Increasing ozone concentrations in marine boundary layer air inflow at the west coasts of North America and Europe

D. D. Parrish1, D. B. Millet2, and A. H. Goldstein3

1NOAA Earth System Research Laboratory, Chemical Sciences Division, 325 Broadway R/CSD7, Boulder, CO 80305, USA
2Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
3Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA

Received: 9 June 2008 – Accepted: 24 June 2008 – Published: 22 July 2008

Correspondence to: D. D. Parrish (david.d.parrish@noaa.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

A rigorous method is presented for determining the ozone concentration in the onshore flow of marine air at the North American west coast. By combining the data available from all marine boundary layer sites with simultaneous wind data, decadal temporal trends of MBL ozone concentrations in all seasons are established with high precision. The average springtime temporal trend over the past two decades is 0.46 ppbv/yr with a 95% confidence limit of 0.13 ppbv/yr, and statistically significant trends are found for all seasons except autumn, which does have a significantly smaller trend than other seasons. The average trend in mean annual ozone concentration is 0.34±0.09 ppbv/yr. These decadal trends at the North American west coast present a striking comparison and contrast with the trends reported for the European west coast at Mace Head, Ireland. The trends in the winter, spring and summer seasons compare well at the two locations, while the Mace Head trend is significantly greater in autumn. Even though the trends are similar, the absolute ozone concentrations differ markedly, with the marine air arriving at Europe in all seasons containing 7±2 ppbv higher ozone concentrations than marine air arriving at North America. Further, the ozone concentrations at the North American west coast show no indication for stabilizing as has been reported for Mace Head. In a larger historical context the background boundary layer ozone concentrations over the 130 years covered by available data have increased substantially (by a factor of two to three), and this increase continues at present, at least in the marine boundary layer (MBL) of the Pacific coast region of North America. The reproduction of the increasing trends in MBL ozone concentrations over the past two decades as well as the difference in the ozone concentrations between the two coastal regions will present a significant challenge for global chemical transport models. Further, the ability of the models to at least semi-quantitatively reproduce the longer-term, historical trends may an even greater challenge.
1 Introduction

Reliably establishing the temporal trends of background ozone concentrations in the northern mid latitudes is very important to our understanding of the budget of tropospheric ozone. The majority of anthropogenic precursors of ozone are emitted at these latitudes, and these emissions have increased over the last century, most dramatically beginning around 1950 (van Aardenne et al., 2001). This increase began first over North America and Europe, and more recently has accelerated over Asia. In about 1970 emissions from Europe and North America began to stabilize and since have decreased (RETRO, 2007). This decrease has been significantly more rapid for volatile organic carbon species than for the oxides of nitrogen, particularly in North America. In contrast emissions from Asia continue to increase (RETRO, 2007). The ability of global chemical transport models to reproduce changes in tropospheric ozone that have occurred in response to these emission changes is an important test for these models (e.g. Fusco and Logan, 2003). Indeed, Activity 1 of the WCRP-SPARC and IGBP-IGAC initiative – Atmospheric Chemistry and Climate – comprises a 20–25 year hindcast of tropospheric ozone and aerosols. However, for such tests to achieve maximum success it is critical that analyses of field observations characterize the temporal trends of the tropospheric ozone concentrations as accurately and precisely as possible.

Establishing the temporal trends and the absolute magnitude of background ozone concentrations is also important from the perspective of local and regional air quality control. The concentration of ozone transported into a region determines how much locally produced ozone can be added before exceeding air quality standards. As peak ozone levels are decreased due to local and regional air pollution control measures, the background concentration becomes even more important when considering the potential efficacy of future air pollution control measures. Also, increasing background ozone levels can offset the benefits of these local and regional control measures (e.g., Jacob et al., 1999).

The earliest trend analyses of ozone concentrations that were based upon tech-
Techniques thought to yield reliable results (Volz and Kley, 1988; Staehelin et al., 1994) indicated that ozone increased by at least a factor of two in near-surface air at suburban to remote regions of Europe between the late 1800s and the early 1980s. There is concern regarding the confidence that can be placed in these early measurements, but considerable effort was put into establishing this confidence. More recent trend analyses, as summarized by Oltmans et al. (2006), have found significant regional differences, and no consistent increase or decrease in tropospheric ozone concentrations have been established, particularly for the northern mid latitudes.

Over continents competing effects make it difficult to characterize background ozone. Fiore et al. (2002) conclude that over North America the observed decrease in the high end of the ozone probability distribution in surface air over the United States reflects reduction of domestic hydrocarbon emissions, while the increase in the low end reflects, at least in their model, rising Asian emissions. The ozone trends over the 1987–2004 time period at nine rural sites in the western continental United States (Jaffe and Ray, 2007) varied between 0 and 0.51 ppbv/yr with a statistically significant positive trend at seven of the nine sites. The impact of transport events bringing diluted plumes of urban origin with ozone from the high end of the probability distribution likely varies between the nine sites, and thus plays a significant role in the large variability in these temporal trends. One goal of the analysis presented here is to avoid the impact of transported plumes of ozone produced within the region of interest in order to characterize the temporal trend of background ozone transported into the region.

Two particularly important locations to characterize the ozone concentration trends are at the downwind side of the North Pacific and North Atlantic Oceans. Here the large upwind marine regions with limited emission sources provide the opportunity for the ozone distribution to homogenize to the extent possible from the interaction of transport, mixing and ozone production and loss processes. The ozone concentrations in this downwind marine air thus represent a regional integration over outflow from wide regions of the upwind continents, which should minimize regional differences downwind of the ocean. Measurements here also provide the potential to sample ozone concen-
trations in an environment without dominant confounding continental influences such as in situ ozone production from locally emitted precursors, transport of air masses with widely varying histories, surface deposition, reaction of ozone with local emissions, etc. Temporal changes in these influences undoubtedly contribute to the significant regional differences found in ozone concentration trends at northern mid latitudes (Oltmans et al., 2006; Jaffe and Ray, 2007). If trends in background ozone concentrations can be established for the downwind sides of the two large oceans at northern mid latitudes, then they are likely of more fundamental importance to our understanding of the background tropospheric ozone budget than are the variable regional trends over the continents. However, to characterize these marine trends from land surface based measurements requires careful discrimination against continental effects in the analysis of the available data sets. Our goal in this paper is to characterize these temporal trends in the boundary layer of these two marine environments.

Investigators have presented evidence that the background ozone concentrations have increased since the mid-1980s at northern mid latitudes in air entering both the North American west coast form the North Pacific Ocean (Jaffe et al., 2003; Parrish et al., 2004a) and the European west coast from the North Atlantic Ocean (Simmonds et al., 2004; Derwent et al., 2007). Parrish et al. (2004a) presented evidence that the increase in the North Pacific has occurred in response to increasing Asian emissions of ozone precursors, which are transported to the North Pacific troposphere. However, other investigators (Oltmans et al., 2006, 2008) have suggested that the reported increase at the North American west coast was actually caused by local North American continental effects rather than representing an increase in the background marine ozone concentration. A resolution to this disagreement is important in order to establish the confidence that can be attached to the reported marine ozone trends.

In an effort to reach a resolution of this disagreement, the first goal of this paper is to comprehensively review the available observations and analyses that provide the basis for determining the ozone temporal trend at the North American west coast, and to define that temporal trend as accurately and precisely as possible. Jaffe et al. (2003) and
Parrish et al. (2004a) presented trend determinations based on three different data sets: first, several relatively short-term measurement records from different marine boundary layer (MBL) sites that spanned 18 years; second, one continuous 15-year record from Lassen Volcanic National Park; and third, two aircraft campaigns conducted over the eastern North Pacific 18 years apart. All three of the derived trends are consistent with each other and indicate a springtime (the season of the focus of those studies) increase of 0.5 ppbv/yr. The focus of this paper is on all of west coast, North American MBL data that have been collected with the goal to carefully examine trends in all seasons, and to evaluate the suggestions of Oltmans et al. (2006, 2008) that the previously derived trends do not represent the marine troposphere. We find results here that are fully consistent with the conclusions presented by Jaffe et al. (2003) and Parrish et al. (2004a), with the statistical confidence considerably improved. It is shown that the data sets and analyses on which Oltmans et al. (2006, 2008) based their suggestions have serious shortcomings. A future paper will examine data from higher elevation, inland sites that receive direct inflow of marine air, including Lassen Volcanic National Park, and data sets collected from aircraft and sondes; preliminary analysis of these data supports the trends found by Jaffe et al. (2003) and Parrish et al. (2004a) as well.

The second goal of this paper is to place the derived North American west coast MBL ozone trends into a larger spatial and historical context by comparing them with reported European tropospheric ozone trends. An increasing trend over the past two decades has been well established at Mace Head, Ireland (Simmonds et al., 2004; Derwent et al., 2007). We will show that the trends of MBL ozone concentrations at the west coast of North America have some marked similarities to and marked differences from these European trends.

This paper is organized as follows. Section 2 reviews all of the MBL ozone data that have been collected on the North American west coast and that have been suggested as suitable for characterizing background ozone concentrations. Section 3 discusses in detail the analysis that is required to extract information regarding the undisturbed ma-
rine ozone concentrations from measurements conducted at land-based sites receiving direct MBL inflow. Section 4 derives the North American temporal ozone trends for each season, and Sect. 5 examines systematic variations in the ozone concentrations including seasonal and diurnal cycles and dependence upon a particular air mass flow regime. Finally, Sect. 6 discusses the significance of the derived ozone trends in the context of the European data sets.

