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Abstract 
 

The Forest Carbon Plan recommends seizing every opportunity to increase the rate of fuels 
treatment to reduce fire hazard and limit greenhouse gas emissions. Prescribed fire is an effective 
and efficient fuel treatment. Thus, the recent executive order (B-52-18) calls on the California Air 
Resources Board (CARB) to reduce barriers to prescribed fires. However, the value of increased 
burning must be weighed against the competing objective of maintaining air quality. Biomass 
burning (BB) can be a dominant source of primary carbonaceous aerosols and of non-methane 
organic compounds, including volatile, intermediate and semi-volatile organic compounds 
(I/S/VOCs). These compounds are well understood to be major contributors to secondary particle 
formation in the atmosphere; however, their identities and quantities (which largely control the 
extent of particle formation) are poorly constrained. To balance the trade-off between reducing 
fire hazard and limiting exposure to criteria pollutants, an accurate means to predict fire emissions 
from prescribed burning is essential. The contractor conducted measurements via ground- and 
airborne-based (drone) sampling platforms during prescribed burn activities. The ground‑based 
systems were equipped to measure black carbon (BC), carbon dioxide (CO2), carbon monoxide 
(CO), and oxides of nitrogen (NOX) in real time while simultaneously collecting I/VOCs on 
sorbent cartridges and SVOCs and PM2.5 on quartz filters. The airborne system included the 
capability to measure CO2, CO, BC and collect sorbent cartridges and quartz filters to understand 
BB emissions that escape the canopy to the regional airshed. Gas and particle concentration data 
were converted to emission factors using well established carbon balance methods that account for 
the fraction of carbon in the fuels and assume most of the mass emitted exists as CO2 and CO. 
Emission profiles were characterized from two distinct types of prescribed fires: third-entry burns 
(burned twice previously for management purposes) in a mature, second-growth mixed conifer 
forest and first-entry burns in a second-growth mixed conifer forest. These two extremes capture 
what will in the future become a gradient in management status. The first-entry burns are 
representative of the majority of burn projects that are being proposed currently- that is, 
introducing fire in forests that have been unburned since the policy of fire suppression was 
implemented a century ago. The third entry burns represent the desired future goal- that is, a forest 
that is being maintained with light burning in perpetuity. Emission factors were derived from 
emission measurements taken during the burns; carbon stocks were measured before and after the 
burns. The experiments occurred on University of California property at the Blodgett Forest 
Research Station, a mixed conifer forest representative of large regions of the western slope of the 
Sierra Nevada. Emission factors are reported for EC, BC, OC, PM2.5, speciated VOCs, IVOCs, 
and SVOCs. The observed EFs were used to validate those used by CARB in the First-Order Fire 
Effects Model (FOFEM) for modeling atmospheric emissions from prescribed burns. Using time-
resolved observations from the PurpleAir sensor network in California, analyses of PM2.5 indoor 
infiltration ratios during non-fire and wildfire days were completed. 
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Executive Summary  

Fires can emit high levels of trace gases and primary (directly emitted) particulate matter (PM). 
During plume evolution, some of the gases react to form ozone and secondary PM (i.e., secondary 
organic aerosol, SOA), thereby degrading air quality downwind and potentially endangering 
human health. A recent study shows that increasing wildfires are erasing decades of air pollution 
gains in the Northwest, including rural parts of Northern California (McClure and Jaffe, 2018). 
Climate change will sharpen the problems involving wildfires in the western U.S. For example, in 
the Sierra Nevada, warmer and drier climate in combination with fire-control practices over the 
last century, have produced a developing situation with more frequent fires that are of higher 
severity, and thus increasing impacts on local and regional air quality. Fuel treatments, such as 
prescribed fire and the mechanical removal of vegetation, are often implemented to reduce the 
spread and intensity of large wildland fires (Fulé et al., 2012). Given its cost-efficiency, prescribed 
fire is often the preferred fuel treatment (Bustic et al., 2017). Yet there are critical public health 
and social justice concerns about the emissions associated with a greatly expanded program of 
prescribed fire (Roos et al., 2018). Improvements in model representation of fuels and emissions 
are needed to advance the scientific understanding and allow reliable predictions of the linkages 
between fire and land management practices and fire emissions and impacts. 

The objectives of this contract were to: 1) analyze gaseous and particulate organic carbon emission 
samples from California wildfires collected by CARB staff using their mobile platform in 
coordination with the FIREX-AQ aircraft campaign; 2) evaluate biomass burning emission factors 
in FOFEM for climate pollutants (e.g., CO2); criteria pollutants (e.g., NOx, CO, and PM2.5); and 3) 
quantify emission factors (EFs) of criteria pollutants, VOCs, and selected air toxics from 
prescribed burns. Calculated EFs were compared with those from wildfires in order to understand 
how reducing fire risk through prescribed burn also alters emissions. Outcomes of these objectives 
include improved EFs from prescribed burns of managed and previously unmanaged forest; and 
comparison to EFs from wildfires, including recently measured and published values. 
 
Contractors developed datasets for use by air quality management and scientific communities by 
characterizing smoke emissions as a function of land management practices. First entry prescribed 
burns were completed in a mixed-conifer forest at the Blodgett Forest Research Station (BFRS) 
over four consecutive days, from 20-23 April 2021. These burns occurred during spring conditions 
that allowed for high fuel consumption without excessive risk of escape and with minimal smoke 
impacts on downwind communities. Smoke was sampled using ground- and drone-based 
instruments to characterize fresh gaseous and particulate emissions during several hours of each 
day’s prescribed burn. Forest and fuel characteristics were collected in each unit from established 
permanent inventory plots at BFRS both before and after the prescribed burns. The field estimates 
of biomass provided sufficient information to quantify the variation in the structure and abundance 
of fuels. Fire intensity was quantified by comparing pre- and post-fire fuel loads. Measured fuel 
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consumption and smoke emissions were compared with predictions using the First Order Fire 
Effects Model (FOFEM) for prescribed fires in this common California forest type. 
 
The UC Riverside and UC Berkeley teams successfully analyzed gaseous and particulate organic 
carbon emission samples, respectively, from California wildfires collected by CARB staff using 
their mobile platform in coordination with the FIREX-AQ aircraft campaign. The data were 
compared with data from BFRS (1st and 3rd entry burns) and with reported literature values. 
Differences in the levels and abundances of some volatile organic compounds (VOCs) and PM2.5 
speciated organics were observed between the wildfire samples and the BFRS samples. The 
differences in the levels of some compounds were driven by dilution and reactive losses and 
secondary production during plume transport. The differences in relative abundances also suggests 
that there were differences in the fuel consumed, as would be expected for wildfires relative to 
prescribed burns.  
 
A series of FOFEM model runs were conducted to evaluate model skill in predicting climate 
pollutants (e.g., CO2) and criteria pollutants (e.g., CO and PM2.5). Predicted emission factors (EFs) 
were compared between model runs and with measured EFs to assess sensitivity and uncertainty 
in the context of fuel loading, fuel consumption, and EFs. The results of the FOFEM simulations, 
including comparisons with measured emissions and fuel loading and consumption will be 
submitted to the International Journal of Wildland Fire for publication. 
 
Observations of gaseous and particulate compounds were used to calculate EFs for the prescribed 
burns at BFRS. A single compartment was burned over a period of four days and divided into three 
sub units. The compartment was typical of second-growth mixed conifer forests where high tree 
density and high surface fuel loads create high wildfire hazard. The forest structure and fuels were 
highly similar between the three burn units, as was reflected in the measured climate and criteria 
pollutants. 
 
Using time-resolved observations outside and inside over 1400 buildings from the crowdsourced 
PurpleAir sensor network in California, we determined that infiltration ratios (indoor PM-2.5 of 
outdoor origin/outdoor PM2.5) reduced from 0.4 during non-fire days to 0.2 during wildfire days. 
Even with reduced infiltration, mean indoor concentration of PM2.5 nearly tripled during wildfire 
events, with lower infiltration in newer buildings and those utilizing air conditioning or filtration. 
These results were published in the Proceedings of the National Academy of Sciences, PNAS 
(Liang et al., 2021). 
 
The spring prescribed burns at BFRS successfully met management goals. The mass of litter and 
fine woody debris was reduced by 65%, total ground and surface fuel load was reduced by 53% 
with the lower rates of combustion (<50%) occurring in the heavy fuels (i.e., duff and coarse 
woody debris). Further, crown scorch never exceeded 32% and only one of the 63 trees > 50 cm 

https://doi.org/10.1073/pnas.2106478118
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diameter breast height was killed in the fire. While surface fuel loads were meaningfully reduced, 
carbon loses were relatively low compared to values reported in the literature for similar treatments 
in comparable forests. The fires proceeded through flaming and smoldering combustion phases 
and smoke samples were collected from ground- and drone-based platforms. The drone generally 
sampled a wider range of combustion conditions, from flaming to smoldering, resulting in 
generally higher VOC mixing ratios and PM mass concentrations. The EFs, however, between the 
ground and drone samples were relatively consistent, and we recommend these data be pooled 
when calculating mean EFs to use in emissions modeling. Further, EFs between 1st and 3rd entry 
burns were also relatively consistent, suggesting that the composition of emissions was similar 
between these types of burns. The total emissions, however, scaled with fuel loading for these 
burns and that information is critical for predicting emissions from both prescribed burns and 
wildfires.  
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Task Summary and Work Described in This Project 
The major objectives of this work were to develop emission factors (EFs) of fine particulate matter 
(PM2.5), organic carbon (OC), elemental carbon (EC), black carbon (BC), gas phase volatile 
organic compounds (VOCs), and particle phase organic chemicals for prescribed burns typical of 
those conducted in the mixed conifer forests of the Sierra Nevada Mountains in California. The 
observed EFs were used to validate those used by CARB in the First-Order Fire Effects Model 
(FOFEM) for modeling atmospheric emissions from prescribed burns. The work done for each of 
the 6 tasks identified in the contract is briefly summarized below: 

Task 1: Plan prescribed burns 

The initial step of the project was field campaign planning which included the following:  
Design experimental plan, identify appropriate plots for prescribed burns at Blodgett Forest 
Research Station, plan the suite of ground-based measurements and prepare required instruments, 
plan the drone-based measurement system and build drone sampler, perform site visits to planned 
measurement locations, prepare burn plan and submit to CAL FIRE for approval, and assess 
FOFEM model inputs and treatment of EFs, including as a function of fuel type, fuel moisture, 
and burn characteristics. 

Task 2: Analyze FIREX-AQ samples collected by CARB from California wildfires 

During the period of the FIREX-AQ field campaign, contractors provided a sampler for collection 
of gas- and particle-phase organic carbon to CARB staff for collection during wildfires. Wildfire 
smoke samples were collected from two fires in August and November 2019 by CARB using their 
Mobile Measurement Platform: Springs Fire (5,000 acres) and Kincade Fire (78,000 acres).  VOC 
samples were analyzed on the TD-GCxGC-TOF instrument at UC Riverside. PM2.5 samples were 
analyzed on the TD-GCxGC-TOF instrument at UC Berkeley. 
 
