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Abstract 24 

Anthropogenic climate and land use change has accelerated the frequency of extreme climatic 25 

disturbances such as megafire. These megafires dramatically alter ecosystems and threaten the 26 

long-term conservation of economically and ecologically important species, including s. Recent 27 

work suggests that ungulate species may be able to adjust to the immediate effects of megafire 28 

by adjusting their movement and behavior, but whether these adjustments persist or change over 29 

time following these major disturbances is far less is understood. We take advantage of a rare 30 

research opportunity to examine how a dominant ungulate species, black-tailed deer (Odocoileus 31 

hemionus columbianus), adjusts its movement and behavior immediately following a megafire. 32 

We collected GPS data from 24 individual doe over the course of a year and fit these data to 33 

resource selection functions (RSFs) and hidden Markov movement models (HMMs) to assess 34 

whether and how deer alter habitat selection and behavioral decisions to adjust to novel 35 

landscape conditions following this megafire. We found compelling evidence of adaptive 36 

capacity across black-tailed deer following megafire, with deer modifying their habitat usage and 37 

behavior following megafire. Deer avoided exposed (chaparral) and severely burned areas 38 

immediately following megafire, but later altered these behaviors to eventually select for areas 39 

that burned at higher severities to potentially take advantage of enhanced forage in these 40 

recovering areas. These results suggest that despite their high site fidelity, this deer population, 41 

and similar ungulate species, can effectively navigate altered landscapes to track relatively 42 

sudden shifts in predation risk and resource availability. The successful adjustment of dominant 43 

ungulate species to extreme disturbances such as these could help facilitate resilience at broader 44 

ecological and trophic scales.  45 

 46 



1. Introduction 47 

Anthropogenically induced change in the 21st century continues to accelerate instances of 48 

extreme climatic disturbance around the globe (Stott, 2016). In fire-prone ecosystems, megafires, 49 

wildfires that surpass the size and severity of historical fires, have become increasingly prevalent 50 

(Linley et al., 2022). Fire has served an important ecological and evolutionary role in many of 51 

these ecosystems (McLauchlan et al., 2020), but climate and land use change have driven the 52 

occurrence of extremely large and severe wildfires, otherwise known as megafires. These 53 

megafires can dramatically affect ecosystems and the species that inhabit them (Nimmo et al., 54 

2022). Though many wild animal species in these fire-prone ecosystems have adaptations to 55 

coexist with their historic fire regimes (Jones et al., 2020; Pausas & Parr, 2018), novel megafires 56 

may challenge, and even overwhelm, the adaptive capacity of these species.  57 

 58 

 Wildfire continues to be a key tool for stewarding ecosystems around the world (Fletcher 59 

et al., 2021; Boisramé et al., 2017), but recent megafires far exceed the size, severity, and 60 

intensity of these wildfires. By quickly altering landscapes, megafire may impact how some 61 

species are able to navigate and use habitat. High severity fires, defined as fires that burn the 62 

dominant vegetation type in an ecosystem (i.e. trees in woodlands) (Keeley, 2009), can remove 63 

important structural resources from landscapes (Steel et al., 2021) and even cause direct 64 

mortality (Jolly et al., 2022). Changes in structural cover in these systems may alter interspecies 65 

interactions, such as predator-prey dynamics, by exposing prey species or by directly impacting 66 

the hunting success of predators (Doherty et al., 2022). At the same time, these high severity 67 

fires may also remove important vegetative food resources (i.e., forbs, grasses, seeds, etc.) and in 68 



turn directly impact herbivorous species (Rickbeil et al., 2017), which may go on to impact 69 

populations of species at higher trophic levels.  70 

 71 

 The capacity for species to effectively respond to these environmental changes caused by 72 

megafire may be closely tied to their ability to adapt and adjust to novel disturbance regimes. 73 

Recent work has documented the role plasticity plays in governing the adaptive capacity of 74 

species to other forms of global change (Hammond et al., 2018; Riddell et al., 2018; Schell et al., 75 

2018). For larger wildlife, plasticity in movement and behavior play a significant role in allowing 76 

individuals to adjust to changes in their local environments (Suraci et al., 2021; Gaynor et al., 77 

2018). For fire specifically, larger wild animal species may partition their time across recently 78 

burned landscapes to take advantage of new resources or avoid risky areas (Nimmo et al. 2019). 79 