2 Available North American marine boundary layer data sets

To our knowledge, there are eight, near-sea level sites on the west coast of North America that have been identified as suitable for characterizing the ozone concentration in marine air inflow to the continent. Table 1 and Fig. 1 identify site locations, with the dates of ozone concentration measurements investigated here, some site characteristics and the source of the data. These eight sites include the five sites discussed by Jaffe et al. (2003) and Parrish et al. (2004a) (Cheeka Peak in Washington and Redwood N.P., Trinidad Head, Point Arena, and Point Reyes N.S. in California), two sites suggested by Oltmans et al. (2006, 2008) (Olympic N.P. in Washington and Channel Islands N.P. in California) and Quillayute, Washington where some very early measurements were made (Singh et al., 1978). Also included in Table 1 and Fig. 1 is an inland, continental boundary layer site (Yreka, California) that Oltmans et al. (2006, 2008) suggest is useful for characterizing the marine background ozone flowing into North America.

Most of the ozone measurements at these sites were made using standard UV-absorption analyzers. The National Park Service, the California Air Resources Board and the Global Monitoring Division of the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA GMD) have each employed a consistent calibration procedure based on US EPA methods. The Pt. Arena field study followed careful data validation procedures. Generally the ozone data sets are believed to be accurate to within ±3%, and the one-hour average data used in this
analysis precise to within ±2% or 1 ppbv, whichever is greater. One exception to these limits of accuracy and precision is the earliest data set collected in the mid-1970s at Quillayute, Washington. These are the only measurements that were made using a chemiluminescence technique, and these measurements were made before the US EPA promulgated regulations that defined procedures and approved reference or equivalent methods. Therefore these data are of uncertain quality, and will not be examined in detail. Further, some of the early data from Olympic N.P. were collected by national park staff before the full quality assurance program was established by the NPS Air Resources Division. Thus, the early data from Olympic N.P. will be examined only with appropriate reservations.

One significant instrumental problem has been identified in the available data sets. NPS personnel report that at the Olympic N.P. site, the instrument sampling system evidently leaked substantially during the period between maintenance visits on 7 March 2002 and 23 January 2003. Data collected during this period have been eliminated from further consideration.

3 Analysis of data

Characterizing O\textsubscript{3} concentrations in the MBL from measurements conducted at land-based sites presents significant problems since the measurements necessarily must be conducted in an environment with at least some air-land surface influence. These influences significantly affect the observed ambient O\textsubscript{3} concentrations through O\textsubscript{3} deposition to the ground and other surfaces (most importantly vegetation), O\textsubscript{3} destruction by reaction with local emissions, and photochemical O\textsubscript{3} production from precursors emitted from land-based sources or even from within the near coastal marine environment (e.g. emissions from coastal shipping lanes.) It is critical that the significance of such effects be investigated, and if significant, their influence eliminated, or at least minimized, in the data sets considered.

Elimination of land effects is most straightforward at island sites. Measurements
have been reported from several such sites in the temperate North Atlantic: Bermuda, Barbados, and Westman Island, Iceland (Oltmans and Levy, 1994); Sable Island and Seal Island, Canada (Parrish et al., 1998); and the Azores (Parrish et al., 1998; Honrath et al., 2004). On islands as small and well-ventilated as Sable Island (approximately 1 km wide, by 40 km long; mean winds usually 10 to 20 m/s) undisturbed marine O$_3$ concentrations are generally always sampled regardless of meteorological conditions. Often data from other, larger islands require selection of a clean wind sector to isolate the marine signature (e.g. Oltmans and Levy, 1994). Measurements have not been made at comparable island sites in either the eastern North Pacific or eastern North Atlantic, so measurements at coastal, continental sites provide the only land-based approach for characterization of marine O$_3$ concentrations near the North American and European coasts. Coastal sites are more appropriate at the west coasts of North America and Europe than at the east coast of a continent, since the prevailing westerly winds assure the prevalence of onshore flow of marine air.

Even with the prevailing onshore flow at the west coasts of North America and Europe, there are synoptic and smaller scale circulation patterns that transport continentally-influenced air into the marine environment. To determine trends in marine ozone concentrations it is important to screen out measurements that are significantly affected by continental effects. At the Mace Head, Ireland site, both “pollution filtering” and air mass origin as determined from a Lagrangian dispersion model (Simmonds et al., 2004; Derwent et al., 2007) have been shown to be effective for removing continentally influenced data. Here we will simply take the monthly mean ozone data from Mace Head, Ireland (Table 1 of Derwent et al., 2007) that was selected as baseline air. However, at the North American west coast, complex small-scale circulation patterns, driven both by temperature gradients between the marine and continental environment and by orographic features of the coastal zone, can transport continentally-influenced air into the marine environment and can mix air into the MBL from the lower free troposphere. These circulation patterns are likely much more important at the North American west coast than in Europe due to the stronger land-sea temperature gradients and
the larger orographic features on the North American coast. Here we will examine effective means for eliminating the continentally influenced measurements at the North American west coast.

3.1 Selection of marine air by trace species concentration

The dependence of O$_3$ concentrations on meteorological variables and the correlation of ozone concentrations with those of other trace species provide two means of identifying continental effects. Trinidad Head is the North American west coast site with the most extensive trace gas measurements (Goldstein et al., 2004; Millet et al., 2004) made during the five-week ITCT 2K2 field study in the spring of 2002 (Parrish et al., 2004b). Continuous measurements of ozone and meteorological variables have been maintained there since that time (Oltmans et al., 2008), and it is also a site included in the Advanced Global Atmospheric Gases Experiment (AGAGE) (Prinn et al., 2000).

Measurements of three trace gases in the Trinidad Head data sets provide particularly useful tracers for North American continental influences. These gases have very different atmospheric sources and sinks so evaluation of the three together provides a robust indication of the importance of the continental influences. Radon is emitted from continental but not oceanic surfaces, and with a radioactive decay half-life of 3.8 days, provides an excellent tracer of recent continental contact of an air mass. Methyl-t-butyl ether (MTBE) (Schade et al., 2002) accounted for 11 to 15% by volume of the reformulated gasoline in California before its phase out at the end of 2002. With a lifetime of about 4 days at global mean OH concentrations MTBE also provided an excellent tracer of recent continental impact during ITCT 2K2. In 2002 MTBE was quite specific to North American influence, since at this time its input to the atmosphere was dominated by US production and use. Further, due to its high water solubility, MTBE is readily taken up by water surfaces and is thus expected to be strongly depleted in the MBL. Carbon dioxide (CO$_2$) has sinks (photosynthesis by vegetation) and sources (respiration by vegetation and combustion) that are much stronger in the continental compared to the marine environment. Figure 2 illustrates the correlation of O$_3$ concen-
trations with the concentrations of these three gases in the ITCT 2K2 measurements. Higher concentrations of radon and MTBE (i.e. greater continental influence) correlate with lower O$_3$ concentrations, indicating that, at least in spring at Trinidad Head, the primary continental influence on O$_3$ is surface deposition and/or destruction by reaction with local emissions. In continentally–influenced air reaching Trinidad Head in spring, evidently respiration by vegetation and possibly emission by combustion processes dominate the CO$_2$ budget, so that higher concentrations of CO$_2$ also correlate with lower O$_3$ concentrations.

Inspection of Fig. 2 allows the definition of concentration thresholds of the three tracers that indicate continentally influenced air at that location and time. These concentrations are taken to be the upper limits where the measured O$_3$ concentration begins to decrease noticeably. They are indicated by the vertical dashed lines in Fig. 2, and are listed in Table 2. The MTBE and CO$_2$ limits are the same as those utilized by Jaffe et al. (2003) and Parrish et al. (2004a).

The tracer concentration limits for selection of marine conditions provide a mechanism to assess the net effect of continental impacts on the marine O$_3$ concentrations in the Trinidad Head ITCT 2K2 data set. The measured O$_3$ concentrations at tracer concentrations less than these limits are taken as characteristic of marine air. Table 2 lists the average and standard deviations of the marine O$_3$ concentrations evaluated by the three criteria. The average results of the three tracer criteria indicate that during the spring 2002 period of the ITCT 2K2 study, marine O$_3$ concentrations averaged 42.0 ppbv with a standard deviation of 4.4 ppbv. The three derived averages and standard deviations all agree within $\approx 1\%$ and 7%, respectively. Notably, each tracer indicates that during about 50% of the time continental influences significantly affected the measured O$_3$ concentrations during the ITCT 2K2 study period.