Task 3: Complete prescribed burns 

Prescribed burns were completed in April 2021. Three plots were successfully burned (units A, B, 
C), on back-to-back days with one unit (A) taking two days for burn completion. All burns were 
conducted during daytime. Measurements of above-ground pre-fire carbon pools were completed 
including detailed fuel measurements. A sampling protocol was developed and applied for above-
ground biomass stocks (duff, litter, FWD, CWD, shrubs, and trees), and a field crew was trained 
on the sampling protocol. Smoke sampling was completed for all units (A, B, C). Samples and 
data were successfully collected as proposed using ground- and drone-based measurement 
platforms.   
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Task 4: Analyze prescribed burns samples and data 

Analysis of samples and data from prescribed burns were completed. Contractors measured 
biomass in each plot before and after prescribed burns to determine amount and type of fuel 
consumed. Speciated particle phase organics were analyzed from filter samples at UCB and EFs 
were calculated for ground and drone samples. Speciated VOCs were analyzed at UCR from 
sorbent tube samples and EFs were calculated for ground and drone samples. Analysis of BC in 
smoke from prescribed burns and wildfires was completed. FOFEM model runs were completed. 
Calculated consumption, EFs, and total emissions from FOFEM were compared with observations.  
Analysis of already-collected data during 2018 and 2020 wildfires in California was completed for 
BC and PM2.5.  Using time-resolved observations from the PurpleAir sensor network in California, 
analyses of PM2.5 infiltration ratios during non-fire and wildfire days were completed. 

Task 5: Draft final report 

The contractor will deliver to CARB a draft version of the Final Report detailing the purpose and 
scope of the work undertaken, the work performed, and the results obtained and conclusions.  
Specific contracted deliverables include:  

1) database of chemical species collected on filters and sorbent tubes detected by GCxGC-
ToFMS; compounds quantified by peak area and identified by name or by compounds 
class using standards as available;  
2) calculated EFs for bulk gaseous and particulate compounds (e.g., total PM), for 
individual species and for classes of compounds (e.g., ‘PAHs’) in gas and particle phases; 
EF database include metadata to link EFs with fuel characteristics and burn conditions;  
3) temporal profiles of online gaseous chemical species (e.g., CO, CO2); and 
4) pre-fire fuel characterizations including mass and moisture content by component 
along with burn conditions and fuel consumption for the prescribed fires at BFRS. 

This report is submitted in fulfillment of Task 5.  

Task 6: Amend final report      

Revised final report of the project and its results will be delivered to CARB. 
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1. Introduction 

1.1. Background 

As part of a decades-long trend, wildfires in California are growing larger, burning at higher 
severity, and exacting greater social costs (Safford et al., 2022). From an air quality perspective, 
fine particulate matter (PM2.5) and ozone formed from fires are two of the deadliest components 
of smoke. A recent study shows that increasing wildfires are erasing decades of air pollution gains 
in the Northwest, including rural parts of Northern California (McClure and Jaffe, 2018). Climate 
change will sharpen the problems involving wildfires in the western U.S. For example, in the Sierra 
Nevada, warmer and drier climate in combination with fire-control practices over the last century, 
have produced a developing situation with more frequent fires that are of higher severity, and thus 
increasing impacts on local and regional air quality.   

In the dry forests of the American West, long-term policies of wildfire suppression and early 
harvesting practices have led to the accumulation of understory fuels in forests, including in 
California (Collins et al., 2011). This century-long shift in forest structure in tandem with a 
warming climate greatly increases the potential for destructive fires (Collins et al., 2011; Stephens 
et al., 2014). Fuel treatments, such as prescribed fire and the mechanical removal of vegetation, 
are often implemented to reduce the spread and intensity of large wildland fires (Fulé et al., 2012). 
Given its cost-efficiency, prescribed fire is often the preferred fuel treatment (Bustic et al., 2017). 

Yet there are critical public health and social justice concerns about the emissions associated with 
a greatly expanded program of prescribed fire (Roos et al., 2018). 

Fires can emit high levels of trace gases, including NOx, CO and CO2; volatile, I/S/VOCs; and 
primary (directly emitted) PM. During plume evolution, I/VOCs react to form ozone and 
secondary PM (i.e., secondary organic aerosol, SOA), thereby degrading air quality downwind and 
potentially endangering human health. The quantities and properties of the emitted compounds are 
highly variable and largely dependent on fuel type and burn conditions (Akagi et al., 2011; Jolleys 
et al., 2012; McMeeking et al., 2009), thus differences in emissions are expected between 
prescribed fires and wildfires. 

Through Joint Fire Science Program (JFSP) and National Oceanic and Atmospheric 
Administration (NOAA) funded projects, contractors demonstrated that collaborative application 
of advanced instrumentation can yield significantly improved estimates of gaseous and particulate 
compounds emitted from fires (including PM, and SOA/O3 precursors). The lower volatility 
compounds, particularly those most likely to contribute to PM, were notably absent from 
commonly used emissions inventories (Hatch et al., 2017). For particle-phase compounds, 
contractors published emission factors (EFs), scalable by modified combustion efficiency (MCE), 
for elemental and organic carbon (EC and OC, respectively), and speciated organic compounds 
(and class) (Jen et al., 2019). This detailed emissions characterization was an important part of the 
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joint FIREX-AQ campaign (NOAA and NASA partnership), which combined in-situ surface and 
airborne observations with remote sensing data. The leveraging of the contractors' NOAA-FIREX 
efforts provided critical information to improve model predictions of the impacts of fires on 
chemistry and climate. 

In current models used to support air quality decisions, the ability to represent air quality and 
climate effects of fires is severely limited. Contractors recently compared predicted emissions  
using the First Order Fire Effects Model (FOFEM, (Keane and Lutes, 2018)) from six wildfires in 
California with field data (Lydersen et al., 2014). In general, FOFEM performed reasonably well 
in estimating fuel consumption and relevant emissions for air quality. However, based on 
comparisons with pre-fire measurements of fuel loads, FOFEM got the “right” answer for the 
“wrong” reasons. For most fuel characterizations tested, the model underestimated flaming 
emissions and overestimated smoldering emissions. As noted above, the quantities and properties 
of the compounds emitted depend on combustion conditions (e.g., flaming versus smoldering), as 
well as the characteristics of the fuel (Yokelson et al., 2013; Hatch et al., 2017; Jen et al., 2019). 
Thus there is a critical need to link accurate measurements of pre-fire fuel conditions, post-fire 
fuel consumption, and gaseous and particulate emissions in order to improve predictions of fire 
emissions and their effects on air quality and climate. 

Contractors assembled a uniquely qualified team to advance scientific understanding of the 
linkages between fire and land management practices and fire emissions and impacts. 
Characterization and quantification of biomass burning emissions are needed to improve modeling 
of their impact on human health and climate. Furthermore, fuel manipulation and reduction 
treatments are a vital tool for reducing fire severity, and likely the most effective way of reducing 
future biomass burning emissions in a hotter, drier, and more variable climate. Hence, there is an 
urgent need to reduce fuel loading in forests and to better understand the impacts of wildfire and 
prescribed burning on the atmosphere and climate, and for policy-relevant science to aid in the 
process of managing fires. 

1.2. Objectives 

Objectives of this research project were to: 1) analyze gaseous and particulate organic carbon 
emission samples from California wildfires collected by CARB staff using their mobile platform 
in coordination with the FIREX-AQ aircraft campaign; 2) evaluate biomass burning emission 
factors in FOFEM for climate pollutants (e.g., CO2); criteria pollutants (e.g., NOx, CO, and PM2.5); 
and 3) quantify emission factors (EFs) of criteria pollutants, VOCs, and selected air toxics from 
prescribed burns. Calculated EFs were compared with those from wildfires in order to understand 
how reducing fire risk through prescribed burn also alters emissions. 

This project provides emissions from a representative set of prescribed burns in a mixed conifer 
forest in California, and compares with emissions from prescribed fires and wildfires in the western 
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US. Measured EFs were used in collaboration with CARB staff to evaluate FOFEM model 
estimates of short-lived climate pollutants and other air pollutants and will be used to improve 
model estimates in the future. Outcomes include improved EFs from prescribed burns of managed 
and previously unmanaged forest; and comparison to emission factors from wildfires, including 
recently measured and published values. 

1.3. Methods and Approach 

The quantities and chemical composition of gases and PM emitted from fires are affected by fire 
intensity, combustion phase, and fuel structure. New field-based measurements are needed to 
support evaluation of the air quality impacts of wildfires vs. prescribed fires (under different 
management scenarios). These include coupled characterization of fuel characteristics and 
consumption, burn characteristics, and emissions as uniquely provided by this project. 

Experimental Design 

Contractors developed datasets for use by air quality management and scientific communities by 
characterizing smoke emissions as a function of land management practices. These results are 
meant to inform operational models, such as FOFEM, by evaluating estimates of fuel consumption 
and characterizing emissions as a function of established emission inventory categories, vegetation 
classes, and fuel components. Coupled ground- and airborne- based measurements were used to 
sample near-fire emissions during prescribed burns at the Blodgett Forest Research Station (BFRS) 
in California. Airborne measurements were needed to understand fire emissions that escape the 
canopy to the regional airshed, and to get a representative average of the emissions and their 
evolution above and downwind of the fires. The ecosystem at BFRS is a mixed conifer forest. Fire 
is part of the research and management plan for BFRS, which has a long history of fire 
management research through the Fire and Fire Surrogate Treatments study, among others 
(Stephens et al., 2012). Attribution of prescribed burn emissions to vegetation classes and fuel 
components was facilitated by leveraging NOAA-FIREX projects in which gaseous and particulate 
emissions were measured from combustion of relevant fuels in the Missoula Fire Lab. The detailed 
emissions characterization for prescribed burns are compared with similar characterization for 
western wildfires by analyzing samples collected by CARB staff in California during the 2019 
summer wildfire season.  

Prescribed Burns 

A map showing the areas at BFRS identified for the 3rd and 1st entry burns is provided in Figure 
1.1. The 3rd entry burns were completed in 2017 in Compartments 60, 340, and 400 (shaded gray). 
These compartments range in area from 17.3 ha to 24.0 ha. The 1st entry burns were completed in 
Spring 2021 in Compartment 110. As shown in the inset enlarged map and Figure 1.2, 
compartment 110 was split into three units (A, B, C) separated by fire breaks. Roads or trails that 
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are drivable with utility task vehicles (UTVs) surrounded all burn areas in 2021.These units range 
in size from 6.6 ha to 9.8 ha.  
 
The 3rd entry burns were part of the long-term Fire and Fire Surrogate Study (2009) at Blodgett 
Forest (Stephens et al., 2009). The initial prescribed fire (i.e.,  1st entry) was implement in 2002 
with a 2nd entry burn in 2009. The 3rd entry treatment was implemented during a 3-day window in 
the fall (October 30 to November 1, 2017) when weather conditions met prescriptions. During the 
firing operations, air temperature averaged 17 °C, relative humidity ranged from 35%-45%, wind 
speeds from 1-2 km h-1, and 10-h fuel moisture from 5-7% (Levine et al. 2020). For details 
regarding the sampling strategy and treatment impact see Levine et al. ((Levine et al., 2020) and 
York et al. (York et al., 2022). 
 
The 1st entry prescribed fires were completed in the spring during a window that is typically 
targeted for weather and fuel moisture conditions that allow for high fuel consumption without 
excessive risk of escape. The fires occurred over four consecutive days, from 20-23 April 2021. 
Ground-based instruments were mounted on an UTV and placed on the west side of the burn units 
to maximize smoke sampling efficiency. Launch points for drones were on the side of the ground-
based sampling locations. This allowed a clear line of site between the operator and the drone.  