 80 

Ungulates are dominant species in many fire-prone ecosystems around the world, and the 81 

way they respond to megafire events may go on to have important consequences for other 82 

species they interact with. Under historic fire regimes, several ungulate species adjusted their 83 

movement and habitat selection decisions to avoid or take advantage of recently burned areas 84 

(Roerick et al., 2019; Cherry et al., 2018). Past work has documented a “magnet effect” across 85 

several ungulate species, where species select moderately burned areas that have improved 86 

forage post-fire (Allred et al., 2011; Archibald et al., 2005). In more severe fire events, recent 87 

work also suggests that behavioral plasticity may grant some ungulate species a buffer to the 88 

short-term impacts of megafire (Kreling et al., 2021), but whether these adjustments continue to 89 

protect ungulate species in the longer-term following megafire remains to be seen. The short- 90 

and long-term responses of ungulates to severe fire may also be modulated by the seasonality of 91 



fire events, with fires potentially increasing scarcity of rare vegetative resources during the dry 92 

seasons or limiting required resources during energetically costly periods of the year (i.e. spring 93 

breeding season) (Proffitt et al., 2019).  94 

 95 

In this study, we examine the long-term consequences of megafire on an ecologically and 96 

economically important Californian ungulate, the black-tailed deer (Odocoileus hemionus 97 

columbianus), at the Hopland Research and Extension Center. We use GPS-collar data collected 98 

from 24 deer across one year to observe how long changes in black-tailed deer movement and 99 

behavior persist following the 2018 Mendocino Complex fire, the largest wildfire in recorded 100 

Californian history at the time. We use resource-selection functions to examine black-tailed deer 101 

habitat selection following megafire across time to observe whether and when deer habitat 102 

selection returns to pre-fire conditions. In addition, we also use Hidden-Markov Movement 103 

models (Michelot et al., 2016) to assess how fine-scale behavioral decisions may have been 104 

affected by high severity fire.  105 

 106 

We predicted that deer would preferentially use habitat that burned at low severity 107 

immediately following the fire to avoid exposure. Conversely, we predicted black-tailed deer 108 

would select for areas that burned at moderate severity the following growing season due to their 109 

increased nutritional value. We predicted that changes in habitat selection would persist through 110 

the study (1-year post-fire). We anticipated that black-tailed deer would adjust their behavioral 111 

decisions to make quick, directed movements through severely burned areas, again to avoid 112 

being exposed, and that this would be apparent throughout the entire study period. An improved 113 

understanding of the long-term capacity of deer to effectively cope with dramatic landscape 114 



change could help identify if further conservation interventions are needed for populations across 115 

the Western US following megafire, as well as for other ungulate populations around the world.  116 

 117 

2. Methods 118 

2.1 Study Site and Fire History 119 

We conducted this study at the Hopland Research and Extension Center (Hopland hereafter) in 120 

Mendocino County of Northern California (5,300 acres, 39°00′ N, 123°04’ W). Hopland is 121 

composed of a diverse set of vegetation types including chaparral shrublands, oak woodland 122 

savannah, and open grassland. Hopland is characterized by a Mediterranean climate with cool, 123 

wet winters and warm dry summers. Hopland also operates as a working rangeland landscape, 124 

containing a sheep farming facility and several agricultural plots throughout the property.  125 

 126 

Figure 1 - Map of fire severity across the Hopland Research and Extension Center perimeter. 127 

Fire severity was quantified as the Differenced Normalized Burn Ratio (dNBR).  128 



In late July of 2018, the southern half of the Mendocino Complex Fire, the River Fire, 129 

swept through the northern half of Hopland, burning approximately 3,400 acres (65%) of the 130 

property. The whole complex fire burned 459,123 acres total and is currently the 3rd largest 131 

wildfire in California’s recorded history (CALFIRE-FRAP, 2022). Fires in this region typically 132 

burn frequently at relatively low severities in the more open woodland and grassland habitats and 133 

more infrequently, but more severely in the dense shrubland chaparral habitats (Syphard and 134 

Keeeley, 2020). The River Fire burned a much larger contiguous area and much more severely 135 

than recent fires within Hopland. 136 

 137 



 138 

2.2 Monitoring Black-tailed Deer Movement and Home Range Estimation 139 

We deployed GPS-collars (Vertex Plus and Lotek Iridum Track M) across 16 individual does 140 

between July 2018 and July 2019. These data were used opportunistically to observe the effects 141 

of megafire on deer movement and behavior. We programmed all collars to record GPS locations 142 

once per hour. Deer were captured using Clover traps and were manually restrained to place 143 

collars on, without the use of chemical immobilizers. We monitored deer remotely post-capture 144 

for multiple days to ensure that each deer remained healthy following capture and collaring.  145 