3.2 Selection of marine air by wind direction and speed

Here we compare wind and chemical data as criteria for marine air selection at Trinidad Head during the ITCT 2K2 study to inform our later interpretation of data from sites with
wind data but no chemical measurements. It is rare to have extensive trace gas data sets available, but many O₃ measurement sites collect simultaneous wind data. Figure 2 shows the dependence of the O₃ concentration on wind speed and direction in the Trinidad Head ITCT 2K2 data set, and Fig. 3 shows this dependence in a wind rose format for spring 2007. It is clear that the continental effects (relatively low O₃ concentration) are predominately seen at low wind speeds and in sectors other than the prevailing northwesterly wind direction. Two features are notable. First, the continental effects, as indicated by systematically lower average O₃ concentrations, are seen at all wind speeds, but their impact does decrease at higher wind speeds. Second, simply selecting northwesterly wind directions without a wind speed criterion (open circles in Fig. 2) is not effective for isolating marine air. Depleted O₃ concentrations, as well as enhanced concentrations of the three continental tracers, are seen in northwesterly winds, particularly at the lower wind speeds. Evidently transport patterns, associated with mesoscale meteorological patterns such as land-sea breeze circulation and various orographic effects, can bring continentally influenced air ashore from the northwest wind sector. Table 2 indicates the resulting average ozone concentrations when selecting northwesterly winds, both with and without a wind speed selection criterion. During the ITCT 2K2 study period northwesterly winds occurred about two-thirds of the time, with an average O₃ concentration of 39.5 ppbv with a standard deviation of 6.5 ppbv, i.e. 6% smaller and 15% more variable than the average marine ozone concentration derived from the three trace gas criteria. Adding the high-wind criterion (wind speeds ≥3 m/s) decreased the selected data to 43% of the total, but significantly improved the agreement of the derived average O₃ concentration with the marine average: 40.9±5.5 ppbv versus 42.0±4.4 ppbv. In the following analyses, we will utilize simultaneous wind speed and direction data to approximately isolate marine air by selecting only those periods with relatively high, onshore winds.

Coastal orography strongly affects the wind field along the North American coast (e.g. Burk et al., 1999), which, in turn, affects the ozone concentrations observed at coastal sites. This orography-wind-ozone interaction makes the determination of the
marine ozone concentration easier in some ways and more difficult in others. One major orographic effect is the wind direction forcing by coastal topography so that the flow has a strong parallel coast component. This component is evident in Fig. 3 where the predominant wind direction is sharply peaked to the north-northwest. This parallel coast flow component ensures that MBL sites situated along the coast, at least north of San Francisco, sequentially sample approximately the same air masses as they are transported down the coast. This helps to ensure that measurements from different MBL sites along the coast can be directly compared. However, turbulent flow driven by variations in the coastal orography may mix continental effects from more northerly coastal locations into the air mass as it moves down the coast. Thus, even under onshore flow conditions with no apparent effects from land-sea breeze circulation, some continental effects on the observed ozone concentration can be present. However, the good agreement of the wind-selected ozone averages (including the high wind speed criterion) with the trace species-selected ozone averages indicates that the high, northwest wind filter is an adequate tool for isolating the marine ozone signature. It should be noted that these orographic effects cannot be resolved by large scale meteorological data, and trajectories based on these data (e.g. Oltmans et al., 2008) do provide information on the large scale flow that brings marine air masses to the North American coast, but they are unreliable for selecting against continental effects within the MBL.

A comparison of the derived marine concentrations of CO$_2$ in Table 3 with the concentrations obtained from NOAA GMD flask data provides a further check of the effectiveness of the wind criteria for the selection of marine data. At Trinidad Head the wind-selected marine air gave an average of 379.4±2.9 ppmv, and the monthly averages derived from the flask data are 378.35 and 378.91 ppmv for April and May, 2002, respectively. These flasks are filled to best represent onshore flow of marine air. The average of the wind-selected marine data are consistent with a small positive bias compared to the flask data, reflecting some continental influence even under high, on-shore wind conditions. This is also consistent with the chemical tracers; the wind selection
gives slightly lower ozone than the MTBE or radon selection (Table 2). In the analysis that follows, the effectiveness of the wind criterion will be investigated further.

3.3 Diurnal cycle of ozone concentration – a diagnostic of marine air selection

Here we examine the diurnal cycle of ozone concentration in the MBL as a diagnostic for the success of our marine air selection criteria. Later (Sect. 5.2) we examine the ozone diurnal cycle in the context of the chemical environment of the MBL. The diurnal cycle of ozone concentration at continental surface sites generally has a large amplitude (e.g. Trainer et al., 1987) due to the interaction of the pronounced diurnal evolution of the continental boundary layer depth coupled with the continental influences on ozone discussed above. During nighttime, the continental boundary layer is generally quite shallow, and ozone levels are markedly reduced by deposition and reaction with species emitted at the surface. In the vicinity of significant anthropogenic NO\textsubscript{x} sources and in locations with particularly stable nocturnal boundary layers, the nighttime ozone concentration can approach zero. As the depth of the boundary layer grows following sunrise, higher concentrations of ozone are mixed down from layers aloft that were isolated from the boundary layer removal processes during the nighttime. This mixing, combined with the influence of daytime photochemical production of ozone, leads to the well-documented afternoon ozone maximum, not only at highly polluted urban sites, but also at much less impacted rural sites.

The ozone diurnal cycle in the MBL is generally much smaller than at continental sites, because the surface deposition and titration loss processes are largely absent, and there is little diurnal evolution of the MBL. In the marine environment remote from emission sources, a small maximum at sunrise is followed by a small minimum near sunset (e.g. see Barbados and Samoa data in Oltmans and Levy, 1994). The afternoon minimum is attributed to daytime net photochemical destruction of ozone in the low NO\textsubscript{x}, relatively moist and warm environment of the MBL. The net photochemical destruction is balanced by a downward flux of ozone from the relatively ozone-rich free troposphere aloft. This downward flux is approximately constant over the diur-
nal period, which leads to the sunrise maximum in ozone concentration following the nighttime hiatus in the photochemical destruction. In the MBL downwind of continental sources, the NO\textsubscript{x} concentrations may be high enough to support net photochemical production of ozone. For example, Parrish et al. (1998) showed that a small afternoon O\textsubscript{3} maximum was seen at Sable Island, in closer proximity to the North American NO\textsubscript{x} sources, while an afternoon O\textsubscript{3} minimum was observed at a more remote MBL site on the Azores in the central North Atlantic. Importantly, reported ozone diurnal cycles in the MBL are small (generally < approximately 4 ppbv peak-to-peak). Thus, on the North American west coast, we will take the observation of a relatively strong diurnal cycle, especially with an afternoon maximum, as an indication of significant continental influence upon the measured ozone concentrations.

The expected differences in the diurnal cycle of ozone in the MBL and at continental sites provide a diagnostic of the success of our criteria for selecting marine air. Diurnal cycles in the ozone concentration at the Trinidad Head site calculated for six different criteria are shown in Fig. 4, and the peak-to-peak amplitude of these cycles are given in Table 2. When all data are included, a relatively large cycle (amplitude \(\approx\)12 ppbv) is apparent. This cycle is largely attributable to the land-sea breeze circulation. During the night and early morning offshore winds bring ozone-depleted air to the site from the continent, and during the afternoon the sea breeze brings relatively unperturbed marine air to the site. Marine air selected by each of the three criteria based upon trace species concentrations (see discussion above) yield much smaller \(-4\) to \(6\) ppbv – amplitude diurnal cycles. Selecting periods of high, northwest wind yields a comparably small amplitude cycle \(-6\) ppbv. It is notable that each of these methods for selecting marine air yields a diurnal cycle with an afternoon maximum. At this point it is undetermined whether the afternoon maximum is due to an imperfect selection against continentally-influenced air, due to the chemical environment of the Pacific Coast MBL, or due to additional, diurnally varying transport patterns. It should be noted that simply selecting a northwest wind direction window as proposed by Oltmans et al. (2008) is not adequate for isolating marine air. Including all speeds of northwest winds yields a
diurnal cycle (shown in Fig. 4, which is in good agreement with the diurnal cycle shown in Fig. 6 of Oltmans et al. 2008) with an amplitude (≈ 10 ppbv), which is nearly as large as that derived from the full data set.

3.4 Comparison of pacific coast marine boundary layer sites

To derive decadal trends in average ozone concentrations from measurements made for different time periods at different sites, it is important to quantify possible biases between the sites. At least two issues are of concern: first, since the sites to be considered in the temporal trend determinations span 10° of latitude (approximately 1000 km), there may be a spatial gradient in average MBL ozone concentration that could bias the results, and second, the dependence of measured ozone concentration on wind speed and direction may vary between sites. In this section we apply the high speed, northwest wind data selection criteria discussed in Sect. 3.2 to the complete data sets at all four MBL sites with available wind data. As we will show, selection of data by the wind criteria does indeed provide measurements of the average MBL ozone that are comparable across all four sites.

At the four sites with simultaneous wind and ozone measurements, the dependence of the measured ozone concentration on wind speed is similar, but with some notable differences, particularly at low wind speeds. Figure 5a shows the average ozone concentration measured as a function of wind speed for northwesterly winds ($225^\circ \leq \text{wind direction} \leq 360^\circ$) at four sites for all available springtime data. The years of the available data are given in the Fig. 5b. As expected from the discussion of Fig. 2, ozone concentrations decrease at lower wind speeds at each site due to the increasing effect of continental influence at low wind speeds. This decrease is reasonably similar at three sites, but is significantly greater (i.e. lower measured ozone at lower wind speeds) at Olympic N.P., than at the other three sites.

The distribution of measured wind speeds varies markedly at the different sites. Figure 5b shows that Redwood N.P. and especially Olympic N.P. have a much lower frequency of high wind speeds than Trinidad Head and Point Reyes N.S. The different
wind speed distributions are attributed to differences in the local environments in which the sites and their wind sensors were placed. The two sites with high frequency of high wind speeds are well-exposed to the large-scale wind flow. The Trinidad Head site is located below the summit of a promontory that extends out from the coastline, and Point Reyes is located in an unencumbered flat area of the Pt. Reyes Peninsula. In contrast the Redwood N.P. site is located on the side of a ridge with surrounding trees, and the Olympic N.P. site is located within the city of Port Angeles, Washington, providing more protected wind exposures.