The ignitions occurred during daytime with Unit A being burned on the first two days and Units 
B and C being burned on the next two days. The general objectives were to consume at least 50% 
of fine fuels while limiting mortality of trees greater than 50 cm DBH to less than 10%. For canopy 
trees surviving the fire, crown damage was desired to be less than 50% on average. At the time of 
ignitions, 10-hour fuel moisture ranged from 11 to 15%; relative humidity ranged from 35 to 50%; 
and temperatures ranged from 14 to 18 °C. Strip-head fires were used with flame lengths typically 
less than 1.5 m. Torching of understory trees was common and torching of midstory trees occurred 
infrequently. Canopy trees that died were primarily killed by excessive heat scorching.  
 
The burn window was selected based on conditions that minimized air quality impacts of 
prescribed fires on neighboring communities. Prevailing winds are normally chosen to move 
smoke away from communities and fires are burned with higher amounts of flaming combustion 
versus smoldering to reduce the amount of smoke and its duration. Even with these measures 
smoke commonly reaches communities, especially at night when downslope winds are present and 
smoke sometimes pools in low lying areas. As part of the required Smoke Management Plan, the 
contractors worked with the local air pollution control district to minimize public health impacts.  
 



 16 

 
Figure 1.1 Overview of 1st (2021) and 3rd (2017) entry burn locations at Blodgett Forest Research 
Station. This project focusses on the 1st entry burns sampled in 2021 (see also Figure 1.2).  
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Figure 1.2 Blodgett Forest Research Station map showing location of 1st entry (no previous 
prescribed fire) stand, Compartment 110, divided into three burn units: A, B, and C. Existing 
access roads and UTV-drivable fire breaks provided access for both ground- and drone-based 
sampling.  
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Emissions Measurements 

Sampling Approach. Considering the local meteorology, and in coordination with the fire 
management team, measurements were conducted via ground- and drone-based sampling 
platforms to characterize fresh gaseous and particulate emissions during several hours of each 
day’s prescribed burn. The ground-based system was built on the bed of a UTV that included a 
suite of real-time online measurements (Horiba CO, CO2, and NOx analyzers; and a miniature 
aethalometer and a research-grade multi-wavelength aethalometer for BC) plus a multi-channel 
sequential sampler for simultaneous collections of I/VOCs on sorbent cartridges in parallel with 
SVOCs and PM2.5 on quartz filters. These sample pairs were analyzed offline using two-
dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-
ToFMS) for speciated organics. The drone platform included similar measurements of CO2, CO, 
and BC; matching the ground sampling, with I/VOCs collected on sorbent cartridges and SVOCs 
and PM2.5 on quartz filters for identical offline analysis. Offline OC/EC analysis was also 
performed using punches from filter samples taken from quartz filters collected on both platforms. 
This coordinated sampling and analysis of gaseous and particulate compounds allowed the 
contractors to determine EFs for individual compounds in the gas and particle phase, components 
of the particle phase (e.g., OC, EC, BC), and total PM2.5. 
 
The mobile ground-based sampling platform was positioned downwind of the burn unit(s) on 
either existing access roads or newly created firebreaks on the perimeter of the burn unit(s). The 
first burn (Unit A) lasted 2 days, while the second two burns (Units B and C) lasted one day each. 
Sampling was conducted for ~3 hours during the smoldering phase. Online instruments operated 
continuously during this time, while sorbent tube and filter samples were collected sequentially 
during this time for ~30 min/sample. 
 
Aerial sampling using an Uncrewed Aerial System (UAS) complemented the ground sampling 
with an expected averaged representation of the prescribed burn emissions profile that escapes the 
forest canopy. Constraints related to safety and difficult terrain limited the flight plan to manual 
control under visual observation. The drone was therefore launched from an access road with 
visual lines of sight to the fires. The UAS was flown into plumes well above the canopy (20-50 
m). For each flight, a single filter plus cartridge set was used to sample directly from multiple 
plumes during the flight.  
 
Gaseous Organic Compounds. Adsorption/thermal desorption (TD) cartridges were used to collect 
gaseous I/VOCs from the ground- and drone-based platforms. Contractors found that the use of 
dual-sorbent bed cartridges (100 mg Tenax TA 35/60 and 200 mg Carbograph 1 TD 60/80 in 
series) permitted collection of compounds with a wide range of volatilities. During FLAME-4 and 
FIREX, compounds ranging from C3 oxygenates to C15 sesquiterpenes could be trapped and 
analyzed (Hatch et al., 2015). Breakthrough samples were collected to assess the trapping 
efficiency of the cartridges toward the most volatile compounds.   
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Cartridge samples were analyzed using a Pegasus 4D GC×GC-ToFMS (LECO Corp., St. Joseph, 
MI) equipped with a Turbomatrix 650 automated thermal desorption (ATD) system (Perkin-Elmer, 
Waltham, MA) at UC Riverside. The Turbomatrix 650 ATD permits multiple analyses of the same 
cartridge, thereby readily allowing replicate analyses for quality control, as well as application of 
different GC×GC-TOFMS analytical conditions (e.g., different injection split ratios to extend the 
range of quantification or different column sets). Selection of column sets were based on analysis 
of BB samples collected during FLAME-IV and FIREX, and were optimized for enhanced 
separation of targeted compounds. Preferred column sets for BB samples thus far include: 1) a 
DB-VRX primary column 30 m, 0.25 mm I.D., 1.4 μm film, Agilent, Santa Clara, CA) and a 
Stabilwax secondary column (1.5 m, 0.25 mm I.D., 0.5 μm film, Restek, Bellefonte, PA); and 2) 
a Rxi-5ms primary column (30 m, 0.25 mm I.D., 0.25 μm film, Restek, Bellefonte, PA) with a 
Rxi-17Sil MS (1.5 m, 0.15 mm I.D., 0.15 μm film, Restek, Bellefonte, PA) secondary column 
(Hatch et al., 2015, 2019).  
 
The GC×GC-ToFMS data was processed using a combination of proprietary software from LECO 
(ChromaTOF) and in-house algorithms. QA/QC procedures, including calibration, were 
performed using ChromaTOF; sample alignment and compound identification were performed 
with the in-house algorithms. 
 
Particulate Organic Compounds. Quartz filters were used on ground- and drone-based platforms 
to collect SVOCs and PM2.5 emitted from fires, for analysis of OC/EC and speciated organic 
compounds. Samples were analyzed using thermal desorption two-dimensional gas 
chromatography-electron impact/vacuum ultraviolet high-resolution time-of-flight mass 
spectrometry (GC×GC-EI/VUV-HRToFMS) with online derivatization at UC Berkeley; a custom 
instrument developed in the Goldstein group (Jen et al., 2019). Small punches of each filter were 
thermally desorbed at 320 °C in a He flow using a Gerstel Thermal Desorption System. The He 
gas stream was saturated in N-Methyl-N-(trimethylsilyl) trifluoroacetamide, a derivatization 
agent, for online derivatization during thermal desorption. The compounds were trapped at 30 °C 
prior to injection onto the first column. Compounds are first separated by volatility with a Rxi-5Sil 
MS column then by polarity with a Rtx-200 MS column. EI-HRToFMS was then used to ionize 
and measure the mass fragments of the separated compounds. Though a vast number of compounds 
remain unidentified, the UCB team has built a mass spectral (MS) library in NIST format named 
University of California, Berkeley, Goldstein Library of Organic Biogenic and Environmental 
Spectra (UCB-GLOBES), including mass spectra from FIREX BB samples and additional relevant 
field samples. This MS library was used to match and keep track of compounds observed in the 
prescribed burn experiments. 
 
The measurements described above generated data for combustion diagnostics including MCE (an 
index of smoldering versus flaming) and CO/CO2 (similar to MCE index, smoldering/flaming 
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ratio). Measurements of CO2 and CO enable calculation of EFs (in units of g (or lbs) species per 
kg (or ton) fuel burned) by the carbon mass balance method for all of the other co-sampled gaseous 
and particulate species (includes individual compounds as well as “bulk” EFs, such OC and PM2.5). 
EF databases were developed for measurements made during the BFRS prescribed fires.  
 
For both the filters and cartridges, blank and background samples were collected daily for 
background subtraction of the smoke samples. Calibration standards were similarly analyzed for a 
range of BB-relevant compounds (including aromatic/aliphatic hydrocarbons, phenol derivatives, 
furan derivatives, and terpenes) to positively identify and quantify such compounds. Further details 
on sample handling and analysis protocols, including QA/QC procedures, can be found in Hatch 
et al. (Hatch et al., 2015, 2019) and Jen et al. (Jen et al., 2018, 2019). 
 
Experimental Approach. A key element of this contract was a coordinated effort to link ecosystem 
determinants of fire behavior with emission profiles. At BFRS, the application of prescribed fire 
follows typical management objectives, namely, to reduce future fire severity via the consumption 
of surface fuels while limiting the mortality of canopy trees (Stephens and Moghaddas, 2005a). 
The 1st entry burns were completed in a stand that because of its management history ((Stephens 
and Moghaddas, 2005b), was prioritized for fuel reduction treatments.  
 
To incorporate fine scale heterogeneity in fuel consumption and emissions production (Hiers et 
al., 2020), the treatment area was divided into three burn units approximately 8 ha in area (Figure 
1.2). Prescribed fire was applied to each unit over the course of four consecutive days. 
 
Sampling Strategy. Forest and fuel characteristics were collected in each unit from established 
permanent inventory plots at BFRS both before and after the prescribed burns. Sampling methods 
followed established inventory protocols (e.g., Vilanova et al., 2023). However, considering the 
importance of ground and surface fuel characteristics in determining fire behavior and emission 
profiles (Weise and Wright, 2014), contractors intensified the sampling regime of fuel classes 
(Figure 1.3). Specifically, the sampling intensity of litter, duff, 1-hr and 10-hr fuels was increased 
by 8x; 100-hr fuels by 5x; and CWD by 3x. There were four 30-meter main transects (blue) 
extending from plot center at cardinal directions. Depths of duff and of litter were sampled at 
locations 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 3.5, 4.0, 4.5, 5.5, 7.0, 7.5, 9.5, 19.5, and 29.5 meters from 
plot center along each of the four main transects. 1-hour, 10-hour, and 100-hour fine woody debris 
particles were tallied on 1-meter subtransects located along each main transect from 2-3, 3-4, 4-5, 
7-8, 9-10, 19-20, and 29-30 meters along each main transect and orthogonal to (bisected by) the 
main transect and intersecting it at 2.5, 3.5, 4.5, 5.5, 7.5, 9.5, 19.5, and 29.5 meters (red). Coarse 
woody debris particles were inventoried (diameter, location, decay class) from 0-30 meters along 
each main transect, and understory vegetation intersecting the main transect from 0-15 meters was 
recorded using line intercept sampling. Trees ≥ 11.4 cm DBH and saplings ≥ 1.37 m height were 
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inventoried (species, DBH, height, height to live crown, live/dead status, and spatial location) 
within a 500 m2 fixed area plot (trees; purple) or a 116 m2 fixed area plot (saplings; green). 

Figure 1.3  Forest and fuel plot inventory layout for the 1st entry prescribed fire at BFRS.  