 146 

 In order to observe how deer movement and behavior changed over time following 147 

megafire, we subset the collected GPS data temporally into three time periods: just after the fire 148 

(August - October 2018), the first spring green up following the fire (March - May 2019), and 149 

one full year post-fire (August - October 2019) (Table 1). Within each time period, we only 150 

included individual deer that had at least 500 recorded GPS locations for analyses. We removed 151 

8 erroneous GPS locations that were greater than 2km from their consecutive points. 152 

 153 

For each deer and within each study period, we used the two months of collected GPS 154 

data to estimate individual home range sizes. We used 95% Kernel Utilization Densities (KUD) 155 

in the adehabitatHR package in R to create these home ranges (Barker et al., 2019; Calenge, 156 

2006; R Core Team, 2013). Of the 16 unique individuals collared across these 3 time periods, 10 157 

individuals maintained their collars across 2 or more study periods, resulting in 26 study period-158 

specific home ranges that overlapped the Mendocino Complex fire burn perimeter. To assess 159 

whether deer home range sizes continue to change following megafire, we used paired Welch’s 160 



unequal variance t-test to compare doe home range sizes 1) just after fire (“Recently Burned”), 2) 161 

the first spring following fire (“First Spring”), and 3) one full year post-fire(“1 Year Post Fire”).  162 

 163 

2.3 Environmental Covariates 164 

We compiled fire and other environmental covariates alongside deer movement data in order to 165 

compare black-tailed deer movement responses to megafire over time. We predicted that fire 166 

severity, predation risk, and vegetation type, and time since burning would be strong predictors 167 

of both deer habitat selection and deer movement decisions following megafire. Originally, we 168 

planned to include NDVI as a measure of forage availability across the landscape, we found 169 

measures of NDVI were highly correlated with measures of fire severity, our primary covariate 170 

of interest. Therefore, we defaulted to including fire severity and removing NDVI. To quantify 171 

fire severity on the landscape, we calculated the differenced Normalized Burn Ratio (NBR) 172 

collected via Sentinel-2 (Sentinel Hub, 2021) satellite imagery (10m resolution) from both before 173 

and after the fire. NBR was calculated using the following equations (Keeley, 2009): 174 

∆NBR = NBRprefire - NBRpostfire 175 

NBR = Near-infrared (NIR) – shortwave infrared (SWIR) / Near-infrared (NIR) + shortwave 176 

infrared (SWIR) 177 

 178 

We also included a quadratic term for fire severity to examine whether deer may 179 

preferentially select for moderately burned areas that, according to the magnet effect, may 180 

eventually have more nutritious forage.  181 

 182 



To account for predation risk across the landscape for this study, we included a high-183 

resolution mountain lion habitat suitability map produced for the entire State by Dellinger et al. 184 

2020 in our analyses (Dellinger et al. 2020). Mountain lions are the primary predator of black-185 

tailed deer in this system, and we use this habitat suitability map to serve as important proxy of 186 

potential predation risk for where deer may be more likely to encounter mountain lions across 187 

our study site.  188 

 189 

 Finally, the short and long-term effects of fire on deer habitat may be directly related to 190 

the dominant vegetation type of that habitat. For example, grassland ecosystems typically 191 

recover faster following fire relative to shrubland and woodland systems (Halofsky et al., 2011), 192 

which may lead deer to preferentially choose these areas in the time following megafire. We 193 

classified the study site into three broad land cover categories: woodland, shrubland (chaparral), 194 

and grassland. To do this, we hand digitized vegetation layers using high-resolution (<1 meter) 195 

aerial imagery from the National Agriculture Imagery Program (2014-2015). In 2015, we 196 

ground-truthed these digitizations by checking 50 randomly generated points across the study 197 

site to validate classifications (results were 98% accurate).  198 

 Each of these environmental rasters (fire severity, mountain lion habitat suitability 199 

predation risk, and vegetation cover were clipped to the property boundary of Hopland REC 200 

from which we limit the spatial bounds of our study.  201 

 202 

2.5 Resource Selection Functions 203 

We used Resource Selection Functions (RSFs) to assess black-tailed deer habitat selection across 204 

each time period. We modeled habitat selection for all time periods combined to improve 205 



interpretability of model results. We included a random effect of “Deer ID” within our RSFs to 206 

account for individual differences in behavior and resource availability for each deer (individual 207 

deer retained their same “Deer ID” across time periods). For each GPS-point we generated 4 208 

additional random “non-use” points from within each deer’s estimated KUD home range. Non-209 

use points were stratified by time period so that the number of non-use points had the same ratio 210 

across time periods as the true use points. We compared “use” and “non-use” GPS points using a 211 

logistic regression via the lme4 package in R (, R Core Team, 2021; Bates et al., 2015).  212 