The dependence of the average ozone as a function of wind threshold (Fig. 5c) varies slowly for the Trinidad Head and Point Reyes N.S. data sets, the two sites with the best wind exposure. The Redwood N.P. data set, collected at a more sheltered location, has only a modestly stronger dependence on wind speed. (At the upper end of the observed wind speeds, the dependence of ozone concentration becomes more variable due to the relatively few episodes of wind speeds that high.) Compared to the other three sites, at Olympic N.P., with a much more protected wind exposure (Fig. 5b), the average ozone concentration depends much more strongly on wind threshold (Fig. 5c). This stronger dependence is attributed to a much stronger continental influence, due to the location of the site within Port Angeles, a city with a population of 20,000 and the major highway in the region. At low wind speeds, reaction of ozone with local anthropogenic sources of NO is particularly effective in reducing ozone concentrations. Clearly the Olympic N.P. site is much more impacted than the other three sites, and its suitability for characterizing marine concentrations of ozone requires further discussion below.

Using wind data to select time periods to characterize marine ozone requires a balance between two competing concerns: the desire to retain as much data as possible to achieve a statistically precise measure of the ozone concentration, and the need to eliminate as fully as possible the continental influences. Jaffe et al. (2003) selected 3 m/s (indicated by the vertical dashed lines in Fig. 5) as the best compromise of these two competing concerns. This same selection will be used here with the exception of
the Olympic N.P. site. For this latter site a wind speed threshold of 2 m/s is selected since winds above this speed are relatively infrequent (Fig. 5b). It should be noted that the relationships shown in Fig. 5 are similar in other seasons, except that higher wind speeds are less frequent in autumn and winter, compared to spring and summer. Table 4 summarizes the percent of time that relatively undisturbed marine air is sampled in each season at each site. Such periods vary from quite infrequent (only 2 to 6% of the time in autumn and winter at the two more protected sites) to nearly one-third of the time in spring and summer at Trinidad Head and about one-half of the time in those two seasons at Pont Reyes N.S.

It is notable in Fig. 5a and c that the ozone measured at Trinidad Head for a given wind speed is significantly higher than that measured at Redwood N.P. and Point Reyes N.S., while the result from these latter two sites agree well. As will be discussed further below, this difference is primarily due to the different measurement periods at these sites. The Trinidad Head data were collected more than a decade later than the other two data sets, and the decadal trend in marine ozone concentration, which is a primary focus of this paper, is obvious in this difference.

Comparison of the seasonal average ozone measured at two different sites in the same year provides a means to check for 1) biases between sites, and 2) the confidence limit that can be assigned to the seasonal average ozone at either site. There is only relatively limited overlap in the measurement time periods between the sites considered here. Figure 6 shows the differences in the seasonal average marine ozone simultaneously determined at the four pairs of sites with overlapping measurement periods. The average bias between the sites in each of the four pairs is 1.2 ppbv or less. Only one average bias is statistically significant at the one-sigma confidence level, and none are significant at the two-sigma level. Hence, there is no evidence for a statistically significant bias over the four sites represented in these pairs, which cover the full latitude range of the sites to be used in the next section to derive decadal trends. The scatter of the ratio determinations in Fig. 6 provides a means to estimate confidence limits for the annual, seasonally averaged MBL ozone concentration measured
Ozone concentration trends

D. D. Parrish et al.

4 Decadal trends

Our goal here is to determine long-term trends in the ozone concentration in the MBL at the west coasts of North America and Europe, and to investigate the seasonal variation in these trends. For Europe, we utilize the monthly mean ozone data from Mace Head, Ireland (Table 1 of Derwent et al., 2007) that was selected as baseline air; three month seasonal averages are simply calculated from those numbers. For North America, we will examine trends from two separate data sets – the trend from Olympic N.P. and one composite trend from four sites with shorter records: Redwood N.P., Trinidad Head, Point Arena, and Point Reyes N.S. Data from these sites will be selected for marine air by means of a high (wind speed \(\geq 3 \) m/s, except \(\geq 2 \) m/s at Olympic N.P.), northwesterly (\(225^\circ \leq \text{wind direction} \leq 360^\circ \)) wind window, which Sect. 3 shows is reasonably effective. As discussed below the trends derived from the two separate data sets are consistent, and one, more accurate and precise trend is derived by combining measurements from all five sites into one composite data set.
4.1 Statistical approach to trends analysis

The ability to discern temporal trends in MBL ozone concentrations from the relatively short, decadal time scale data records that are available is limited by two factors: first, our ability to accurately and precisely determine the average ozone in each year, and second, the interannual variability in the average ozone between years that systematically differs from the assumed functional form of the temporal trend. To minimize these limitations we improve the precision of the yearly average ozone concentration determination through three strategies. First, elimination of continental influences to the fullest extent possible substantially reduces the variability in the measured ozone concentrations (see Figs. 2 and 4). Second, seasonal rather than monthly or shorter term averages takes advantage of the reduced variability brought by longer term averages. It should be noted that averaging over seasons and considering the temporal trend in each season separately avoids the “deseasonalization” process employed in some work (e.g. Harris et al., 2001; Jaffe and Ray, 2007), which introduces unneeded complexity and potentially can confound the trend analysis if different seasons exhibit different temporal trends. Finally, inclusion of as much data as possible improves the precision to which the annual average ozone can be determined. Thus, the combination of the data from the five North American MBL sites with available wind and ozone data provides the most precise determination of temporal trends for that continent.

We primarily rely upon the simplest possible functional form for trend determination. For each season, a linear-least squares fit is made to a two parameter equation:

\[O_3 = \text{slope} \times (\text{year} - 2000) + \text{intercept}. \]

This slope, in units of ppbv/yr, provides the average yearly increase in ozone concentration over the period of the data record, and the intercept provides the interpolated, seasonally averaged ozone concentration in the year 2000. It should be noted that the utilization of a linear fit does not imply that the temporal trend is necessarily linear, and does not imply that the trend was linear before the data period or will continue linearly into the future. 95% confidence limits are assigned to each parameter as a
test of significance. Further, the statistic χ^2 which we define here as the square root of reduced chi-square (Bevington, 1969), is given. If Eq. (1) adequately fits the data to within ability of the data to determine the average ozone in each year (i.e. the first factor discussed in the preceding paragraph) then χ^2 will approximately equal the confidence limit on the determination of the annual seasonal average ozone concentration. As discussed in the preceding section, this confidence limit is approximately 2.2 ppbv for the North American data sets. If χ^2 is significantly larger than the confidence limit, then interannual variability or temporal trends systematically different from the linear dependence in Eq. (1) is expected to be significant. In the latter case, the statistical significance of a third parameter, acceleration, is tested:

$$[O_3] = \text{slope}_{2000} \times (\text{year} - 2000) + \text{intercept} + 0.5 \times \text{acceleration} \times (\text{year} - 2000)^2. \quad (2)$$

Here acceleration, in units of ppbv/yr2, represents the average rate of increase of $d[O_3]/dt$ over the period of the data record and slope_{2000} is the value of $d[O_3]/dt$ in the year 2000. In Eq. (2) the slope is the rate of increase of the ozone concentration in the year 2000, and changes with time rather than representing the average yearly increase in ozone concentration, as was the case in Eq. (1). The factor of 0.5 is required in the last term of Eq. (2) so that the acceleration has the meaning as defined, as can be verified by differentiating Eq. (2).

4.2 Sea level, marine boundary layer temporal trends

Significant increases in MBL ozone concentrations are found in all west coast North American and European MBL data sets. Figure 7 compares the derived linear temporal trends for the four seasons, and Table 5 gives the parameters of the linear-least squares fits to Eq. (1). At the North American sites there is remarkable agreement between the Olympic N.P. slopes and intercepts and the corresponding parameters derived for the combined data set constructed from four separate sites. The statistical significance of the derived temporal trends is also quite remarkable in some seasons. For example in spring the average temporal trends (i.e. slopes) for Olympic N.P. and
for the combined data set are significantly larger than zero at the 3σ and 6σ levels, respectively. These trends are derived from completely independent data sets. Thus, the trend derived by combining all Pacific sites is the best determination of the North American trend, and in spring it is significantly larger than zero at the 7σ level. The springtime increase in MBL ozone concentrations over the 1985 to 2007 period, which was first reported by Jaffe et al. (2003), is statistically significant to a degree that is essentially beyond question.

The results for Olympic N.P. are considerably less certain than those from the combined data set. This greater uncertainty arises from the small fraction of data meeting the wind selection criteria (2 to 8% of the time, depending on season), and the much greater impact of local emissions due to the location of the measurement site within the Port Angeles city area and its proximity to the major regional highway in that city. In summer, the season of the large majority (nearly 75%) of tourist visits to Olympic N.P., the local effects influence observed ozone concentrations to such a large extent that summer data from this site are not considered further here, although the summer linear regression results are given in Table 5. In each season, the year 2000 intercept of the linear fit to the Olympic N.P. data is slightly lower than that obtained from the combined data set, although this difference is not statistically significant except in summer.