Prior to burning, ground and surface fuels were sampled using the line-intercept method (Brown, 
1974; Van Wagner, 1982). On each of four 30-m transects arranged at cardinal directions from the 
plot center, the depth of litter and duff was recorded at 16 points. Fine woody debris (FWD) was 
measured by three diameter classes (≤ 0.64 cm diameter; > 0.64 ≤ 2.54 cm; > 2.54 ≤ 7.62 cm) that 
correspond to 1-, 10-, and 100-hour time lags. FWD particles were tallied by time lag class along 
a series of 16 subtransects (1m in length) along each transect (total FWD subtransects per plot = 
16*4= 64). Coarse woody debris (CWD, woody particles > 7.62 cm in diameter at intersection) 
was inventoried along each transect, with the diameter at intersection and decay class of each 
particle recorded. Shrubs were inventoried along each 30-m transect, with crews recording the 
species, height, major and minor crown diameters, and (for post-burn observations) the percent 
crown torch of each individual shrub whose crown intersected the transect. Crews recorded an 
ocular estimate of percent cover of herbaceous species along each transect. Saplings (trees > 1.37 
m in height but less than 11.4 cm in diameter at breast height, DBH) were inventoried within a 116 
m2 fixed area plot, with crews recording the species, live/dead status, DBH, height, height to live 
crown, decay class (for snags), percent crown torch (post-burn), and percent crown scorch (post-
burn) for each sapling. Likewise, trees (≥ 11.4 cm DBH) were inventoried with the same 
information on a 500 m2 fixed area plot. 
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For two weeks prior to burning, surface fuel moistures were measured. At two locations in each 
unit, samples of 100-hr and 1000-hr fuels were collected and sealed in metal soil sampling cans. 
The weight of the cans was measured (g) and placed in a drying oven at 105 °C for 24 hours, and 
then re-weighed to calculate moisture content on a dry weight basis. 

Analysis. These intensive plot data were converted into unit-level biomass density estimates using 
established methods as follows. Biomass density estimates for litter, duff, fine woody debris, and 
coarse woody debris were calculated using species-specific coefficients given by Van Wagtendonk 
et al. (Van Wagdendonk et al., 1996, 1998) as described in Stephens (Stephens, 2001). Biomass 
was estimated for individual shrubs using the allometric equations given by McGinnis et al. 
(McGinnis et al., 2010) and converted to per-area biomass density using the line-intersect 
equations described in Battles et al. (Battles et al., 1996). Percent cover observations for 
herbaceous plants were converted to biomass density using the methods of Campbell et al. 
(Campbell et al., 2009). Crown foliage and branch biomass of saplings and trees was estimated 
using allometric equations aggregated by Jenkins et al. (Jenkins et al., 2003). Contractors repeated 
the field measurements after the prescribed fire, adding estimates of crown torching, foliage 
scorching, and bole char height to the live tree assessments and estimates of crown torching to live 
shrub estimates.  

The field estimates of biomass provided sufficient information to quantify the variation in the 
structure and abundance of fuels. By comparing pre- and post-fire fuel loads, contractors quantified 
fire intensity. To inform total emission estimates, biomass was converted to carbon using a carbon-
to-mass ratio of 0.5 for all pools except duff where a ratio of 0.37 was used (Penman et al., 2003).   

FOFEM Integration. FOFEM is a fire effects model that estimates the immediate impacts, or first-
order effects, of fire including fuel consumption and smoke emissions (Keane and Lutes, 2018)/ It 
forms the basis for CARB's Emission Estimation System (EES, 
https://www.arb.ca.gov/ei/see/see.htm) used to inventory smoke production from wild and 
managed fires in the state. FOFEM is national in scope. It relies on geographic region and 
vegetation type to select default input values and appropriate algorithms. It requires site-level fuel 
load inputs (biomass per unit area) of common fuel components. The components are defined as 
litter, duff, 1-hr fuel (wood 0-0.1 cm diameter), 10-hr fuel (wood 0.1 - 2.5 cm diameter), 100-hr 
fuel (wood 2.5-7.6 cm diameter), 1000-hr fuel (wood > 7.6 cm diameter), and live fuels (i.e., herbs, 
shrubs, and tree foliage). FOFEM includes default loadings for classes of vegetation (i.e., 
Ponderosa pine forest) that can be adjusted for magnitude and fuel moisture content using site-
specific information.  
 
FOFEM estimates consumption of the fuel load inputs using a variety of methods. It assumes 100% 
consumption of litter and herbaceous fuel types. Shrub and duff consumption are determined with 
empirically derived regression models based on geographic region. To estimate woody fuel 
consumption, FOFEM applies Burnup, a mechanistic fuel consumption model. In addition to total 
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fuel consumption, the fractions consumed during flaming combustion and smoldering combustion 
are estimated using the Burnup model. Fuel moisture levels are key determinants in modeling these 
combustion ratios. Smoke emissions are calculated from the combustion estimates using reported 
EFs (in units of mass of emissions/mass of fuel consumed). These factors are empirically derived 
for each pollutant and fuel component, with some components having different EFs for flaming 
vs. smoldering combustion. The current defaults used by EES also vary by moisture content class 
(i.e., dry, moderate, and wet).  
 
This project supported the EES by evaluating the fuel consumption and smoke emissions projected 
by FOFEM with measurements of fuel consumption and emissions from prescribed fires in a 
common California forest type. The results informed a three-stage model assessment conducted in 
collaboration with CARB that focused on: 1) the suitability of the existing fuel models for mixed 
conifer forest type; 2) the accuracy of fuel consumption estimates; and 3) the sensitivity of smoke 
predictions to fuel consumption and the default EFs. The empirical documentation of consumption 
by fuel component provides the means to test and then calibrate, if needed, the performance of 
Burnup under novel fuel loadings. New EFs are provided that maintain existing functionality, but 
include EFs for individual compounds/compound classes in both the gas and particle phases that 
are considered important for predicting air quality impacts and are not currently included in 
FOFEM.  
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2. Description of Fuel Characteristics: Pre and Post Prescribed Burn  

2.1. Pre-Fire Conditions 

The 1st entry prescribed fire was conducted in a stand (Compartment 110, Figure 1.2) that is 
generally representative of the vast California mixed conifer forests (31,223 km2) that dominate 
the midslope zone on the westside of the Sierra Nevada (Safford and Stevens, 2017; USDA, 2023). 
Prior to the fire suppression era, these forests had low to moderate severity frequent-fire regimes 
(i.e., < 35 years) ((North and Hurteau, 2011; Safford and Stevens, 2017)). They are dominated by 
a mix of tree species that include ponderosa pine (Pinus ponderosa Douglas ex Lawson), Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco), incense-cedar (Calocedrus decurrens (Torr.) Florin), 
white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), sugar pine (Pinus lambertiana 
Douglas), and California black oak (Quercus kelloggii Newberry). The climate of the western 
Sierra Nevada is Mediterranean with cool wet winters followed by warm-to-hot, dry summers. 
Going forward, temperatures are expected to rise (3 to 5 °C on average by the end of the 21st 
century) and the summer drought period is expected to lengthen (Dettinger et al., 2018).  
 
Compartment 110 is a second-growth forest that has experienced single tree selection harvests at 
approximately 10-year intervals starting in 1983. The pretreatment forest density of 377 ± 36 trees 
ha-1 (mean ± standard error) and basal area of 45 ± 8 m2 ha-1 fell well within reported values for 
mixed conifer forests (Vaillant et al., 2009; Vilanova et al., 2023). However, given its history of 
sustainable harvests, tree density and basal area tended toward the lower end of the observed range. 
Similarly the pretreatment ground and surface fuel load of 104 ± 16 Mg ha-1 matched contemporary 
values albeit at the lower end of the range. In summary, the forest structure and fuel load of 
Compartment 110 prior to prescribed fire was typical of second-growth mixed conifer forests 
where high tree density and high surface fuel loads create high wildfire hazard (Stephens et al., 
2009; York et al., 2012).  

There were only modest differences in forest structure (Table 2.1) and composition (Table 2.2) 
among the three burn units. Unit C had the highest tree density and basal area while Unit B had 
the least, but the range of variation was small with Unit B having 35% less density and 29% less 
basal area (Table 2.1). The most striking difference in terms of composition was the shift in 
dominance between white fir and sugar pine in Unit B. While white fir accounted for more than 
15% of the relative basal area in Units A and C, it was < 5% in Unit B. On the other hand, sugar 
pine was the second most dominant species (21%) in Unit B while sugar pine was the least 
dominant species (< 5%) in Units A and C (Table 2.2).  
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Table 2.2. Forest composition in the three burn units prior to the application of prescribed fire. Units located at 
Blodgett Forest Research Station. Results for live trees ≥ 11.43 cm in diameter at breast height. Composition is 
reported as relative basal area (i.e., dominance). 

 A  B  C 
Species mean se  mean se  mean se 
incense-cedar 33.6 0.1  29.8 0.1  32.5 0.1 
ponderosa pine 18.4 0.1  15.9 0.1  26.5 0.1 
Douglas-fir 26.2 0.1  19.4 0.1  13.3 0.0 
white fir 15.9 0.1  4.7 0.0  15.7 0.0 
sugar pine 0.1 0.0  20.9 0.2  4.8 0.0 
black oak 3.7 0.0  2.5 0.0  7.2 0.1 

Initial fuel loads were also similar among the burn units (Table 2.3). Both in terms of total fuel 
load and distribution by class, the differences between Unit A and B were minor. However Unit C 
did have 24% more ground and surface fuel with most of the difference due to having nearly 60% 
more duff (Table 2.3). Not surprisingly given its greater tree density and basal area, Unit C also 
supported more fuel in its tree crowns.  

Table 2.3. Fuel loads in the three burn units prior to the application of prescribed fire. Units located at Blodgett 
Forest Research Station. Means and standard errors (se) reported for each unit. CWD = coarse woody debris 
(i.e., 1000+hr fuels).  

 Unit A  Unit B  Unit C 

Class Mass (Mg ha-1)  Mass (Mg ha-1)  Mass (Mg ha-1) 
mean se  mean se  mean se 

1-hr 1.3 0.1  1.3 0.2  1.0 0.2 
10-hr 4.3 0.4  4.3 0.1  3.5 0.5 
100-hr 9.8 1.6  8.1 1.4  9.9 5.0 
CWD (1000-hr+) 17.2 2.9  21.9 5.6  16.5 2.5 
Litter 34.8 1.9  27.3 5.0  38.8 2.7 
Duff 34.8 5.6  29.0 5.5  50.7 9.1 
Herb 0.1 0.0  0.3 0.2  0.1 0.0 
Shrub 1.5 0.6  1.3 0.4  0.8 0.3 
Crown (tree) 64.5 9.3  61.8 18.1  80.7 15.8 

Table 2.1. Forest  structure of the three burn units prior to the application of prescribed fire. Units located at 
Blodgett Forest Research Station. Results for live trees ≥ 11.43 cm in diameter at breast height;  QMD - quadratic 
mean diameter. 

