
dyads respond to human activity in each of our proposed be-
havioural response pathways (Figure 2a). In settings of high human 
activity, 70 predator– prey dyads showed temporal patterns of mu-
tual avoidance, while 60 exhibited prey refuge, 23 predator attrac-
tion and 19 mutual attraction to human activity. Six predator– prey 
dyads showed no change. Only half of the predator– prey dyads 
that exhibited mutual attraction (44%) and mutual avoidance (51%) 
increased temporal overlap with each other. Similarly only 49% of 
dyads exhibiting prey refuge and 27% exhibiting predator attrac-
tion decreased temporal overlap with each other in settings of high 
human use. Thus, temporal overlap did not consistently increase 
among predator– prey dyads exhibiting congruent activity shifts (i.e. 
mutual attraction to or avoidance of human activity), and likewise, 
temporal overlap did not consistently decrease among predator– 
prey dyads exhibiting divergent activity shifts (Figure 2b), as per our 
framework's expectations.

One explanation for why many predator– prey dyads had higher 
overlap with one another despite opposite responses to humans 
(i.e. prey refugia or prey switching; one ecological player becomes 
more nocturnal while the other becomes more diurnal) may be that 
human- avoidant prey can tolerate high overlap with a predator 
rather than tolerate high human activity (see Zbyryt et al., 2018). 
For instance, although black- tailed jackrabbits Lepus californicus 
had lower diurnal activity and bobcats Lynx rufus had higher diurnal 
activity in settings of high human activity, these species exhibited 
higher overlap with each other (see Supporting Information; Baker 
& Leberg, 2018). More than 70% of the predator– prey dyads that 
exhibited predator attraction reflected this phenomenon. Thus, 
hypothesis testing within our framework can highlight differences 
in risk trade- offs for predators and their prey in settings of high 
human activity. Our analyses also revealed that some predator– 
prey dyads exhibited similar diel responses to human activity (i.e. 
mutual avoidance or mutual attraction; both predator and prey be-
come more diurnal or nocturnal) yet decreased overlap with one 
another (Figure 2b). This finding may show maintenance of tempo-
ral partitioning between predators and prey at a fine scale, despite 
human- induced activity shifts (Ferreiro- Arias et al., 2021). For in-
stance, while leopards Panthera pardus and spotted deer Axis axis 
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exhibited decreased diurnal activity to mutually avoid high human 
activity, spotted deer avoided human activity to a lesser degree, 
ultimately reducing overlap between spotted deer and leopards 
(see Supporting Information; Carter et al., 2015). For prey, main-
taining fine- scale spatiotemporal partitioning with both natural 
and human predators could come at the cost of altered stress 
and fecundity (Tuomainen & Candolin, 2011) or increased overlap 
among competitors (Manlick & Pauli, 2020; Sévêque et al., 2020; 
Smith et al., 2018). Ecological outcomes for these scenarios might 
include increased intraspecific competition (Carter et al., 2015; 
Wang et al., 2015) and resource limitation (Muhly et al., 2011), 
rather than increased predation encounter risk, as key drivers of 
population dynamics.

We found no effect of functional traits on the change in diur-
nal activity ratios for terrestrial mammal predators and prey be-
tween paired settings of high and low human activity (Figure 3; 
n = 49 predators, n = 76 prey, 19 studies). It is possible that the 
variability of human activity across the studies obscured underly-
ing behavioural response patterns, especially given the relatively 
small number of studies (n = 19). It is also possible that in mam-
mals, behavioural responses to humans are more strongly driven 

by in- situ learning and experience than by the functional traits we 
tested. To examine these possibilities, researchers could use this 
framework to test how different types, magnitudes, and frequen-
cies of human activity influence the behavioural response of the 
same predator– prey dyads. Similarly, researchers might consider 
whether morphology or past experience with humans drives the 
behaviour of the focal animals.

Future applications of this framework should ensure that change 
in animal activity and predator– prey overlap is measured relative to 
peak human activity. The published studies in our analysis exhibited 
diurnal human activity, but the peak impacts of human presence and 
infrastructure can also be crepuscular or nocturnal. For instance, 
lights or generators may turn on at night, or humans may tend agri-
culture at dawn and dusk, leaving fields unattended during the heat 
of the day. If the onset of peak human activity coincides with either a 
predator or prey's peak in activity, human impacts on predator– prey 
overlap may be greater.

While our analysis revealed that, in paired settings of high human 
activity, predator– prey activity resembled all four predicted be-
havioural pathways, such an analysis is incomplete without concur-
rent measures of animal responses in space and time. In our review, 

F I G U R E  2  Human influence on predator– prey dyad (a) temporal activity and (b) temporal overlap based on review of camera trap studies 
between paired settings of low and high human use. (a) Lines reflect the relative magnitude and direction of the diel activity ratio toward 
nocturnality (−1) or diurnality (1) for each predator– prey dyad in paired settings of low to high human use (n = 178 predator– prey dyads, 19 
studies) to indicate the behavioural response pathway (e.g. mutual attraction, mutual avoidance, prey refuge, predator attraction). (b) Black 
dots represent the change in predator– prey dyad temporal overlap (∆) between paired settings of low and high human use, as grouped by 
corresponding behavioural response pathway (n = 167 predator– prey dyads, 16 studies). Red error bars represent estimated marginal means 
and ±95% confidence interval.