Given the small fraction of data meeting the wind selection criteria at Olympic N.P., it is a concern that perhaps the wind selection criteria may be influencing the derived temporal trends. This may be a concern for the combined data sets as well. Figure 8 compares the Olympic N.P. springtime linear fits to the data for those meeting the wind selection criteria and for all data. Included in this plot are four years of earlier data collected at a different site within the City of Port Angeles, which have not been included in Fig. 7 and the trends listed in Table 5. (Only one of those four years also included wind data.) Three points are notable in Fig. 8. First, the derived slope of linear fits to the data are not strong functions of the selected wind criteria, and the results in Fig. 8 are in statistical agreement with those listed in Table 5. Second, in contrast to the slope, the year 2000 intercept is a strong function of the wind selection. The high, northwest
wind selection greatly reduces the effects of the local influences, which act to reduce the measured ozone concentrations, and is particularly important for determining the absolute ozone concentrations in the marine air. Third, the earlier data (blue squares in Fig. 8), while not subjected to the same quality control measures as the later data, do suggest that the increasing trend in MBL ozone concentration began before 1985, the date of the earliest data included in Fig. 7. Similar results are found for the springtime data in the combined site data sets. The slope for all data (0.43±0.21 ppbv/yr) is consistent with the slope for the data satisfying the wind criteria (0.48±0.16 ppbv/yr), while the year 2000 intercept is smaller (35.8±1.8 ppbv vs. 39.7±1.3 ppbv) and the correlation somewhat poorer ($r^2=0.52$ vs. 0.71) when all data are included. In summary, the results in Fig. 8 indicate that while the wind selection criteria are important for comparison of absolute ozone concentrations measured at sites with different local influences, they do not strongly influence derived temporal trends.

Despite the comparison shown in Fig. 6 and the associated discussion, which established that the data collected at the four separate sites can be directly compared, it would be preferable if a long-term record of ozone had been collected at a single site, so that combining data from separate sites would not be necessary. One way to approach this more ideal situation, would be to reestablish measurements at the Redwood N.P. and Point Reyes N.S. sites, which were terminated in 1995 and 1992, respectively. Measurements for only a few additional years would quickly establish whether the present ozone concentrations have exceeded those measured in the early 1990s by the amount suggested by the trends derived in Fig. 7. One quick test of this approach is a direct comparison of the seasonal averages measured at Trinidad Head from 2002–2007 with those measured at Redwood N.P. from 1988–1995. These sites are both on the California coast within 35 km of each other. It is straightforward to calculate an average ozone concentration with confidence limit for all of the data measured in each season at each site that satisfy the wind selection criteria. The differences in these averages divided by the number of years between the central time of each data set (13 or 13.5 years) gives an approximate trend, and error propagation techniques
provide 2σ confidence limits for those trends. The results are highly statistically significant for all seasons, and agree well with the trends listed in Table 5: 0.46±0.29, 0.47±0.18, 0.34±0.18 and 0.25±0.15 ppbv/yr in winter, spring, summer and autumn, respectively. Of course this agreement is expected, since these data from these two sites are all included in the composite linear regression. In summary, all of the data sets examined, both by linear regression techniques and this simple, zero-order trend analysis, indicate that statistically robust increases have occurred in the ozone concentration in the MBL adjacent to the west coast of North America.

4.3 Data available from other sites

Of the nine sites listed in Table 1, data from only five were included in the trends discussion in Sect. 4.2. Data sets from the other four were excluded for several reasons. For completeness, those reasons are briefly discussed here.

Jaaffe et al. (2003) included the Cheeka Peak data in some of the linear fits that they discussed. The ozone concentrations measured at this site generally lay above the trends from the other, near sea level sites. This difference is expected because Cheeka Peak is located on a relatively isolated peak at an elevation near 0.5 km. The ozone concentration in the MBL along the North American west coast has a strong vertical gradient (see for example Fig. 15 of Oltmans et al., 2008) so that the Cheeka Peak ozone concentration measurements are expected to be several ppbv higher than the sea level concentrations. Thus, the Cheeka Peak data cannot be combined with the sea level data sets, and are not discussed further in this paper.

The earliest available data were collected at Quillayute, Washington in 1974–1975 (Singh et al., 1978). If these data were reliable it would be very desirable to include them in the trend analysis to extend the time period covered by available data. However, these measurements were made by a chemiluminescence technique, and no information is available regarding calibration and quality control procedures. The US EPA suggests not including data collected before standardized procedures were implemented in 1979 or 1980. Further, no wind data or other measurements are available
to eliminate continental effects from the data set, and Singh et al. (1978) suggest that these data may be influenced by transport from Portland, Oregon or from the Seattle-Tacoma, Washington area. Therefore these data are not considered further here.

Ozone measurements have been made in Yreka, California since 1981 by the California Air Resources Board. Oltmans et al. (2006, 2008) have used these data to suggest that there likely has not been significant impact of changing background ozone amounts reaching the west coast of the US. This suggestion clearly conflicts with the conclusions reached in the preceding section, but unfortunately the Yreka site is extremely poorly situated from both regional and local perspectives rendering it unsuitable for characterizing marine ozone levels. Regionally, it is located approximately 125 km inland in the bottom of the Klamath River Valley behind the Klamath Mountains, a particularly high section of the North American west coastal ranges. Therefore, the Yreka site always sits within the continental boundary layer, and never directly receives marine air inflow. Marine air is certainly entrained into the continental boundary layer, and trends in the ozone measured at Yreka could still possibly reflect trends in the marine ozone concentrations moving inland from the Pacific Ocean. However, the local environment of the site precludes a simple investigation of background ozone concentration trends (see map in Fig. 9). Yreka is well-removed from large urban sources, but the site is located within 100 m of Interstate 5, the major north-south highway along the US west coast. Further, the major US west coast north-south rail line also passes through the Klamath River Valley approximately 5 km to the east of the site. The emissions from these transportation sources certainly perturb the ozone concentrations at Yreka, both through titration of ozone by fresh NO\textsubscript{x} emissions and production of ozone under photochemically favorable conditions. Consideration of the temporal trends of these local perturbations is required when evaluating trends in measured ozone concentrations at Yreka. For example, heavy-duty truck traffic, the major source of on-road NO\textsubscript{x} emissions in the US increased at an average rate of about 2%/yr between 1992 and 2005 (data available from http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/). An additional difficulty arises from several problems in the archived Yreka ozone data sets.
themselves. First, for some periods, particularly near the start of the record, data were recorded with a precision of only 10 ppbv, and for others, particularly near the end of the record, data were recorded with a precision of 1 ppbv. This changing precision may confound any trends analysis. Second, some data sets have measured zero ozone concentrations removed. These missing data, particularly when combined with the changing instrument precision, also may confound the trends analysis. Finally, there are periods in the record that appear to indicate improper instrument performance. Oltmans et al. (2008) removed one such period (the year 2001), but several other, shorter periods of suspicious data are also present.

If we ignore the problems in the data archive, we can proceed with a trend analysis for the measured ozone concentrations at Yreka. No meteorological data are available to preferentially select periods favorable for elucidating the impact of marine ozone, so we will follow the strategy of Oltmans et al. (2008) of selecting data from the later part of the daytime period (12:00–18:00 LST). The results of the trend analysis is shown in Fig. 9 and summarized in Table 6. The trends in summer and autumn are positive and nearly significant at the 95% confidence level, which is in accord with the positive trends noted by Oltmans et al. (2008). However, the absolute ozone levels in summer at Yreka are nearly twice those measured at the MBL sites (compare intercept 2000 concentrations between Tables 5 and 6.) The wintertime trend is negative in accord with the discussion of by Oltmans et al. (2008), but the trend derived here is not statistically significant. Notably, the absolute ozone concentrations in winter at Yreka are only about 60% of those measured at the MBL sites, and this difference is statistically significant. These differences between the Yreka and the MBL data clearly indicate that the ozone concentrations at Yreka have been strongly modified from the marine environment. In summary, a careful analysis of the Yreka data set might be able to elucidate the behavior of ozone in the heavily impacted transportation corridors in rural regions of the United States, but these data cannot provide any direct information regarding trends in MBL ozone concentrations entering the North American west coast. In particular, statements regarding the impact of changing background ozone amounts
reaching the west coast (Oltmans et al., 2006, 2008) cannot be justified on the basis of the Yreka data set.

The Channel Islands N.P. off the coast of Los Angeles in Southern California is another potentially attractive site for investigating marine ozone concentrations. Oltmans et al. (2008) present trajectory calculations and suggest that this site is able to provide information on background ozone entering the US. However, these trajectory calculations were based upon meteorological data of relatively course resolution, which is unable to resolve the complex circulation patterns that are prevalent along the North American west coast south of San Francisco. These complex patterns include the “Catalina Eddy” (Mass and Albright, 1989; Skamarock et al., 2002), and effectively circulate heavily impacted continental air from the Los Angeles urban area into the vicinity of Channel Islands N.P. Without detailed mesoscale meteorological modeling of the flow to this site, it will be very difficult to glean information on unperturbed marine ozone concentrations. Data from this site will not be considered further here.