 213 

We used an a priori hypothesis driven approach to select a model to describe deer habitat 214 

selection. We included fire severity, fire severity squared, predation risk, vegetation type 215 

(chaparral, woodland, or grassland), and time since burn as covariate predictors for this RSF. We 216 

used woodland as the reference vegetation category within these RSFs. We randomly sampled 217 

“time since burn” for each non-use point as a randomly selected date from its respective time 218 

period. Prior to modeling, we standardized each of the included covariates (mean = 0, standard 219 

deviation = 1).  220 

 221 

To assess goodness of fit of the RSF model, we used the performance package in R 222 

(Lüdecke et al., 2021) to calculate marginal and conditional R2 values for the model and visually 223 

inspect overall model fitting.  224 

 225 

2.6 Hidden Markov Movement Models 226 

To assess how deer behavioral decisions were impacted by megafire, we fit a hidden Markov 227 

model (HMM) across all time periods combined within our study using the “moveHMM” 228 



package within R (Michelot et al., 2016). The number of behavioral states to model must be 229 

chosen before fitting the hidden Markov model, but recent work highlights pitfalls in drawing 230 

inference from too many modeled states (Pohle et al., 2017). Therefore, we considered HMMs 231 

with 2 behavioral states (1 = resting, 2 = traveling) to increase interpretability and to specifically 232 

observe whether deer traveling behavior changes across landscape variables to potentially avoid 233 

perceived risks (exposure, predation risk, etc.). We used modeled step lengths (via von Mises 234 

distributions) and turning angles (via gamma distribution) between consecutive points of a 235 

particular animal’s track to characterize these 2 behavioral states. We chose starting values for 236 

step lengths and turning angles following guidance from Michelot et al., 2017 (Michelot et al., 237 

2017).  238 

 239 

We used the Viterbi algorithm to predict and assign behavioral states fto each GPS point 240 

and used these to create activity budgets (the proportion of each behavioral state) for deer within 241 

each time period (Langrock et al., 2012). We used a Chi-squared test to assess whether the 242 

proportions of the two behavioral states was significantly different across time periods. Finally, 243 

we fit the hidden Markov model with a set of a priori selected covariates (Severity + Predation 244 

Risk + Time Since Burn + Vegetation Cover + Severity*Time Since Burn) to estimate how the 245 

probability of transitioning between behavioral states changes as a function of fire severity, time 246 

since burn, and other environmental factors.  247 

 248 

 We assessed goodness of fit for the HMM using pseudo-residuals drawn from the fit 249 

model. Pseudo-residuals of the step length parameter should be normally distributed given good 250 

model fit (Farhadinia et al., 2020; Patterson et al., 2009). Therefore, we visually inspected step 251 



length pseudo residuals and used a Shapiro-Wilk normality test using a random subset of pseudo 252 

residual values (n = 1000).  253 

 254 

3. Results 255 

3.1 Home Range Comparison Across Seasons  256 

The average deer home range size across all time periods was 0.90 km2 (SD ± 0.49). Deer home 257 

range sizes across time periods varied. The average home range size was 0.94 km2 (SD ± 0.45) 258 

during the “Recently Burned” period, 1.15 km2 (SD ± 0.44) during the “First Spring” period, and 259 

0.38 km2 (SD ± 0.14) during the “First Spring” time period, and X during the “1 Year Post Fire” 260 

time period (Table 1; Figure 2). We found no meaningful differences between deer home range 261 

sizes during the “Recently Burned” and “First Spring Period (t = -1.00, df = 17.08, p-value = 262 

0.33), but did find significant differences in deer home range sizes between the “Recently 263 

Burned” and “1 Year Post Fire” periods (t = 3.47, df = 10.05, p-value = 0.01), as well as between 264 

the “First Spring” and “1 Year Post Fire” periods (t = 5.25, df = 13.02, p-value = 0.0002). 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 



Study Period Dates n (Number of 
Collared Deer) 

Average Home 
Range Size 
(km2) 