 13652656, 2023, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13892 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [14/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1129Journal of Animal Ecologyvan SCOYOC et al.

we found that studies seldom reported both temporal and spatial 
impacts of human activity on animal behaviour. Paired research 
designs that measured human impacts on both predators and their 
prey were similarly rare. Out of the 405 abstracts that warranted a 
full review, we excluded 155 studies that did not use camera trap 
array study designs, 75 studies for lacking concurrent data on mam-
mal predators and prey, 80 studies that did not adequately distin-
guish between high and low human use, 28 studies that had fewer 
than 10 camera sites or did not include temporal data and 48 studies 
with temporal data in the wrong format for our analysis. We suggest 
researchers apply this framework to local empirical data to test for 
site- specific or species- specific patterns in both space and time.

4  |  LINKING PREDATOR– PRE Y OVERL AP 
TO ECOLOGIC AL OUTCOMES

Our framework (Figure 1) provides testable hypotheses regarding 
the influence of humans on predator– prey behaviour and overlap. 
However, the measurement of human impacts on predator– prey 
overlap is only a first step to identifying whether species interac-
tions may change. Taken together, these concepts, as well as a few 
key considerations and additional empirical methods, can help re-
searchers link human- altered predator– prey overlap to broader 

ecological outcomes including predator diet, predation rates, com-
petitive exclusion, trophic interactions.

Most importantly, it is difficult to infer how altered behaviour and 
spatiotemporal overlap influence predation encounter rate without 
accounting for differences in predator and prey population density. 
Predator consumption relies heavily on prey density (Holling, 1959; 
Solomon, 1949). Recent extensions of density estimation methods, 
such as the random encounter staying time model, can allow for 
robust estimation of animal density without individual recognition 
(Nakashima et al., 2018). However, such methods rely on accounting 
for variation in detection by study, site, survey design, or species, 
which can vary widely (Moll et al., 2020). To be considered robust, 
human- impact studies that link animal behaviour to predation would 
ideally collect data on a wide array of metrics, beginning with be-
havioural response as a first step but also including demography, 
density, and abundance.

Another key consideration in linking predator– prey overlap to 
ecological outcomes is that altered overlap of dyads may not predict 
where or when predation events occur (Suraci et al., 2022). Prey might 
continue to avoid predators at fine scales, maintaining spatiotempo-
ral partitioning despite high overlap. In such cases, non- consumptive 
effects (i.e. stress that leads to lower fecundity) may emerge if prey 
employ energetically costly anti- predator behaviours to avoid both 
humans and predators (Frid & Dill, 2002; Soudijn et al., 2020). Pairing 

F I G U R E  3  The influence of functional traits on the change in diurnal activity of terrestrial mammals, based on a review of paired camera 
trap studies. The change in diurnal activity ratio was calculated between paired settings of low and high human activity for each species in 
each study (n = 49 predators, n = 76 prey, 19 studies).
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multi- species behavioural studies with demographic or physiological 
studies will be needed to determine whether consumptive or non- 
consumptive effects of predation change as a result of human- altered 
predator– prey overlap (e.g. Zbyryt et al., 2018).

Measuring human impacts on animal responses at the appropriate 
scale can also be key to accurately identifying ecological outcomes 
of behavioural shifts. Conceivably, predators and prey may respond 
to different human stimuli (including various auditory, olfactory and 
visual cues), and at different scales. This can lead to situations where 
one species may be attracted to human activity at a broad spatial scale 
(e.g. to forage on anthropogenic food sources), but both predator 
and prey avoid humans at fine spatial scales (e.g. Rogala et al., 2011). 
When possible, studies that measure animal behaviour across spatio-
temporal scales will be most informative. When this is not feasible, 
researchers might consider how the goal of the study and the ecology 
of the system correspond to trade- offs associated with choosing var-
ious sampling designs (e.g. see Steidl & Powell, 2006).

Comprehensive assessments of human influence on predator– 
prey interactions consider both spatial and temporal dimensions 
of predator– prey overlap, because prey may avoid predators in one 
dimension (i.e. space or time) despite high overlap in another dimen-
sion. If human activity increases predator– prey overlap in space, 
prey may still safely exploit risky places by foraging during predator 
downtimes (Beauchamp, 2007), though non- optimal foraging times 
may be energetically costly to prey (Kronfeld- Schor & Dayan, 2003). 
Methods like GPS telemetry and camera trapping facilitate infer-
ence on both spatial and temporal distribution simultaneously. 
Furthermore, using indices that simultaneously estimate predator– 
prey overlap in space and time, such as occupancy models with a 
continuous- time detection process (Kellner et al., 2022) or Bayesian 
time- dependent observation models (Ait Kaci Azzou et al., 2021), 
can avoid these issues and provide more accurate estimates of 
human impact on encounter probabilities. Applying our proposed 
framework to such inferences would provide a rigorous test of how 
humans influence predator– prey outcomes across dimensions.