4.4 Nonlinearity of temporal trends

Derwent et al. (2007) have shown that at the Mace Head site the temporal trends have decreased to the point that the baseline ozone concentrations have approximately stabilized in the years since 2000. This behavior is evident in Fig. 7 and quantified by the fits to Eq. (2) that are included as dotted purple lines in those plots. In all seasons except autumn, the acceleration term has been negative (−0.03 to −0.07 ppbv/yr/yr) with statistical significance at the 79 to 93% confidence level. However, the MBL trends at the North American west coast show no statistically significant indication of non-linearity.
5 Systematic variations in marine boundary layer ozone concentrations

Besides the decadal scale temporal trends discussed in Sect. 4, there are seasonal and diurnal cycles as well as systematic variations with synoptic scale flow conditions that are all relevant to our understanding of ozone concentrations in the MBL. Our goal in this section is to investigate those variations. To compare results from data sets collected over different time periods from different sites, all of the data collected within the wind criteria for marine air selection were detrended by subtracting from each ozone measurement a correction term equal to slope*(year-2000), where the slope is taken from the first column of Table 5. In effect, this corrects the data to what would have been measured if all data had been collected in the year 2000.

5.1 Seasonal cycles

The seasonal cycles derived from the four MBL data sets that cover all seasons are shown in Fig. 10a. The seasonal cycles derived from all four data sets are in excellent agreement, although the summertime results from Olympic N.P. are not available. This close agreement again emphasizes the comparability of the measurements made at the different sites. The cycles in Fig. 10a are in good agreement with the seasonal cycles shown in Fig. 18 of Oltmans et al. (2008), although they are somewhat lower in magnitude since the present results represent the year 2000, while the Oltmans et al. (2008) cycles represent the different years 2002–2007.

5.2 Diurnal cycles

It is difficult to accurately determine the diurnal cycle of the marine ozone concentration from measurements made at a surface site on shore. Figure 10b shows our best approximation for the diurnal cycles in each of the four seasons. These cycles were derived from the detrended, marine selected data sets from the two sites with the best exposure to the prevailing winds (Trinidad Head and Point Reyes N.S.). The cycles
shown are the average of the separate cycles from the two sites, which agreed well, but had greater scatter in the 00:00 to 09:00 LST period when the occurrence of selected winds was infrequent (see Fig. 4). The diurnal cycles in Fig. 10b are less than half the peak-to-peak amplitude of the diurnal cycles shown in Fig. 6 of Oltmans et al. (2008), which is due to the more effective removal of continental effects by the wind selection criteria employed in this work.

The magnitudes of the diurnal cycles in Fig. 10b are larger than expected for an isolated marine environment without the influence of transported ozone precursors. The cause(s) of these diurnal cycles deserve further study. The afternoon maximum could possibly reflect photochemical production from ozone precursors emitted within the MBL, e.g. emissions in the coastal shipping lanes (Chen et al., 2005), or nighttime removal of ozone by reaction with such emissions. However, the magnitudes of the diurnal cycles (given in the annotation of Fig. 10b) do not change markedly between summer and winter as might be expected of cycles primarily due to photochemical production of ozone within the MBL. Another possible explanation is compensation subsidence required for mass balance in the land-sea breeze circulation (e.g. see Pilke, 1984). During the afternoon sea breeze portion of the cycle, enhanced subsidence of relatively ozone-rich air from above is required to compensate for the enhanced onshore flow, which may explain part or all of the afternoon maximum observed in the diurnal cycle. It should be noted that both of these possible causes are local to the ocean-continent interface and therefore not characteristic of the isolated marine environment. It is likely that measurements from a surface site outside the ocean-continent interface regions will be required to fully characterize the diurnal cycle of ozone concentrations in the MBL of the eastern North Pacific.

5.3 Southwest flow events

One focus of the analysis presented by Parrish et al. (1992, 2004a) were springtime events when synoptic flow brought air with markedly lower ozone concentrations to the west coast of North America. Such air masses were transported from the sub-
tropical North Pacific to the southwest (see trajectories in Fig. 8 of Parrish et al., 1992), and were responsible for the lowest ozone concentrations observed in the undisturbed MBL. A striking feature of these events has been the generally rapid increase of these minimum ozone concentrations. In the 1985 Point Arena field study these concentrations dropped to below 15 ppbv (see Fig. 3 in Parrish et al., 1992). These minimum concentrations were almost always above 20 ppbv in the Point Reyes N.S. and Redwood N.P. data collected in the early 1990s, and dropped only to 30 ppbv during the ITCT 2K2 study in the spring of 2002 at Trinidad Head. Oltmans et al. (2008) report that such events occur in the Trinidad Head record since 2002 at least once each spring, and that the ozone concentrations drop to near 30 ppbv. The dramatic increase in these minimum observed ozone concentrations over the past two decades is one of the primary reasons for Parrish et al. (2004a) to hypothesize that the photochemical environment of the springtime North Pacific troposphere has changed over the past two decades from predominately ozone destroying to more nearly ozone producing in response to increased anthropogenic emissions transported from Asia. The data sets collected since 2002 and the analysis of the southwest flow events presented by Oltmans et al. (2008) further support that hypothesis.

6 Discussion and conclusions

An examination of the dependence of ozone concentration on concentrations of continental tracers (Sect. 3) demonstrates that rigorous analysis is required to remove the effects of continental influences on measured ozone concentrations, even when those measurements are made at a site exposed to direct inflow from the marine environment. For example, during the spring 2002 period of the ITCT 2K2 study at Trinidad Head, a MBL site on the northern California coast, the average results of three tracer criteria designed to isolate marine air derived average marine \(O_3 \) concentrations of 42.0 ppbv with a standard deviation of 4.4 ppbv. The three derived averages and standard deviations all agree within \(\approx 1\% \) and 7\%, respectively. Notably, each tracer in-
dicates that during about 50% of the time continental influences significantly affected the measured \(\text{O}_3 \) concentrations during that study period. It is not adequate to simply select a wind direction window, a time of day window or trajectories based upon coarse resolution meteorological data. However, wind criteria – high (wind speed \(\geq 3 \text{ m/s} \)) northwest (\(225^\circ \leq \text{wind direction} \leq 360^\circ \)) winds – were shown to give results that are in reasonable accord with the tracer criteria. Data sets from all available MBL sites along the west coast of North America were selected according to the wind criteria and systematic temporal variations (diurnal, seasonal, decadal) were examined (Sects. 4 and 5). Isolation of marine air allowed a demonstration of the equivalence of MBL ozone concentration measurements from the different MBL sites, and allowed the seasonal average for a given year to be defined for a given measurement site with a 1 sigma confidence limit of about 2.2 ppbv. By combining the ozone concentration measurements available from all MBL sites with simultaneous wind data, decadal temporal trends of MBL ozone concentrations were established with high precision.

Jaffe et al. (2003) and Parrish et al. (2004a) presented evidence that the ozone arriving in springtime in marine air from the Pacific Ocean had increased by about 10 ppbv in the two decades from the mid-1980s to the mid-2000s (i.e. a temporal trend of about 0.5 ppbv/yr). That evidence was based upon three independent data sources: a 15-year record of ozone concentration measurements at Lassen Volcanic National Park (a rural elevated site in northern California that receives direct inflow from the Pacific), two airborne campaigns conducted off the west coast of California in 1984 and 2002, and observations spanning 18 years from five US west coast MBL sites. The reevaluation presented here establishes a springtime trend of 0.46 ppbv/yr with a 95% confidence limit of 0.13 ppbv/yr, which confirms the trend originally presented by Jaffe et al. (2003) and substantially improves the confidence limits placed on that trend. This improvement comes through inclusion of an additional MBL site at Olympic N.P. with a 15 year record as well as five additional years of measurements at Trinidad Head. Further, statistically significant trends are found for all seasons except autumn (see Table 5), which does have a significantly slower rate of increase than found for the
other three seasons. A future paper will reevaluate data from higher elevation, inland sites that receive direct inflow of marine air, and data sets collected from airborne campaigns, commercial aircraft and sondes. The preliminary results from this second reevaluation are also consistent with the conclusions of Jaffe et al. (2003) and Parrish et al. (2004a) that the trends discussed here are generally characteristic of the free troposphere as well as the MBL.

Comparison of the temporal trend in mean annual ozone concentration at the Pacific MBL sites to trends reported from continental boundary layer sites provides some insight into the cause and variability of the ozone concentration trends reported from continental sites. Here we derive the temporal trend in mean annual ozone concentration from a linear least-squares fit of Eq. (1) to twelve month running averages of all data available from the Pacific MBL sites in each month. The parameters of the fit are given in Table 5, where all confidence and goodness-of-fit parameters are based upon one (not twelve) data point per year. The fits are generally as expected from the seasonal fits detailed in Table 5. The \(r^2 \) and \(\chi^2 \) values and the confidence limits on the slopes and intercepts are improved due to the longer period averaging of the annual time scale. The mean annual average Pacific MBL trend (0.34±0.09 ppbv/yr) is in excellent agreement with the trend reported for Lassen N.P. (0.33 ppbv/yr), the one near-Pacific coast site reported by Jaffe and Ray (2007). The trend at the nine rural and remote sites in the western US investigated by Jaffe and Ray (2007) averaged 0.26 ppbv/yr with a range of 0 to 0.51 ppbv/yr. Evidently the positive temporal trend in ozone concentration in air arriving at the North American coast from the Pacific is reflected at the inland sites, modulated by local and regional effects. White Face Mountain (the one continental US site discussed in detail by Oltmans et al., 2006), which is located in the Eastern US, shows no pronounced temporal trend. The positive trend entering western North America has been largely obscured by the decreasing ozone production within the US driven by decreasing domestic precursor emissions.