Unit Area 
(ha) N (plots)  

Basal Area  
(m2 ha-1) 

 Density  
(trees ha-1) 

 Tree Height 
(m) 

 QMD 
(cm) 

  mean se  mean se  mean se  

A 9.8 9  40.9 4.7  358 30  16.8 1.0  38.2 
B 7.5 5  39.4 11.2  312 27  16.2 1.7  40.1 
C 6.6 5  55.9 9.0  480 56  16.2 1.2  38.5 
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2.2. Prescribed Fire Objectives  

The overall management goal was to restore fire as an ecosystem process while reducing wildfire 
hazard. The specific objectives were to consume at least 50% surface fuels, primarily from litter 
and fine woody debris (FWD, includes 1-, 10-, and 100-hour fuel categories). At the same time we 
wanted to manage the burn intensity to avoid either low or high intensity scenarios that would 
typically be undesirable for most management contexts. Specifically, the objectives were to limit 
the crown scorch of canopy trees surviving the fire to less than 50% on average, and to limit post-
burn mortality to no more than 10% of trees greater than 50 cm DBH.  

2.3. Post-Fire Conditions  

The spring burns met or exceeded the management goals. Specifically, the treatments reduced the 
mass of litter and fine woody debris by 65% (Figure 2.1). Total ground and surface fuel load was 
reduced by 53% with the lower rates of combustion (<50%) occurring in the heavy fuels (i.e., duff 
and coarse woody debris). In terms of limiting burn intensity, crown scorch never exceeded 32% 
in any unit (Table 2.4) and only one of the 63 trees > 50 cm DBH was killed in the fire.  

 

Figure 2.1 Changes in the fuel loads following 1st entry prescribed fire at Blodgett Forest Research 
Station. Biomass reported as the area-weighted mean and standard error from the three burn units.   
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Table 2.4. Fire severity statistics for the prescribed fires implemented in the three units at Blodgett Forest 
Research Station. Mortality is reported for trees ≥ 11.43 cm DBH. N represents the number of trees that survived 
the fire. Means and standard errors (se) reported for each unit.  

Unit 
Mortality 

 (%)  N (tree) Torch  
(%) 

 Scorch  
(%) 

 Char 
 (%) 

 Char Height  
(m) 

    mean se  mean se  mean se mean 
A 12.4  141 0.2 0.2  9.7 1.7  3.4 0.5 0.82 
B 25.6  58 13.3 2.9  31.9 4.2  9.8 1.8 0.86 
C 14.2  103 7.9 1.4  30.7 3.0  8.2 1.2 0.70 

 
 
Despite the meaningful reductions in 
surface fuel loads, the prescribed fire 
had only modest effects on forest 
structure and minimal impacts of 
forest composition. Across the units, 
post-fire live tree density decreased 
by 17% (Figure 2.2A) and basal area 
by 5% (Figure 2.2B). Clearly, fire-
related mortality was concentrated 
among the smaller diameter trees; 
more than half the saplings were 
killed in the fire (Figure 2.2A). This 
size-effect translated into taller 
average tree heights post-fire 
(Figure 2.2C). The pre-to-post fire 
differences in species dominance 
(Figure 2.3) were negligible 
indicating that there were no species-
specific responses to the prescribed 
fire. 
  

A 

C 

B 

Figure 2.2 Changes in forest structure following 1st entry prescribed fire at Blodgett Forest 
Research Station. Values reported as the area-weighted mean and standard error from the three 
burn units. A. Stem density; B. Basal area; C. Tree height. Trees = live stems ≥ 11.4 cm DBH; 
saplings = live stems < 11.4 cm DBH and ≥ 1.37 m tall. 
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2.4. Carbon Storage  

Immediately post-fire, aboveground carbon storage was reduced by 26.9 MgC ha-1 (Table 2.5). 
Most of this 13% reduction was due to losses in woody surface fuels (i.e., downed and dead wood) 
and duff. There were only minor losses (6%) in the largest aboveground carbon pool – live trees. 
However, elevated rates of tree mortality are expected to continue post-fire for several years (van 
Mantgem et al., 2011). While this 1st entry burn met prescription and meaningfully lowered surface 
fuel loads, it was a comparatively low-intensity fuel reduction treatment. The percentage of surface 
fuel carbon lost from 1st entry prescribed fires in comparable forest types ranged from 77% of pre-
fire totals (Blodgett Forest, (Stephens and Moghaddas, 2005a)) to 71% (Sequoia Kings Canyon 
National Park, (Knapp et al., 2005)) to 22% (Teakettle Experimental Forest, (North et al., 2009)). 
In terms of the carbon pools included in California forest offsets (live plant biomass and standing 
dead trees, CARB 2015(California Air Resources Board, 2015)), the prescribed fire reduced 
carbon storage by only 1.2% of the pre-fire total (1.9 MgC ha-1).   

  

Figure 2.3 Changes in the species composition following 1st entry prescribed fire at Blodgett 
Forest Research Station. Dominance (i.e., relative basal area) reported as the area-weighted mean 
and standard error from the three burn units.  Dominance includes live trees ≥ 11.4 cm DBH. 
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Table 2.5. Changes in the forest carbon pools following prescribed 1st entry prescribed fire at Blodgett Forest 
Research Station. Carbon density reported as the area-weighted mean (mean) and standard error (se) from the 
three burn units. Live and standing dead trees defined as stems ≥ 11.4 cm DBH. Understory pool includes live 
saplings (trees < 11.4 cm DBH and ≥ 1.37 m in height), shrubs, and herbs; Dead and downed wood includes 
fine and coarse woody debris.   

Pool Pre-fire (MgC ha-1)  Post-fire (MgC ha-1)  Change 

 
mean se 

 
mean se 

 
% MgC ha-1 

Live tree 150.9 35.2 
 

142.2 32.2 
 

-6% -8.7 

Standing dead tree 8.9 3.9 
 

15.8 8.2 
 

78% 6.9 

Understory 0.6 0.2 
 

0.5 0.1 
 

-27% -0.2 

Dead and downed wood 16.6 3.1 
 

8.1 1.8 
 

-51% -8.4 

Litter 16.8 1.5 
 

5.9 1.3 
 

-65% -10.9 

Duff 13.8 2.4 
 

8.2 2.1 
 

-41% -5.7 
         

TOTAL 207.6   180.7   -13% -26.9 

2.5. Comparison of Fuels Consumed in 2017 vs 2021  

 Prior to treatment, the fuel load in the 1st entry burn was 60% higher than in the 3rd entry burn. 
Total pre-fire ground and surface fuel load for the 1st entry burn was 104 Mg ha-1; for the 3rd entry 
burn, it was 65 Mg ha-1. The percentage of fuel consumed by the prescribed burns was also greater 
at 1st entry: 53% vs 35% (Table 2.6). In addition, there was a distinct difference in the composition 
of the consumed fuels (Figure 2.4, Levine et al., 2020). As is typical for mixed conifer forests, duff 
and litter accounted for most of the fuels consumed (67% for 1st entry; 46% for 3rd entry). However 
coarse woody debris accounted for more than a 1/3 of the fuel consumed in the 3rd entry burn 
(Figure 2.4). In general, first entry burns are expected to have a greater absolute impact on fuel 
loads than subsequent entries (York et al., 2022). In the 1st entry burn, 3.3 Mg ha-1 of shrubs and 
tree crowns were combusted or about 6% of the total fuel lost. In the 3rd entry burn, a comparable 
total amount was combusted (4.4 Mg ha), but losses in tree crowns and shrubs represented 16% of 
the total. 

Table 2.6. Changes in fuel loading following the 3rd entry prescribed fire at Blodgett Forest Research Station. 
Results summarized for burns across three “burn only” compartments. Means and standard errors (se) reported 
(n =3); coarse woody debris = 1000+hr fuels. 
Fuel Class Pre-fire (Mg ha-1) 

 
Post-fire (Mg ha-1) 

 
Consumption 

mean se 
 

mean se 
 

(Mg ha-1) % of Total 
Duff 17.7 2.4  11.9 1.0  5.8 21.2 
Litter 19.0 0.5  12.2 3.0  6.8 25.2 
Fine woody debris 5.2 0.1  5.0 0.5  0.2 0.9 
Coarse woody debris 23.2 6.7  13.3 2.9  9.9 36.5 
Tree crown 74.8 3.8  72.2 3.9  2.6 9.6 
Shrub 1.8 1.0  0.0 0.0  1.8 6.6 
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Figure 2.4 Composition of consumed fuels during 1st entry (2021) and 3rd entry (2017) studies.  
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3. Sampling Strategies and Particulate OC/EC/PM2.5 Emission Factors 

3.1. Methods  

Gas and particle emissions were collected during two sets of prescribed burns. A pilot study was 
conducted during the fall of 2017 from 30 Nov-2 Dec as part of planned maintenance for 3rd entry 
burn compartments. A larger study was conducted in the spring of 2021from 20-23 April during 
the prescribed burning of a 1st entry compartment that was divided into three sub-units. Figure 3.1 
shows a satellite image of the 2021 prescribed burn stands with bounding unpaved roads and 
freshly cut fire breaks. The three units were burned over four days as labeled in Figure 3.1, along 
with the locations of the ground and aerial sampling indicated by symbols for universal terrain 
vehicle (UTV) and uncrewed aerial system (UAS), respectively. 

Trace gas and black carbon (BC) emissions were collected continuously during the daytime on the 
ground, and periodically with aerial sampling, during the prescribed burns. Filter and sorbent tube 
samples were collected sequentially during the active burn phase and also during the smoldering 
phase, with each sampling period lasting ~3 hours. Sets of samples were collected similarly from 
the drone but for a shorter and variable duration (3-23 minutes per flight, 5-10 flights per burn 
day) to compensate for the higher concentration variations observed in smoke plumes using the 
real-time monitoring of excess CO2. This sampling strategy resulted in an average of 9 sets from 
the ground and 8 sets from the air collected on each burn day.  

Ground platform. On the ground, trace gases were collected using Horiba gas analyzers: carbon 
monoxide (CO) using an APMA370, carbon dioxide (CO2) using an APCA370, and nitrogen 
oxides (NOx) using an APNA370. Smoke was sampled at flow rates of 1.5 L/min, 0.7 L/min, and 
0.8 L/min, respectively, through ¼” o.d. Teflon lines. Voltage data were recorded using a DATAQ  

USB data acquisition system, DI-1100, with a frequency of 1 Hz (1 sample/sec). The Horiba gas 
monitors and a sequential sampler (further described below) were mounted on a UTV. The UTV 
was driven along the fire perimeter and was located at two locations on each day to best capture 
the visible smoke. 

QA-QC procedures for the CO, CO2, and NOx data included checking for systematic offsets and 
drifts in the baseline. Post-campaign calibrations were performed on each of the Horiba analyzers 
after returning from the field; the calibration factors obtained were used to convert the raw CO, 
CO2, and NO+NO2 (NOx) voltage data to mixing ratios. To calculate enhancements in CO, CO2, 
NO, and NO2 due to smoke (i.e.,  ∆i, where i is the gas-phase compound of interest), background 
mixing ratios of each compound were determined and subtracted from the measured mixing ratios. 
For CO, NO, and NO2 background mixing ratios were determined to be zero. The offset correction 
for the CO was -1.26 ppm. For CO2, the minimum observed mixing ratios on each day were used 
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to define the following background mixing ratios: 409 ppm on 04/20/2021, 410 ppm on 
04/21/2021, 404 ppm on 04/22/2021, and 402 ppm on 04/23/2021. 