As humans modify the contest between predators and prey, 
complex feedbacks among multiple players can obscure the true 
mechanisms driving an observed pattern. Human activity can influ-
ence each ecological player, while predator and prey simultaneously 
influence each other. As a result, it is often difficult to disentangle, 
for instance, whether a prey refuge pattern is the consequence of 
(a) prey attraction to human activity, or (b) prey exploitation of a 
predator- free zone. To resolve these types of uncertainty, research-
ers may consider using additional controlled experiments to further 
isolate and test the hypothesized drivers of an observed response to 
human activity (e.g. Sarmento & Berger, 2017).

While our framework explicitly considers predator– prey rela-
tionships as dyads, rarely are predators and prey in obligate pair-
ings. Human activity may influence prey choice, for example, when 
predators have multiple prey, or reshape multi- predator effects on 
prey with more than one predator (Sih et al., 1998). To advance pre-
dictions of how human activity will affect species interactions, it will 
be beneficial to apply this framework to combinations of predators, 

prey, and competitors (Mills & Harris, 2020). One promising avenue 
of research lies in comparing how species richness, composition, and 
food web structure influence predator– prey responses to human ac-
tivity (e.g. see Sévêque et al., 2020). Researchers can deploy these 
research designs to identify whether predators, prey, competitors or 
human disturbance are driving the predominant patterns of dietary 
preference and predation rate.

Future research might consider further investigation into how 
human influence on predator– prey overlap, encounter or predation, 
is linked to the functional traits (e.g. body size, hunting mode, circa-
dian rhythm) of each interactor. For instance, nocturnal prey may 
outperform diurnal human- avoidant predators forced to hunt at 
night, limiting encounter risk despite high overlap between predator 
and prey (Beauchamp, 2007). One successful approach to clarifying 
whether altered overlap results in altered predation is using multi-
species camera trap studies in tandem with diet composition studies 
(e.g. Smith et al., 2018). Pairing camera and diet data can allow re-
searchers to connect overlap to predation non- invasively, avoiding 
the more costly and effort- intensive research designs that use GPS 
telemetry clusters and animal necropsy data to estimate predation.

In certain cases, human influence on predator– prey overlap 
may be temporary and without lasting consequences for ecolog-
ical communities. For instance, if predators and prey habituate to 
human activity over time (Blumstein, 2016), encounter rates may 
be maintained, and the predator– prey response race may continue 
unaltered by humans. Yet in this case, the rise of human- wildlife 
conflict and use of lethal or non- lethal deterrents may in turn affect 
animal behaviour and predator– prey overlap (Manlick & Pauli, 2020). 
Researchers can use iterative experiments that measure how multi-
ple ecological players habituate or sensitize to human disturbance 
(e.g. Uchida & Blumstein, 2021) to better capture which of the four 
possible human- induced response pathways predict shifts in en-
counter risk over time.

Identifying thresholds of human activity that alter animal be-
haviour will be key to drawing useful inference from human impact 
studies and improving our understanding of when altered interac-
tions may have reverberating impacts across ecosystems. Examples 
of such studies include comparison of animal response to motorized 
versus non- motorized recreation (Larson et al., 2016), leashed versus 
unleashed domestic dogs (Reed & Merenlender, 2011), exurban ver-
sus suburban development (Merenlender et al., 2009; Smith, Duane, 
& Wilmers, 2019), dense versus dispersed oil development (Sawyer 
et al., 2020), and the influence of human presence versus the human 
footprint (Nickel et al., 2020; Suraci et al., 2021). Such measurements 
can aid in creating specific guidelines for human activity near wildlife. 
Ultimately, these research designs will help anticipate how predators 
and prey respond to human activity in rapidly changing landscapes.

5  |  CONCLUSIONS

Behavioural ecology is increasingly recognized as a valu-
able aspect of population and ecosystem management (Gaynor 
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et al., 2021), yet complex behavioural interactions among 
predators, prey, and humans (Kuijper et al., 2016) challenge the 
application of theory to practical solutions. Nonetheless, un-
derstanding species interactions remains key to the coexistence 
and persistence of wildlife, and ecosystem function, in settings 
with high human activity. For example, anthropogenic effects 
on prey may sometimes need to be minimized before preda-
tor recovery and predator– prey interactions can be restored 
(Lahkar et al., 2020). Unfortunately, the daunting task of study-
ing or modelling complex behavioural feedbacks among players 
in this ecological game has deterred progress in understanding 
the ecology of landscapes characterized by high human activity. 
Investment in models that explain how humans modify species 
interactions, rather than solely species richness or abundance, 
is critical to fundamental ecology and the implementation of 
science- based management and conservation practice. Adopting 
our framework can help researchers test for patterns of human 
influence on strongly interacting species and identify possible 
mechanisms driving broader ecological outcomes.
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