The decadal trends in MBL ozone concentrations at the North American west coast present a striking comparison and contrast with those reported for the European west
coast. Figure 11 compares the results of the regression analyses from the North American data sets (Table 5) with the results of similar analysis (also included in Table 5) of the Mace Head data reported by Derwent et al. (2007). The trends in the winter, spring and summer seasons compare well at the two locations, while the Mace Head trend is significantly greater in autumn. Even though the trends are similar, the absolute ozone concentrations, as indicated by the year 2000 intercept of the linear regressions, are markedly different. The marine air arriving at Europe from the North Atlantic MBL contains 7±2 ppbv higher ozone concentrations than marine air arriving at North America from the North Pacific MBL, and this difference is the same within the indicated 95% confidence limit in all seasons. This difference could be due to the net enhancement of background ozone by photochemical production over the North American continent, but a thorough investigation of possible causes should be done using global chemical transport model (GCTM) calculations. There is an additional difference between the two continents – the ozone concentrations at the North American west coast show no indication for stabilizing as has been reported for Mace Head (Derwent et al., 2007).

It is of interest to put the present analysis into the context of historical measurements of ozone to the extent that the reported studies allow. Figure 12a compares the running annual means for Mace Head and the Pacific MBL sites, and Fig. 12b compares the ozone concentrations that have been reported for boundary layer measurements over the 130 years covered by the data included in that plot. The historical data (Volz and Kley, 1988) have been widely interpreted as indicating the change in the background ozone concentrations that occurred in the decades leading up to the 1980s. The data sets discussed here suggest that this trend has continued at similar rates up to the present time. This comparison can only be semi-quantitative since the sites are not directly comparable – Montsouris was a continental site on the outskirts of Paris, and Arkona is located on the island of Rügen in the Baltic Sea (data originally reported by Feister and Warmbt, 1987). Also, these historical data represent 24-h averages of all measurements, while both data sets discussed in this paper are selected for background conditions. However, the stated uncertainties on the annual averages from
all of the data sets are approximately 2 ppbv. Even allowing a much more generous uncertainty for the different measurement methods employed in the different studies, Fig. 12b clearly indicates that the background ozone concentrations at northern mid latitudes has increased substantially (by a factor of two to three), and that this increase continues at present, at least in marine boundary layer of the Pacific coast region of North America.

The ability of GCTMs to reproduce observations, particularly observations of tropospheric ozone concentrations, provides key tests of those models. Activity 1 of the WCRP-SPARC and IGBP-IGAC initiative – Atmospheric Chemistry and Climate – comprises a 20–25 year hindcast of tropospheric ozone and aerosols. This activity intends to address the following questions: Can we understand what has happened with tropospheric chemistry, and in particular ozone and aerosols? Can we replicate the observed changes over the past 20 years? To answer these questions, a comparison of global chemical transport models is planned. Reproducing the increasing trends in MBL ozone concentrations observed at the west coasts of North America and Europe over the past two decades as well as the difference in the ozone concentrations between these two coastal regions will likely present a significant challenge for the models involved in the comparison exercise. Further, the ability of models to at least semi-quantitatively reproduce the longer-term trends shown in Fig. 12b should be tested.

Acknowledgements. The authors gratefully acknowledge the helpful discussions of meteorological issues with Paul Nieman and Owen Cooper of the NOAA Earth System Research Laboratory. The Climate and Global Change Program of the National Oceanic and Atmospheric Administration (NOAA) largely funded this research. The authors are grateful to all that provided access to their data. The data from Olympic National Park, Redwood National Park and Point Reyes National Seashore were obtained from the National Park Service (Gaseous Pollutant Monitoring Network, Air Resources Division, Denver, Colorado, 2002; available at http://www.nature.nps.gov/air/monitoring/network.cfm). The data from Yreka, California were obtained from the California Air Resources Board (available at http://www.arb.ca.gov/aqd/aqcd/aqcdldld.htm). The data from Trinidad Head were obtained
from the NOAA Earth System Research Laboratory, Global Monitoring Division (available at http://www.esrl.noaa.gov/gmd/dv/ftpdata.html).

References

Honrath, R. E., Owen, R. C., Val Martín, M., Reid, J. S., Lapina, K., Fialho, P., Dziobak, M.

Table 1. Ozone data sets investigated in the present analysis.

<table>
<thead>
<tr>
<th>Monitoring Site</th>
<th>Dates</th>
<th>Lat./Long.</th>
<th>Elevation (m)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeka Peak, Washington</td>
<td>Springtime, 1997 to 2002</td>
<td>48° 18' N 124° 36' W</td>
<td>480</td>
<td>Jaffe et al., 2003</td>
</tr>
<tr>
<td>Yreka, California</td>
<td>March 1981–December 2005</td>
<td>41° 44' N 122° 38' W</td>
<td>802</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>Redwood N.P., California</td>
<td>November 1987–May 1995</td>
<td>41° 34' N 124° 5' W</td>
<td>235</td>
<td>National Park Service, Air Resources Division</td>
</tr>
<tr>
<td>Trinidad Head, California</td>
<td>April 2002 to December 2007</td>
<td>41° 3' N 124° 9' W</td>
<td>100</td>
<td>Goldstein et al., 2004; NOAA GMD^a</td>
</tr>
<tr>
<td>Point Arena, California</td>
<td>April 24-May 5, 1985</td>
<td>38° 57' N 123° 44' W</td>
<td>20</td>
<td>Parrish et al., 1992</td>
</tr>
<tr>
<td>Point Reyes N.S., California</td>
<td>November 1987–December 1992</td>
<td>38° 7' N 122° 55' W</td>
<td>76</td>
<td>National Park Service, Air Resources Division</td>
</tr>
<tr>
<td>Channel Islands N.P., California</td>
<td>January 1997–December 2004</td>
<td>34° 1' N 120° 3' W</td>
<td>0</td>
<td>National Park Service, Air Resources Division</td>
</tr>
</tbody>
</table>

^a National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division.
Table 2. Average O$_3$ concentrations measured 17 April–23 May 2002 at Trinidad Head during the ITCT 2K2 field study (Goldstein et al., 2004; Millet et al., 2004) under different conditions. All results derived from one-hour average measurements.

<table>
<thead>
<tr>
<th>Selection Criterion</th>
<th>Average O$_3$ ± Standard Deviation</th>
<th>Diurnal Cycle Magnitudea</th>
<th>% Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data</td>
<td>38.1 ± 7.2 ppbv</td>
<td>11.7</td>
<td>100</td>
</tr>
<tr>
<td>Radon ≤ 1.05 Bq/m3</td>
<td>42.5 ± 4.2 ppbv</td>
<td>4.2</td>
<td>48</td>
</tr>
<tr>
<td>MTBE ≤ 2 pptv</td>
<td>41.5 ± 4.7 ppbv</td>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>CO$_2$ ≤ 380 ppmv</td>
<td>42.2 ± 4.4 ppbv</td>
<td>5.7</td>
<td>51</td>
</tr>
<tr>
<td>high, NW windsb</td>
<td>40.9 ± 5.5 ppbv</td>
<td>5.7</td>
<td>43</td>
</tr>
<tr>
<td>NW windsb</td>
<td>39.5 ± 6.5 ppbv</td>
<td>9.7</td>
<td>67</td>
</tr>
</tbody>
</table>

a Peak-to-peak amplitude in units of ppbv O$_3$.

b NW Winds: 225° ≤ wind direction ≤ 360°; high winds: wind speed ≥ 3 m/s.
Table 3. Average concentrations ± standard deviations measured 17 April–23 May 2002 at Trinidad Head during the ITCT 2K2 field study (Goldstein et al., 2004; Millet et al., 2004) compared for all data and different criteria for selection of marine conditions. All results derived from one-hour average measurements.

<table>
<thead>
<tr>
<th>Species</th>
<th>All data</th>
<th>High, NW Winds(^a)</th>
<th>% Data</th>
<th>≤ Selection Criteria(^b)</th>
<th>% Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon (Bq/m(^3))</td>
<td>1.4±1.1</td>
<td>1.2±1.0</td>
<td>45</td>
<td>0.6±0.2</td>
<td>48</td>
</tr>
<tr>
<td>MTBE (pptv)</td>
<td>4.4±5.6</td>
<td>2.0±2.2</td>
<td>45</td>
<td>1.3±0.4</td>
<td>50</td>
</tr>
<tr>
<td>CO(_2) (ppmv)</td>
<td>381.2±4.5</td>
<td>379.4±2.9</td>
<td>47</td>
<td>378.0±4.5</td>
<td>51</td>
</tr>
<tr>
<td>O(_3) (ppbv)</td>
<td>38.1±7.2</td>
<td>40.9±5.5</td>
<td>43</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

\(^a\) NW Winds: 225°≤ wind direction ≤360°; high winds: wind speed ≥3 m/s.

\(^b\) Selection Criteria given in Table 2 and discussed in text.
Table 4. Percentage of time during each season that data satisfy high, NW wind selection criteria for full data sets. All results derived from one-hour average measurements.