 

Figure 3.1 Satellite view of Blodgett Forest in the California Sierra-Nevada foothills (top and 
inset), showing the three units selected for prescribed burning in 2021. Bounded by roads and fire 
breaks (dashed lines), emissions were acquired using ground (UTV) and aerial (UAS) platforms 
from the positions indicated by symbols. 
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Particle and vapor samples were collected on a custom built sequential six-channel filter sampler 
(Yee et al., 2018) consisting of a common inlet manifold using an AIHL cyclone to provide a PM2.5 
cutpoint at 22 Lpm (John and Reischl, 1980). Particle samples were collected on pre-fired 100 mm 
quartz filters in parallel with TD cartridges for VOCs. Each channel was fitted with paired critical 
orifices such that the filter and sorbent tube could be operated by a single rotary vane pump. 
Sample flow through each of the 6 paired channels was controlled by solenoid valves using a 
programmable timer set to collect samples sequentially after a manual start. The total flow was 
continuously monitored by a mass flow meter (TSI model 4040) and the individual sample 
volumes for the particle and gas samples were apportioned based on the calibrated flow ratios for 
the paired critical orifices. 
 
Aerial platform. The UAS used for aerial sampling was a DJI Matrice 600 Pro hexacopter with a 
5 kg payload capacity sufficient for carrying the sampling instrument package with battery for 
operation during a 10-15 min flight (20 min max UAS flight capacity). Three sets of batteries for 
the UAS and instrument package, with ground recharging stations, allowed for continuous flying 
with down time limited by filter/tube/battery swapping. PM2.5 filter samples were collected using 
a cyclone cassette (Mesa Labs p/n GK 2.05) operating at a nominal 4 Lpm. Miniature pumps were 
used to pull flow through the filter collectors (Particles Plus p/n UM27000 in 2021; KNF p/n 
KPDC-B in 2017). A parallel collection channel provided I/VOC collection on a sorbent cartridge 
using a dedicated miniature rotary vane pump (Schwarzer p/n 140FZ-LC). Flows were unregulated 
but continuously monitored using a pair of mass flow sensors (particle channel at 4 Lpm using 
Renesas p/n FS2012-1120-NG and the I/VOC channel at 200 ccm using Renesas p/n FS2012-
1020-NG). Up to three flights per hour were made continuously over a period of 3-4 hours on each 
burn day.  
 
A schematic of the sampling and sensor payload, Firehawk, in which the filter and sorbent tube 
samplers along with a gas filter are mounted to the outside, is shown in Figure 3.2. An additional 
gas sensor sampling line is protected at the entrance with a glass fiber filter to remove semi-
volatiles that could potentially foul the gas sensors. On this gas line a pair of electrochemical cells 
(Alphasense CO-B4 and NO-B4) were employed to measure CO and NO followed by an NDIR 
CO2 sensor (PP Systems SBA-5) that also provided the gas sample flow of approximately 200 
ccm. The NO sensor was experimental and only provided reliable data on the first flight, after 
which the baseline became erratic. These data are not reported.  
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Figure 3.2 Schematic of Firehawk design (left) with components outside the dashed square 
indicating external mounting as illustrated in the CAD model (right). 
 
The Firehawk was driven by a Raspberry PI Zero processor board running Raspbian Linux and 
programmed in Python. Three Texas Instruments ADS1115 analog-to-digital converter chips 
interface the processor to analog signals from the two electrochemical sensors, two mass flow 
sensors, an internal temperature sensor, and the CO2 analyzer.  The sampling pumps were 
controlled by power switches under digital line control from the processor board.  During flight, 
sensor data, battery condition, pump status, and collection time were transmitted at 1 second 
intervals via a LoRa 915 MHz radio transmitter (Adafruit RFM9X) to a base station containing a 
Raspberry PI 3 and a matching LoRa receiver. A CRC check word and a message serial number 
was transmitted with the package data, and the data message was repeated three times for the sake 
of data fidelity. The base station drops any received message with a wrong CRC or a message 
whose serial number has already been received and verified.  The operator controlled the sampling 
pumps via commands to the base station.  Data were stored redundantly on the Firehawk file 
system as well as at the base station. 
 
To complement the core sampling functions of the Firehawk and provide additional potential 
insight into the optical characteristics of the plume smoke, a miniature BC sensor (ABCD, (Caubel 
et al., 2018)) was added to the package for the 2021 study. This sensor is described more fully in 
Chapter 6 and is identical to one used on the ground platform alongside the research-grade BC 
analyzer. The core elements of the ABCD instrument were removed from the original packaging 
and mounted to the inside of the Firehawk housing cover with a dedicated sample line pulling 
directly from the outside. Data were integrated into the Firehawk data system using the ABCD 
serial output. 

3.2. Results and Emission Factors 

A typical example of data acquired during a single UAS flight is shown in Figure 3.3 for the 
prescribed fire of April 22nd 2021. Once airborne and away from the launch site with potential 
CO2/CO sources, the Firehawk sample pumps are turned on as indicated by the step-wise dashed 
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blue trace. The gas and BC sensors show both a range of combustion states (CO2/CO ratio) along 
with large concentration variability as the UAS flies into and out of coherent smoke plumes. 
Particle concentrations are recorded as mass concentrations in units of mass/volume and gas 
concentrations are recorded as mixing ratios. The ability to sample a wider range of combustion 
states is an advantage of the aerial platform.  
 

 
Data from the drone were offset and background corrected similarly to the data from the ground. 
The offset correction for the CO data was 0 for 04/20/2021 and 04/21/2021, -1 ppm for 04/22/2021 
and -1.7 ppm for 04/23/2021. The background CO2 was determined to be the minimum observed 
mixing ratio: 420 ppm on 04/20/2021 and 04/21/2021, 402 ppm on 04/22/2021 and 397 ppm on 
04/23/2021. The excess CO, CO2 were calculated by subtracting the background CO, CO2 from 
the observed CO, CO2. MCE was calculated by:   

MCE = ∆CO2
∆CO+∆CO2

 [3.1] 

where  ∆ indicates excess CO, CO2. The MCE values are summarized in Table 3.2.  

Figure 3.3 Example data acquired by the Firehawk during a single UAS flight with the CO and 
CO2 gas sensors and black carbon (BC) sensor (10s average) showing clear transits of smoke 
plumes.  Sample collection period is indicated by the pumps-on signal (dashed blue line). 
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Comparing the measured MCE values from the ground and aerial platforms reveals differences in 
sampling conditions encountered by the two platforms. Figure 3.4 shows MCE vs excess CO2 for 
2017, 2021 ground and 2021 aerial sampling. The UAS (‘Aerial’) relative to either ground data set 
sampled a greater range of MCE values and emission intensity consistent with the platform being 
able to selectively sample from more concentrated lofted smoke plumes derived from hotter, more 
intense combustion conditions. The average MCE values ± 1 standard deviation over the entire set 
of samples for each platform was 0.83 ± 0.03 for both ground sample sets (2017, 2021) and 0.87 
± 0.05 for the aerial sample set.   

 

Organic and elemental carbon emission factors. Punches from the quartz filter samples collected 
from ground and aerial platforms were analyzed for organic and elemental carbon (OC and EC, 
respectively) using a Sunset Model 5 Lab OC/EC Aerosol Analyzer following the NIOSH870 
protocol in the Air Quality Research Center at the University of California, Davis. Thermal 
pyrolysis (charring) was corrected using laser transmittance. Lab reported arial concentrations 
(µg/cm2) were multiplied by the total filter area (8.6 cm2) to give the absolute OC and EC masses 
collected on each filter. With a laboratory reported method detection limit of 0.2 µg/cm2 carbon, 

Figure 3.4 Intensity of smoke emissions during the 2017 and 2021 field campaigns as indicated 
by excess CO2 (µg/m3) and MCE during ground sampling on the 2017 field campaign (3rd entry) 
and ground plus airborne sampling on the 2021 field campaign (1st entry).  
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all reported organic carbon samples exceeded these limits by 1.1 to 286 times and on average was 
40x MDL while elemental carbon was at or below the MDL for most of the samples owing to the 
reduced fire intensities for prescribed fires. 
 
Along the lines outlined in EPA test method for characterizing open source emissions from a 
stationary sampling point (OTM-48,, EPA, 2022), the carbon mass balance method was used to 
calculated fuel based emission factors for carbonaceous species, OC and EC, determined from 
collected particulate matter on filters. In this method, all emissions are presumed well mixed 
such that gases and particles remain in fixed mixing ratios up to the point of sampling. This 
assumption is well accepted for combustion sources that involve intense heat and high levels of 
turbulent mixing at the point of emission. Continued atmospheric mixing during transport, over 
short distances to the point of sampling, supports the assumption that these initial mixing ratios 
are maintained. At some point, lower mixing ratios will be observed due to dilution; these 
typically can be corrected using emission ratios to CO. Lower mixing ratios also will be 
observed due to chemical loses, and these are harder to correct for. Nonetheless, the carbon mass 
balance method is widely used to derive emission factors.   
 
 
The carbon balance method relies on the dominant combustion emission being represented by 
two primary gas species, carbon dioxide and carbon monoxide, with minor contributions from 
VOCs and negligible contributions from liquid and solid species (Nelson, 1982). Accordingly, 
we convert sampled OC and EC mass to an emission factor by dividing the sampled analyte mass 
by total carbon mass emitted by the prescribed fire corresponding to the filter sample volume Vs 
using the excess (background subtracted) ∆CO2 + ∆CO with each gas phase term derived from 
the respective gas sensor signal in ppm: 

∆CO𝑥𝑥 =  �CO𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − CO𝑥𝑥,𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� × 12 × 𝑉𝑉𝑠𝑠 × �𝑃𝑃 𝑅𝑅𝑅𝑅� �         [3.2] 
With the last term a conversion of mass flow sensor measured sample volume to moles air under 
the assumption of an ideal gas with pressure P, temperature T and gas constant R. The emission 
factor EFi for species i becomes:  

𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸C × 1000(g kg−1)  × 𝑀𝑀𝑖𝑖
∆𝐶𝐶𝐶𝐶2+∆𝐶𝐶𝐶𝐶

 [3.3] 

where i = OC, EC with Mi the corresponding collected mass in g, 𝐸𝐸C is the dry mass fraction of 
carbon (assumed to be 0.5 for a mixed conifer fuel base), and ∆CO2 and ∆CO  in g are the 
background subtracted carbon mass corresponding to the filter sample volume and measured by 
the real-time sensors given by Eq. 3.2.  The OC and EC EFs were calculated from the ground and 
aerial smoke samples taken during the 1st entry burn (2021) and from the ground samples taken 
during the 3rd entry burn (2017). To explore the impact of combustion state on the rate of carbon 
emissions, the OC EF and the ratio of EF_EC to EF_OC was plotted against the average MCE 
during each sample in Figure 3.5. The loosely defined transition between smoldering and flaming 
is taken to be an MCE value of 0.9 as indicated by the broken vertical line. As shown in Figure 
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3.4 and 3.5, the aerial sampling experienced higher average MCE values relative to both sets of 
ground samples but the overall trend is similar and demonstrates a lack of clear dependence on 
MCE.  
 

Figure 3.5 Organic carbon EF (top) and ratio of elemental carbon EF to organic carbon EF 
(bottom) versus the modified combustion efficiency for ground (2017, 2021) and aerial (2021) 
sampling. 