Home Range 
Size SD 

Recently Burned August 1, 2018 – 
October 1, 2018 

n = 9 0.94 ±0.45 

First Spring March 1, 2018 – 
May 1, 2018 

n = 11 1.15 ±0.44 

1 Year Post Fire August 1, 2019 – 
October 1, 2019 

n = 6 0.38 ±0.14 

 274 

Table 1 - Table of deer collaring efforts along with average home range size and standard 275 

deviations for each study period. Deer were opportunistically captured and collared across 276 

Hopland REC annual during the summer and fall. For the purposes of this study, collected deer 277 

movement data was subset to include deer whose home ranges overlapped with the Mendocino 278 

Complex Fire. Furthermore, we truncated deer movement data into 3 specific time periods to 279 

create “snapshots” of how deer habitat selection and behavior may be changing over time: 280 

“Recently Burned”, “First Spring” (the first spring following the wildfire), and “1 Year Post 281 

Fire”.  282 

 283 



 284 

Figure 2 – Boxplot summaries of black-tailed deer (O. hemionus columbianus) home range size 285 

estimation across time periods. Individual deer home ranges were estimated using 95% Kernel 286 

Utilization Densities (KUD) in the adehabitatHR package in R (Calenge, 2006; R Core Team, 287 

2013). Home range sizes across deer were summarized in the above plot for each of the study 288 

periods of interest: Recently Burned, the first spring following wildfire, and 1 full year post fire 289 

(from left to right).  290 

 291 

3.2 Resource Selection Functions 292 

Overall, deer avoided areas that burned at both high and moderate (ie Severity Squared) 293 

severities, as well as areas of high predation risk (Appendix 1 - Table S1.1). However, deer 294 

habitat selection of fire burned areas appears to change over time as an interaction with time 295 

since burn. During the “Recently Burned” time period, deer are more likely to avoid high 296 



severity areas (Figure 3). Conversely, fire severity has little effect on deer habitat selection 297 

during the “First Spring” time period, and deer appear to select for higher severity burned areas 298 

during the final “1 Year Post Fire” period (Figure 4).   299 

 300 

 Deer showed a preference for woodland habitat and avoided both grassland and chaparral 301 

following the fire. Vegetation cover preferences appear to persist across burn severities (Figure 302 

S1.1) as well as over time.   303 

 304 

 305 

 306 

Figure 3 – Beta coefficients (and their associated standard error bars) for each covariate in the 307 

black-tailed deer (O. hemionus columbianus) Resource Selection Function model.  308 

 309 



 310 

Figure  4 –  RSF response curve of the effects of fire severity and Time Since Burn on black-311 

tailed deer (O. hemionus columbianus) habitat selection. To visualize the interaction, we used the 312 

midpoint date of each time period to represent a categorical “Time Since Burn” variable in the 313 

plot.  314 

 315 

3.3 Hidden Markov Model Results 316 

We used the Hidden Markov Model to fit the deer trek data into 1 of 2 states: Resting or 317 

Traveling. State 1 (Resting) was characterized by shorter mean step lengths (mean = 16.47 (± 318 

0.67), SD = 13.72 meters (± 0.71)) and wider turning angles between points (mean = -3.11 319 

radians (± 0.07), concentration = 0.39 (± 0.03). State 2 (Traveling) had long step lengths (mean = 320 

120.83 meters (± 2.66), SD = 107.53 meters (± 1.78)) and smaller turning angles between GPS 321 

fixes (mean = -0.03 (± 0.07), concentration = 0.31 (± 0.03) (Table 2). We found a significant 322 

difference in the composition of behavioral states between time periods, with deer spending a 323 



greater proportion of time traveling than resting immediately following fire and during the first 324 

spring (2 = 282.48, df = 2, p-value < 0.001) (Appendix S1 – Figure S1.3).    325 

 326 

Behavioral State Parameters 

 State 1 (Resting) State 2 (Traveling) 

Step Mean (m) 16.48 (15.84, 17.15) 120.83 (118.17, 123.55) 

Step SD (m) 13.72 (13.01, 14.46) 107.53 (105.75, 109.34) 

Angle Mean (radians) -3.11 (-3.18, -3.04) -0.03 (-0.10, 0.04) 

Angle Concentration  0.39 (0.36, 0.43) 0.31 (0.28, 0.33) 

   

Covariate Transition Probability Coefficients 

Covariate Resting → Travel Travel → Resting 

Intercept 0.12 (NA) -1.51 (NA) 