<table>
<thead>
<tr>
<th>Site</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olympic N.P.</td>
<td>2.4</td>
<td>6.7</td>
<td>7.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Redwood N.P.</td>
<td>3.3</td>
<td>13</td>
<td>10</td>
<td>5.8</td>
</tr>
<tr>
<td>Trinidad Head</td>
<td>13</td>
<td>30</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>Point Arena b</td>
<td>–</td>
<td>61</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Point Reyes N.S.</td>
<td>24</td>
<td>49</td>
<td>55</td>
<td>34</td>
</tr>
</tbody>
</table>

a 225° ≤ wind direction ≤ 360°; wind speed ≥ 3 m/s, except ≥ 2 m/s at Olympic N.P.
b data from 14 days in 1985.
Table 5. Linear Regression results for decadal trends in MBL O₃ concentrations derived from different data sets and different seasons. The 95% confidence limits are given for the slopes and intercepts.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>All Pacific Sites</th>
<th>Olympic N.P.</th>
<th>All Pacific except Olympic N.P.</th>
<th>Mace Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (ppbv/yr)</td>
<td>0.43±0.17</td>
<td>0.45±0.36</td>
<td>0.43±0.23</td>
<td>0.41±0.12</td>
</tr>
<tr>
<td>Intercept 2000 (ppbv)</td>
<td>33.6±1.1</td>
<td>33.5±1.6</td>
<td>33.7±1.8</td>
<td>41.2±0.8</td>
</tr>
<tr>
<td>r²</td>
<td>0.49</td>
<td>0.38</td>
<td>0.52</td>
<td>0.74</td>
</tr>
<tr>
<td>χᵥ (ppbv)</td>
<td>2.6</td>
<td>2.5</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (ppbv/yr)</td>
<td>0.46±0.13</td>
<td>0.48±0.30</td>
<td>0.48±0.16</td>
<td>0.55±0.20</td>
</tr>
<tr>
<td>Intercept 2000 (ppbv)</td>
<td>39.2±0.9</td>
<td>38.6±1.3</td>
<td>39.7±1.3</td>
<td>45.4±1.4</td>
</tr>
<tr>
<td>r²</td>
<td>0.66</td>
<td>0.56</td>
<td>0.71</td>
<td>0.64</td>
</tr>
<tr>
<td>χᵥ (ppbv)</td>
<td>2.0</td>
<td>1.7</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (ppbv/yr)</td>
<td>0.24±0.16</td>
<td>0.17±0.40</td>
<td>0.30±0.13</td>
<td>0.33±0.16</td>
</tr>
<tr>
<td>Intercept 2000 (ppbv)</td>
<td>25.7±1.1</td>
<td>23.9±1.9</td>
<td>27.2±1.1</td>
<td>33.5±1.1</td>
</tr>
<tr>
<td>r²</td>
<td>0.24</td>
<td>0.08</td>
<td>0.59</td>
<td>0.51</td>
</tr>
<tr>
<td>χᵥ (ppbv)</td>
<td>2.6</td>
<td>2.6</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Autumn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (ppbv/yr)</td>
<td>0.12±0.14</td>
<td>0.10±0.19</td>
<td>0.14±0.21</td>
<td>0.43±0.16</td>
</tr>
<tr>
<td>Intercept 2000 (ppbv)</td>
<td>31.2±1.0</td>
<td>30.9±1.0</td>
<td>31.4±1.8</td>
<td>37.5±1.1</td>
</tr>
<tr>
<td>r²</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.62</td>
</tr>
<tr>
<td>χᵥ (ppbv)</td>
<td>2.1</td>
<td>1.3</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Annual mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope (ppbv/yr)</td>
<td>0.34±0.09</td>
<td>–</td>
<td>–</td>
<td>0.39±0.11</td>
</tr>
<tr>
<td>Intercept 2000 (ppbv)</td>
<td>32.1±0.5</td>
<td>–</td>
<td>–</td>
<td>39.3±0.7</td>
</tr>
<tr>
<td>r²</td>
<td>0.76</td>
<td>–</td>
<td>–</td>
<td>0.74</td>
</tr>
<tr>
<td>χᵥ (ppbv)</td>
<td>1.1</td>
<td>–</td>
<td>–</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table 6. Linear Regression results for mid-day (12:00–18:00 LST) Yreka O₃ concentration data set for different seasons. The 95% confidence limits are given for the slopes and intercepts.

<table>
<thead>
<tr>
<th>Season</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope (ppbv/yr)</td>
<td>−0.11±0.33</td>
<td>0.09±0.26</td>
<td>0.30±0.33</td>
<td>0.31±0.32</td>
</tr>
<tr>
<td>Intercept 2000 (ppbv)</td>
<td>21.6±3.2</td>
<td>42.2±2.9</td>
<td>46.1±3.2</td>
<td>35.1±3.3</td>
</tr>
<tr>
<td>r^2</td>
<td>0.03</td>
<td>0.03</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>χ^2_{ppbv}</td>
<td>5.1</td>
<td>4.1</td>
<td>5.1</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Fig. 1. Map of the North American west coast showing location of surface sites from which the data sets discussed were collected. The colors indicate terrain topography.
Fig. 2. Dependence of ozone upon parameters that indicate North American continental influence. Data were collected 17 April–23 May 2002 at Trinidad Head during the ITCT 2K2 field study (Goldstein et al., 2004; Millet et al., 2004). Open circles indicate one hour-average data collected during northwesterly winds (225° ≤ wind direction ≤ 360°), gray circles indicate other wind directions. The vertical dashed lines indicate the independent variable values selected to separate marine data from those affected by continental influences.
Fig. 3. Wind rose for all one hour-average wind data collected during spring 2007 at Trinidad Head. The symbols are color-coded according to the measured ozone concentrations plotted in order of decreasing ozone concentration so that the lower ozone concentrations are more clearly visible. To the left of the heavy dashed line indicates the marine data sector defined here: high (wind speed ≥3 m/s), northwesterly winds (225° ≤ wind direction ≤ 360°).
Fig. 4. Diurnal cycle of ozone for 17 April–23 May 2002 measurements at Trinidad Head during the ITCT 2K2 field study (Goldstein et al., 2004; Millet et al., 2004). Gray closed circles indicate all one hour-average data, and black open circles indicate those data collected during high (wind speed ≥ 3 m/s), northwesterly winds ($225^\circ \leq$ wind direction $\leq 360^\circ$). The color-coded, larger open symbols connected with lines indicate two hour-averages of data selected by the criteria annotated.
Fig. 5. Springtime ozone concentration dependence on wind speed at four MBL sites. (a) Symbols give average ozone concentration for 0.5 m/s wind speed increments; some representative standard deviations of the averages are shown. (b) Percent of data falling in 0.5 m/s wind speed increments. (c) Average ozone concentration at all wind speeds higher than the indicated wind speed. All data collected in the indicated years during northwesterly winds (225° ≤ wind direction ≤ 360°) are included.
Fig. 6. Differences between simultaneous determinations of average marine ozone concentrations at four pairs of sites. Each small grey symbol indicates the difference for one season in one year. Each large open symbol gives the mean difference for the pair of sites with the error bars indicating the one-sigma confidence limit of that mean. The annotations give the sites in each pair, the mean differences ± standard deviations, the square of the correlation coefficients for the individual seasonal average ozone concentrations that led to the differences, and the number of difference determinations.
Fig. 7. Comparison of trends in MBL ozone concentration at the Pacific Coast of North America and at Mace Head, Ireland. Each data point is a seasonal three month average in a given year at the site specified by color and symbol. Linear least-squares fits are given for all Pacific sites (black lines), the Olympic N.P. data (orange lines), the Pacific sites excluding the Olympic N.P. data (gray dotted lines), and Mace Head (purple solid lines). Olympic N.P. data are not available for summer. Second degree polynomial fits (Eq. 2) to the Mace Head data are indicated by the purple dotted lines.
Fig. 8. Temporal trends derived for spring at Olympic N.P. as a function of wind selection. The Visitors Center data are the same as discussed elsewhere in the paper. The Port Angeles data were collected by the park staff at a nearby site before the National Park service monitoring program was established. Linear least-squares fits are given for both data sets (blue lines) and the Visitor Center data only (orange lines). The slopes of the former fits are given in the figure annotations.
Fig. 9. Monitoring site map (downloaded from CARB website http://www.arb.ca.gov/qaweb/site.php?s_arb_code=47861) and O₃ concentration trends analysis for the Yreka, California site indicated by the red circle on the map. The heavy orange line just west of the site indicates the I-5 interstate highway and the light grey line just east of the site indicates a rail line. The parameters of the linear least-squares fits (straight lines) are given in Table 6.
Fig. 10. Seasonal and diurnal cycles of MBL ozone concentrations derived from the data sets collected at the four sites indicated in the figure annotation. The decadal trends were removed from the data before deriving these cycles by correcting each year's data to the reference year 2000 according to the temporal trends given in Table 5. The diurnal cycles are averages of the cycles derived for Trinidad Head and Point Reyes N.S.
Fig. 11. Comparison of the average annual increase in O_3 concentration (upper panel) and the intercept of that trend in the year 2000 (lower panel) for the US West Coast and Mace Head, Ireland, a measurement site on the west coast of Europe.
Fig. 12. (a) Comparison of the 12-month running mean O$_3$ concentrations from the Pacific MBL sites and Mace Head, Ireland. The parameters from the linear least-squares fits to the annual averages are given in Table 5. (b) Comparison of the running annual mean O$_3$ concentrations from this work with the annual averages of earlier measurements reported from two European sites by Volz and Kley (1988).