 

3.3. Comparisons with Published Emission Factors 

Figure 3.6 more clearly shows this absence of a strong dependence on MCE, in which individual 
EFs and the ratio of EC to OC EFs were binned into uniform MCE bins of 0.025 width. The 
horizontal and vertical placement of points were derived from the average EF or EF ratio and 
average MCE value for those data pairs falling within a given bin. Vertical error bars indicate ± 1 
standard deviation of the mean. Unlike our previous laboratory studies using single or simple fuel 
mixtures, e.g. (Jen et al., 2019), there is no clear inverse relationship with organic carbon vs MCE. 
Grey symbols from laboratory emission factor experiments are shown for comparison taken from 
(Jen et al., 2019) for those fuels present in Blodgett Forest. Unlike the laboratory single fuels, the 
1st and 3rd entry prescribed burns show a nearly MCE-independent emission factor for OC and only 
a suggested increase in EC emission factor for very high MCE values (~0.95 and above) where 
pure flaming state is known to favor elemental carbon emissions.  
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Study averaged OC, EC and PM emission factors and MCE. The absence of any strong dependence 
on MCE or burn history supports pooling the emissions data to form broader conclusions. Table 
3.1 lists the mean and standard errors (standard deviation) of EFs (MCE) by platform (aerial or 
ground) for the two studies (2017, 2021). The resulting mean MCE and organic EF are not 
statistically different between the two ground sets while the aerial mean MCE was slightly higher 
relative to the two ground MCE means at 0.87, 0.83 and 0.84, respectively. The mean aerial OC 
EF was 21.8 ± 6.0 g/kg as compared to the concurrent ground OC EF equal to 18.8 ± 4.2 g/kg and 
a similar value of 17.7 ± 8.8 g/kg for the mean ground OC EF for the 3rd entry burn. For biomass 
burning emissions that are dominated by carbon, the particulate mass can be approximated by 
scaling the OC mass by 1.8 to account for average oxygen and hydrogen content (taken as the fresh 
biomass burning dominated organic mass to organic carbon ratio measured by high-resolution 
aerosol mass spectrometry by Zhou et al. (Zhou et al., 2017)) plus the EC mass as follows: 

 PM2.5~ 1.8 × 𝑀𝑀OC + 𝑀𝑀EC [3.4]  

Using this relation, the PM2.5 EF can be approximated and is given in the final column of Table 
3.1 with the mean (standard deviation) of the aerial 2021, ground 2021 and ground 2017 values of 

Figure 3.6 Same data as Figure 3.5 collected into 0.025 wide MCE bins to illustrate the lack of a 
clear MCE dependence for most of the range of measured average MCE conditions. 
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40.4 (13.5) g/kg, 34.4 (7.8) g/kg and 32.1 (16.6) g/kg, respectively. Under the assumption of 
complete independence from MCE on emission factor, the three studies with a combined set of 75 
total samples leads to a grand means shown in the last row of Table 3.1. Comparison of the mean 
value and standard deviation observed in the 1st entry and 3rd entry burns with available literature 
values is shown in Figure 3.7. These grand means are proposed for use in modeling the emissions 
from similar mixed conifer forest prescribed fires.  
 
 
Table 3.1 Study averaged MCE, OC, EC and PM emission factors and ratio of EC/OC emission factors for first (’21) 
and third entry (’17) studies by sampling platform and pooled averages by platform (’21) and both studies (’17, ’21). 
Uncertainties are one standard deviation of the mean.  

  

Figure 3.7 Study averaged PM emission factors vs. modified combustion efficiency are 
consistent with prior published emission factor trends for similar fuels (i.e. conifer). 
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4. Gas-Phase VOCs from Ground- and Drone-Based Measurements and 
Comparison with Wildfire Emissions 

A version of this chapter will be submitted to the International Journal of Wildland Fire under 
the title “Fuel Loadings Prove the Critical Constraint for Smoke Predictions using FOFEM as 
applied to a Mixed Conifer Forest in California”, with the following authors: Tasnia, A. 1, Lara, 
G.1, Foster, D.2, Sengupta, D.3, Butler, J.4, Kirchstetter, T. 4, York, R.5, Kreisberg, N.6, Goldstein, 
A. G. 3, Battles, J. 2,*Barsanti, K. C. 1 

4.1. Methods 

Volatile organic compounds (VOCs) were collected from ground- and drone-based platforms 
during the 2021 BFRS prescribed burns using dual-bed sorption cartridges of 100 mg Tenax TA 
(35/60) and 200 mg Carbograph 1 TD (60/80) in series. The cartridges were preconditioned at 330 
ºC for 3 hours prior to sampling during the field campaign. Samples were collected at a flow rate 
of ~170-190 ml/min for 30 minutes from the ground and 100 ml/min for 3-23 minutes from the 
drone. The ground samples were collected sequentially over an approximately 3 hour time period 
at each sampling location, shortly after ignition during the most active burn period and also during 
the most active smoldering period. The drone sequentially sampled flaming and smoldering burn 
periods, with the overall flight time determined by battery capability. This resulted in an average 
of 9 ground samples and 8 drone samples per day. Two background samples were collected the 
day before the first burn and field blanks were collected throughout the sampling period. This 
resulted in a total of 37 cartridges processed for the ground and 30 cartridges for the drone 
(excluding background and blank samples). 

Following Hatch et al. (Hatch et al., 2015, 2019) the cartridges were analyzed using automated 
thermal desorption (ATD, Turbomatrix 650, PerkinElmer, Waltham, MA) coupled with a two-
dimensional gas chromatograph with a time-of-flight mass spectrometer (GCxGC-ToFMS, 
Pegasus, 4D, Leco Corp., St. Joseph, MI). Prior to the analysis of each cartridge, an internal 
standard mixture (toluene-d8, 1-bromo-4-fluorobenzene, and 1,2-dichlorobenzene-d4) was 
injected using the ATD. Sorbent tubes were desorbed at 290 ºC with 11.5% of the sampled mass 
transferred via a 235 ºC fused-silica transfer line to the GC×GC-ToFMS. Samples were analyzed 
on the following column set: DB-VRX (30 m, 0.25 mm i.d., 1.4 µm film thickness) primary 
column (Agilent, Santa Clara, CA) and Stabilwax (1.5 m, 0.25 mm i.d., 0.5 µm film thickness) 
secondary column (Restek, Bellefonte, PA); and with the following temperature program: primary 
oven was held at 40 °C for 5 min, followed by a 3.8 °C/min ramp to 225 °C, with a final hold of 5 
min.  The secondary oven and modulator were held at +18 °C and + 28 °C relative to the primary 
oven. 

Calibration curves were generated using sequential dilutions of standard solutions in methanol 
prepared using 72 compounds. A total of 67 compounds were identified and quantified across a 
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variety of compound classes including alkanes, aldehydes, ketones, terpenes, and furans. 
Background correction for each compound was performed by subtracting the maximum 
normalized peak area measured in either the background or blank samples. All mixing ratios (ppb) 
thus represent “excess emission ratios” or the amount of the compound above background and 
attributed to the prescribed burns. Mixing ratios were converted to emission factors (EFs, g/kg) 
using the carbon mass balance method described in Chapter 3.  

4.2. Measured Mixing Ratios and Emission Factors 

Comparisons between the mixing ratios and EFs measured in the ground and drone samples are 
summarized in Figures 4.1-4.6. The figures show the measured mixing ratios or EFs averaged 
across all samples and with individual compounds grouped by compound class. The drone sampled 
more concentrated smoke and thus the samples had generally higher mixing ratios (Figures 4.1-
4.3). Figs 4.1 and 4.2 show the mixing ratios for single compounds and groups of compounds, 
averaged across all sampling periods. It can be seen that of the compounds that were quantified, 
furfural had the highest mixing ratios in both ground and drone samples. Furfural is typically 
among the most abundantly emitted VOCs from wildland fires (e.g., (Hatch et al., 2017; Permar 
et al., 2021)). Taking a closer look at measured mixing ratios for each burn unit, the mixing ratios 
were highest in the ground samples from Unit A (Figure 4.3). Field notes support that the most 
concentrated smoke was sampled from the ground during the burning of Unit A on the first day, 
which is also consistent with better agreement between the ground and drone samples for Unit A 
(i.e., more concentrated smoke being sampled from both platforms). EFs can provide a better 
metric for comparison, since they account for the differences in dilution between ground and drone 
samples. 
 
The EFs in the ground (Figure 4.4) and drone (Figure 4.5) samples were relatively consistent 
(Figure 4.6) and thus averaged together to provide final EFs. The averaged EFs are presented in 
Figure 4.7 and Table 4.1; the table also indicates the number of compounds that were summed in 
each compound class, which influences that variability shown in the box and whisker plots.  
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Figure 4.1 Averaged mixing ratios for individual compounds and summed compound classes as 
measured in samples collected from the ground-based platform. 
 

Figure 4.2 Averaged mixing ratios for individual compounds and summed compound classes as 
measured in samples collected from the drone-based platform. 
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Figure 4.3 Comparison of averaged mixing ratios for summed compound classes as measured in 
drone-based vs. ground-based samples.  

 

Figure 4.4 Averaged emission factors (EFs) for individual and summed compound classes as 
measured in ground-based samples.  
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Figure 4.6 Comparison of averaged emission factors (EFs) for individual and summed 
compound classes as measured in drone vs. ground samples. 

Figure 4.5 Averaged emission factors (EFs) for summed compound classes as measured in 
drone-based samples. 
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Table 4.1 Average emission factors (EFs) for representative VOC compounds and compound classes. Standard 
deviation and number of individual compounds in each class are also reported. 

 Average EF (g/kg) Standard Deviation (+/-) Number of Individual 
Compounds 

Aldehydes 0.25 0.13 3 

Ketones (w/acetone) 0.87 0.78 7 

Ketones (w/o acetone) 0.42 0.24 6 

Alkenes 0.10 0.05 8 

Isoprene 0.10 0.07 1 

Monoterpenes 0.20 0.19 13 

Sesquiterpenes 0.01 0.01 1 

Esters and Ethers 0.09 0.07 2 

Heterocyclic compounds 0.06 0.08 4 

Furans 0.42 0.21 5 

Furfural 1.69 0.87 1 

PAHs 0.07 0.06 9 

Phenolic compounds 0.28 0.25 10 

Figure 4.7 Emission factors (EFs) for individual compounds and summed compound classes 
averaged across drone- and ground-based samples. 
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The cartridge sampling and GCxGC-ToFMS analysis methods are particularly well suited for 
detecting and quantifying terpenes, which are important ozone and SOA precursors. We have also 
demonstrated that specific monoterpenes can be used to differentiate fuel types, even with more 
complex fuel beds (Stamatis and Barsanti, 2022). In Figure 4.8 (mixing ratios, left panel; EFs, 
right panel), we compare the distributions of monoterpenes measured during the 1st entry burns 
(2021, ground and drone) and 3rd entry burns (2017). Interestingly, the fractional distribution of 
compounds is more similar between the ground samples from the two different burns than between 
the ground and drone samples from the 2021 1st entry burns. Again, by accounting for dilution and 
comparing EFs, the differences in the distributions between the ground and drone are smaller; 
however there are clear differences in the composition. The reasons for these differences are 
currently unknown.  One possibility is that upwind sources were more likely to influence the drone 
samples, and isoprene at BFRS has been previously attributed to oak forests nearby (Dreyfus, 
2002; Holzinger et al., 2006). We note that this does not change our conclusions regarding the 
relative consistency between these samples or recommendations regarding the use of a single set 
of EFs.  