Severity 0.05 (0.001, 0.11) * -0.13 (-0.18, -0.09) * 

Time Since Burn -0.15 (-0.20, -0.10) * 0.15 (0.10, 0.20) * 

Predation Risk -0.14 (-0.19, -0.08) * -0.06 (-0.11, -0.01) * 

Distance to Water 0.04 (-0.01, 0.09) -0.002 (-0.05, 0.05) 

Severity Squared 0.06 (0.01, 0.10) * -0.019 (-0.06, 0.02) 

Chaparral -0.80 (NA) 0.14 (NA) 

Woodland -0.54 (NA) 0.67 (NA) 

Grassland -0.44 (NA) 0.30 (NA) 

Severity * Time Since Burn -0.01 (-0.07, 0.04) 0.14 (0.09, 0.19) * 

 327 



Table 2 – Estimated step lengths and turning angles for each modeled behavioral state (State 1 = 328 

resting and State 2 = traveling) produced from the Hidden Markov Model. Covariate regression 329 

coefficients for the transition probabilities between states are also listed. Significant predictors of 330 

behavioral transitions are marked with an asterisk (*). Lower and upper confidence interval 331 

bounds are listed for behavioral state parameters and continuous regression coefficients 332 

(vegetation cover was categorical in the Hidden-Markov model).   333 

 334 

Fire severity had a variable effect on deer behavioral states depending on the degree of 335 

severity, the amount of time that had passed since burn, and the type of vegetation the individual 336 

deer is moving through. Black-tailed deer were significantly more likely to transition towards 337 

making quick, directed movement in areas that burned at high severity, but only in the “Recently 338 

Burned” time period (mean = 0.14 (± 0.05)). During this same time period, deer spent more time 339 

resting in woodland areas relative to other vegetation types (Appendix S1 – Figure S1.2). 340 

 341 

Pseudo residuals drawn from the HMM suggested good model fit for the deer track data. 342 

Overall, plotted pseudo residuals had minimal autocorrelation (Appendix - Figure S1.4) and 343 

appeared normally distributed, except at the extreme ends of step lengths (Appendix S1 - Figure 344 

S1.5, Appendix S1 - Figure S1.6). We failed to reject the null hypothesis of the Shapiro-Wilks 345 

significance test (W = 0.99797, p-value = 0.2728), suggesting pseudo-residuals are drawn from a 346 

normal distribution.  347 



 348 

 349 

Figure 5 – Behavioral state transition probabilities of black-tailed deer (O. hemionus 350 

columbianus) across fire severity and time periods following fire. Predicted effects of fire 351 

severity and time since burn on transition probabilities between behavioral states. Plot a) displays 352 

the probability of transitioning from a resting state to a traveling state as severity increases across 353 

the three time periods (“Recently Burned”, “First Spring” and “1 Year Post Fire”). Plot b) 354 

displays the probability of transitioning from a traveling state to a resting state as severity 355 

increases across the three same time periods. Note that y-axis scaling of plots a and b are 356 

different. 357 

 358 

4. Discussion 359 

Black-tailed deer habitat selection is influenced by landscape-scale impacts of megafire, but the 360 

specific behavioral choices made by these animals varies with time following fire. As previous 361 

a b 



work has outlined, estimated ungulate home ranges are larger following megafire, but this effect 362 

does not persist over time. We found that deer home range size was significantly smaller 1-year 363 

post-fire than home range sizes immediately following megafire (Figure 2). Deer habitat 364 

selection in response to megafire also appears to change over time following megafire. Directly 365 

following megafire, deer strongly avoided areas that burned at high severity, but this effect 366 

waned in the initial spring months following fire and inverts by the 1-year post-fire time period, 367 

with deer selecting for habitat that burned at higher severities instead (Figure 4). Similarly, deer 368 

were more likely to take quick, direct movements through high severity areas immediately 369 

following megafire, but this effect diminishes over the course of the year (Figure 5b). Our 370 

findings suggest that megafire may present the greatest threat to ungulate populations during and 371 

immediately following the fire event. However, black-tailed deer, and similar ungulate 372 

populations, may have some degree of behavioral plasticity to allow them to adjust their habitat 373 

usage and behavior following megafire to persist in dramatically converted landscapes, and 374 

eventually take advantage of the resulting resources that become available over time.   375 

 376 

 Fire severity had a profound influence on habitat selection and behavior over the course 377 

of the study, but the exact realized effect of severity on deer behavioral responses varied 378 

depending on other environmental factors. For example, severity by itself was an important 379 

predictor of deer habitat selection, but we found that the direction of selection (against high 380 

severity areas vs towards high severity areas) changed as an interaction with the amount of time 381 

that had passed since the fire burned. As observed in previous studies (Kreling et al., 2021), 382 

black-tailed deer avoided high severity burned areas in the immediate aftermath following the 383 

fire, potentially to avoid exposure to predators in cover-less areas or to select for areas with 384 



higher forage availability. During the first spring green-up following megafire, however, we 385 

found that deer began to select for areas that burned at moderate severities (Figure 3). This may 386 

support the occurrence of a “magnet effect” as observed in several other ungulate studies where 387 

ungulate species preferentially choose to use recently burned areas that have enhanced forage 388 

(Raynor et al., 2015; Gureja and Owen-Smith, 2002). Finally, and contrary to our initial 389 

hypotheses, we found that deer actually selected for high severity burned areas during the final 390 

time period of the study (“1-Year Post-Fire”). We expected that the high severity burned areas 391 

would be depleted of resources for the duration of our study, but these results suggest that once 392 

these severely burned areas are able to recover, they may provide increased resources (Funk et 393 

al., 2016) to herbivorous species that are able to effectively track these recovering resources. 394 

 395 

 Deer movement behaviors in relation to fire also changed over the course of the study. 396 

Severity had a significant effect on deer behavioral states as well (Appendix S1 – Table S1.1), 397 

but we found that movement decisions varied significantly with the interaction between severity 398 

and the amount of time that had passed since fire. Initially following megafire, we found that 399 

deer were more likely to travel quickly (State 2) through severely burned areas and spent more 400 

time resting (State 1) in low severity and woodland areas. This strategy may optimize their 401 

ability to avoid spending too much time in riskier, exposed areas, and more time in the limited 402 

areas that contain food and shelter resources they require (Nimmo et al. 2019). Immediately 403 

following megafire, deer seem to be moving across larger areas (Figure 2) using frequent, travel-404 

centered movements, all with far less available food to them. This potentially results in the 405 

decreased body condition of ungulates following megafire observed in recent studies (Kreling et 406 

al. 2021). However, this strategy does not appear to persist in the latter time periods of the study, 407 



as the relationship between fire severity and the “travel” behavioral state diminishes over time 408 

and eventually flips by the 1-Year Post-fire time period. Black-tailed deer in this study appear to 409 

have great capacity for short-term behavioral plasticity to allow quick adjustments of their 410 

behavioral decisions as disturbance and recovery occur. The initial drawbacks of high site 411 

fidelity following megafire may be offset by the eventual regrowth of increased vegetative 412 

resources in burned areas that deer can take advantage of as time passes, facilitating their choice 413 

to remain in these areas following fire (Morrison et al., 2021).  414 

 415 

 Changes in deer habitat selection and behavior over time will likely depend on how and 416 

when vegetation cover recovers over time. We found that deer strongly selected for woodland 417 

habitat and, as expected, strongly selecting against chaparral habitat. Chaparral burns naturally at 418 

high severities, and these areas become very exposed following wildfire. Deer likely avoided 419 

these open areas to avoid conspicuous encounters with predators (Pierce et al., 2004). We did not 420 

find a relaxation in the avoidance of high predation risk areas over time following wildfire as 421 

anticipated, but predator avoidance may instead be represented by the selection against fire 422 

severity and/or certain vegetation type parameters within the model. Future work that utilizes 423 

concurrent movement data from both ungulates and their predators could help fill this gap by 424 

explicitly examining how predator-prey interactions change following megafire and elucidate 425 

whether and for how long these events amplify or diminish the intensity of these interactions 426 

(Doherty et al., 2022).  427 

 428 

 During this study, we observed a preference for burned areas by black-tailed deer in the 429 

latter time periods, potentially highlighting some of the benefits of returning wildfire to fire 430 



adapted ecosystems. Whereas megafire is a more extreme example of fire disturbance, more 431 

moderate disturbances such as prescribed fire and/or managed wildfire are known to perform 432 

important ecological work in maintaining key ecosystem functioning for local communities 433 

(Sangha et al., 2021) and generating improved habitat and resources for wildlife (Connor et al., 434 

2022), without the more deleterious impacts created initially by megafire. These managed 435 

wildfire approaches also serve an important function in reducing the incidence of megafire 436 

events by promoting landscape heterogeneity and reducing continuous fuel loads (Coppoletta et 437 

al., 2016; Stephens et al., 2014). Thus, utilizing fire management may simultaneously 438 

accomplish important wildlife conservation goals (habitat creation and maintenance) and wildfire 439 

management goals (megafire prevention) in similar fire-prone ecosystems. 440 

 441 

 We found evidence to suggest deer are resilient to the impacts of megafire over the 442 

course of a relatively short, 1-year time scale, but more work is necessary to understand whether 443 

these initial responses translate into longer term resilience. The lagged effects of megafire may 444 

present more challenges to species by altering longer cycles in resource availability (Abella et 445 

al., 2015) as well as interspecies interactions (Nimmo et al., 2021). For example, in oak 446 

woodland savannas where acorn masting is a primary food resource for many herbivorous 447 

species (Schnurr et al., 2002; McShea et al., 1993), megafires that top-kill mature oak trees could 448 

dramatically alter the availability of these resources until oaks are able regenerate and begin 449 

masting again. These indirect impacts could have powerful effects on future population 450 

dynamics such as in fitness and reproduction across the previously burned landscape. 451 

 452 

5. Conclusion 453 



Climate change and climatic disturbances will likely have a more severe impact on species that 454 

are unable to adjust their behavior to accommodate sudden changes in their environments. 455 

Despite having naturally high site fidelity in the region of our study, we found that black-tailed 456 

deer have a great deal of adaptive capacity to change their movements and behavior to 457 

adequately respond to the impacts and eventual resources following megafire. This adaptive 458 

capacity may also buffer similar ungulate species from other types of acute disturbances. 459 

Resilience of these dominant ungulate species could help facilitate broader ecological resilience 460 

at higher environmental and trophic scales following such disturbances. We can assist this by 461 

using land and fire management to produce the benefits created by wildfire while simultaneously 462 

avoiding the immediate drawbacks of megafire on ungulates. 463 

 464 
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Appendix – S1 Additional Figures 614 

 615 

 616 

Covariate Beta 

Coefficient 

Standard 

Error 

p-Value 

Intercept -1.234 ± 0.051 <0.001 

Severity -0.022 ± 0.007 0.001 

Severity Squared -0.019 ± 0.005 <0.001 

Predation Risk -0.077 ± 0.007 <0.001 

Chaparral -0.381 ± 0.017 <0.001 

Grassland -0.129 ± 0.016 <0.001 

Time Since Burn 0.013 ± 0.009 0.147 

Distance to Water 0.004 ± 0.006 0.508 

Severity * Time Since Burn 0.146 ± 0.007 <0.001 

 617 

Table 2 – Beta-coefficients, standard error and p-value estimates for each covariate of the black-618 

tailed deer (O. hemionus columbianus) resource selection function model. 619 

 620 

 621 

Figure S1.1 – RSF response plot of the effects of vegetation type and fire severity on black-taled 622 

deer (O.hemionus columbianus) habitat selection.  623 



 624 
Figure S1.2 - Plotted behavioral state transition probabilities of black-tailed deer (O. hemionus 625 

columbianus) across fire severity and across vegetation types. Predicted effects of fire severity 626 

and time since burn on transition probabilities between behavioral states. Plot a) displays the 627 

probability of transitioning from a resting state to a traveling state as severity increases across the 628 

three vegetation types (“Woodland”, “Grassland” and “Chaparral”). Plot b) displays the 629 

probability of transitioning from a traveling state to a resting state as severity increases across the 630 

three same time periods. Note that y-axis scaling of plots a and b are different. 631 
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 640 

 641 
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 643 

 644 



 645 

 646 
 647 

Figure S1.3 – Activity budgets for black-tailed deer (O, hemionus columbianus) during each time 648 

period. Activity budgets show the proportion of each modeled behavioral state (State 1  649 

= resting; State 2 = traveling). The proportion of time spent in each behavioral state changes over 650 

time following fire.  651 
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 660 



 661 

Figure S1.4 – ACF plot of step length residuals from the fit hidden-Markov model.  662 
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 675 

 676 

 677 

 678 

Figure S1.5 – Plotted histogram of step-length pseudo residuals from fit hidden Markov model. 679 

We drew a random sample of pseudo-residuals from the fitted HMM to check goodness of fit of 680 

the model (n = 1000). In cases of good model fit, pseudo residual step lengths should be 681 

normally distributed.  682 
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 688 
 689 

Figure S1.6 – Quantile-Quantile (QQ) plot of step length pseudo residuals from the fit hidden 690 

Markov model. We drew a random sample of pseudo-residuals from the fitted HMM to check 691 

goodness of fit of the model (n = 1000). Pseudo residuals for follow a linear line on the QQ-plot 692 

in cases of good model fit.   693 
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