 
 
Figure 4.8 The fractional distribution of monoterpenes contributing to the average observed mixing 
ratios (left) and emission factors (right) measured in the 2021 1st entry burns (ground and drone) 
and the 2017 3rd entry burns.  

Mixing Ratios Emission Factors 
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In addition to the cartridge samples collected and analyzed from the prescribed fires at Blodgett 
field station, we also analyzed cartridge samples collected in California by CARB from wildfires, 
coordinated with the 2019 FIREX-AQ campaign. Figure 4.9 shows representative chromatograms 
from the wildfires (top) and the 2021 prescribed burns (bottom). Compounds that are typically 
elevated in smoke samples are highlighted in the chromatograms. The larger/brighter peaks in the 
bottom figure illustrate more concentrated smoke sampling enabled by the prescribed burns. The 
samples were run using different programming for the GCxGC and ToFMS methods, thus some 
of the peaks are significantly shifted in the chromatogram. Figure 4.10 shows normalized peak 
areas (proportional to mixing ratios) of representative compounds averaged across the 2019 
“CARB” (left) and 2021 “Blodgett” (right) samples, respectively. For all identified compounds, 
the mixing ratios were higher in the prescribed burn samples than the wildfire samples. For directly 
emitted compounds, the higher mixing ratios in the prescribed burn samples are likely due to the 
fact that the prescribed burn samples were more concentrated (less dilution). In addition, reactive 
losses of compounds occurs during transport, and it is expected that such losses would be greater 
in the transported wildfire plumes. Likely of less importance for this particular comparison, there 
also may be some differences in the identities and quantities of compounds emitted because of 
differences in fuel consumption and/or burn conditions. This is suggested in Figure 4.11, which 
shows a comparison of the relative contribution of five major monoterpenes averaged across the 
CARB (left) and Blodgett (right) samples.  

Figure 4.9 Representative chromatograms from the 2019 wildfire samples (top) and the 2021 
prescribed burn samples (bottom); commonly identified compounds in smoke are labeled. 
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Figure 4.11 Fractional distributions of top five monoterpenes measured in wildfire samples (left) 
and prescribed burning samples (right). 

Figure 4.10 Normalized peak areas of representative compounds in 2019 wildfire samples (left) 
and 2021 prescribed burn samples (right). 
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4.3. Comparisons with Existing Emission Factors for Wildfires and Prescribed Burns 

Figures 4.12-4.19 focus on measurements of individual compounds as a function of MCE and 
comparisons with existing EFs (wildfires and prescribed burns). The compounds in these figures 
were chosen because of their overlap with existing compounds in the SERA database (Prichard et 
al., 2020). In each of the figures, the ground sample markers are dark green while the drone sample 
markers are light green. The measured values represent the EF calculated for each sample, while 
the SERA value (tan plus marker) is an average of value(s) from the database (if more than one 
value is available). The SERA database query included all western coniferous forest field data for 
both wildfires and prescribed burns.  As has been shown elsewhere, it can be seen that smoldering 
conditions were sampled using both drone and ground platforms, while flaming conditions were 
largely only sampled by the drone. For the individual compounds shown, there is no trend with 
MCE over the sampled MCE range, suggesting a single EF may be appropriate for modeling 
purposes given the variability across all MCE.  

 

Figure 4.12 Emission factors (EFs) for acetone as measured in ground- and drone-based samples 
and reported for western coniferous forest in the SERA database.  
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Figure 4.13 Emission factors (EFs) for 2-butanone as measured in ground- and drone-based 
samples and reported for western coniferous forest in the SERA database.  

Figure 4.14 Emission factors (EFs) for styrene as measured in ground- and drone-based samples 
and reported for western coniferous forest in the SERA database.  
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Figure 4.15 Emission factors (EFs) for naphthalene as measured in ground- and drone-based 
samples and reported for western coniferous forest in the SERA database.  
 

Figure 4.16 Emission factors (EFs) for alpha-pinene as measured in ground- and drone-based 
samples and reported for western coniferous forest in the SERA database. 
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Figure 4.17 Emission factors (EFs) for beta-pinene as measured in ground- and drone-based 
samples and reported for western coniferous forest in the SERA database.  

 
 

Figure 4.18 Emission factors (EFs) for isoprene as measured in ground- and drone-based 
samples and reported for western coniferous forest in the SERA database.  
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Figure 4.19 Emission factors (EFs) for methyl vinyl ketone/methacrolein (not differentiated in 
SERA database) as measured in ground- and drone-based samples and reported for western 
coniferous forest in the SERA database. 

The agreement between the ground and drone samples was compound dependent, with significant 
differences in measured values for acetone and to a lesser extent 2-butanone and no significant 
differences in styrene, naphthalene, alpha- and beta-pinene. There are some differences in isoprene 
and methyl vinyl ketone/methacrolein, but these are not statistically significant. The EF values 
from the SERA database are within the ranges of values measured, with the exception of 2-
butanone which is lower than the observed values.  

We have recently developed an EF database (NEIVA Next-generation Emissions InVentory 
expansion of Akagi) that incorporates both laboratory and field data from over 35 publications, 
including comprehensive VOC measurements for coniferous fuels based on FLAME-IV, FIREX, 
and WE-CAN measurements (Shahid, S. B. et al., in prep.). Including the averaged EF values from 
the NEIVA database gives additional information on the representativeness of the measured 
values. Figure 4.20 shows measured EFs based on ground and drone samples from BFRS, reported 
EFs from the SERA database, and averaged EFs from the NEIVA database. For compounds in 
which no differences were observed between the ground and drone samples, EFs represent the 
average of ground and drone samples (left panel). For compounds in which some differences were 
observed, the average EF from the ground samples is plotted separately from the average EF from 
the drone samples (right panel). EFs from the NEIVA database include a ponderosa pine average, 
which is the average of biomass burning laboratory studies using ponderosa pine as the fuel source; 
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and a temperate forest average, which is the average of biomass burning laboratory studies using 
any fuel found in temperate forests and wildland fire field studies in temperate forests.  

Variability on the order of what is shown in Figure 4.20 is not unexpected when considering 
experimental uncertainty as well as the large number of factors that control VOC levels in smoke 
plumes. The largest variability is seen in the acetone EFs, with database averages between the 
ground and drone based values. There is also large variability in the naphthalene EFs, though there 
was good agreement between the ground and drone values. For all compounds shown, the BFRS-
based measurements were lower than the temperate forest average (with the exception of acetone 
and 2-butanone), which may be attributed to the dominant fuel components burned during the 
BFRS prescribed burns relative to the studies represented in the databases. Given that detailed 
VOC measurements are often not available, Figure 4.20 suggests that the VOCs measured at BFRS 
(and future coniferous forest sites) could be reasonably represented in smoke forecasting using the 
averages from either the SERA or NEIVA database (temperate forest) with no systematic biases. 
Additional field and laboratory measurements will, however, reduce the ranges and uncertainties 
presented. 

 
Figure 4.20 Emission factors (EFs) for individual compounds naphthalene, styrene, a-pinene, b-
pinene, acetone, 2-butanone, methyl vinyl ketone and isoprene, averaged across ground-based 
samples, drone-based samples, and as found in the SERA and NEIVA (averages for Ponderosa 
pine and temperate forest) databases. 
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5. Particle-Phase SVOC from Ground- and Drone-Based Measurements and 
Comparison with Wildfire Emissions 

5.1. Methods 

Particulate matter (PM) samples collected on quartz filters by ground and aerial platforms for 
OC/EC analysis, as reported in Chapter 3, were also analyzed by multi-dimensional gas 
chromatography mass spectrometry for molecular level characterization. In addition to the 
prescribed fire samples collected and analyzed in 2021 (62, excluding blanks) and 2017 (11), we 
analyzed of a small set (3) of wildfire samples collected by CARB during the Springs Fire (August, 
2019, https://www.fire.ca.gov/incidents/2019/9/6/springs-fire). The 2017 3rd entry prescribed burn 
pilot study samples were analyzed for 150 compounds using 99 calibration standards. The 2021 
1st entry prescribed burn samples and the wildfire samples were analyzed for 114 compounds using 
142 calibration standards (including all standards used for the 2017 sample analysis). The 
presentation of results focuses on the final data sets for the 2021 1st  entry ground and aerial 
samples. Results are compared for specific compounds and compound classes measured in the 
2019 wildfire samples, and specific compounds that were also measured in the 2017 third entry 
burns.  

Quartz filters were analyzed using offline two-dimensional gas chromatography coupled to an 
electron impact ionization high-resolution time-of-flight mass spectrometer (GC×GC EI-HR-
ToFMS), following the same protocol as documented in Jen et al. (Jen et al., 2019) and Liang et 
al. (YT Liang et al., 2021; Liang et al., 2022). Isotopically labeled internal standards (see list of 
compounds in (Jen et al., 2019)) were added to punched filter samples to account for any variability 
in instrument sensitivity. Then the punched samples were thermally desorbed in helium at 320 ⁰C 
in a Gerstel thermal desorption autosampler. Desorbed analytes were mixed with (N-methyl-N-
(trimethylsilyl)- trifluoro-acetamide (MSTFA) added to the helium carrier gas, which converts 
hydroxyl groups in analyte molecules to trimethylsilyl esters (derivatization), making the analytes 
easier to elute from columns. The derivatized analytes were collected on a quartz wool liner at 30 
⁰C, before rapid injection into the GC system by heating at 320 ⁰C. The analytes were 
chromatographically separated by volatility using a Restek Rxi-5Sil-MS column (40 to 320  ̊C at 
3.5 ̊C min−1, hold for 5 min at 320 ̊C), and then by polarity using a Restek Rtx-200MS column, 
and detected by the HR-ToFMS. 
 
The GC chromatograms were analyzed using GC Image version 2020 (GC Image, LLC). 
Compounds were identified and classified by matching with authentic standards, custom mass 
spectral libraries from previous studies using the same instrument (Zhang et al., 2018; Jen et al., 
2019), and commercial mass spectral libraries. Both retention index (chromatographic elution time 
relative to that of a series of deuterated alkanes) and mass spectrum are considered in this process. 
Details of compound identification and classification can be found in Liang et al. (YT Liang et al., 

https://www.fire.ca.gov/incidents/2019/9/6/springs-fire
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2021). To convert signals of compounds into concentrations, we injected multiple levels of 
external standard mixture (following (Liang et al., 2022)) with known concentrations to determine 
their responses. We quantified sample compounds in this standard mix by using the response of 
the exact compound. This approach has around 10% uncertainty. Classified compounds not in the 
standard mix were quantified by the nearest standard in the same class (30% of uncertainty). 
Unclassified compounds or compounds without a nearby compound in the same class (less than 
200 difference in retention index) were quantified by the nearest standard, which can have an 
uncertainty of around a factor of 2 (Jen et al., 2019). 

The emission factor (EF) of each compound was calculated by: 

EFi   = (Ci /COC) * EFOC  [5.1] 

where EFi is the emission factor of compound i in g kg−1; Ci and COC are the concentrations of 
compound i and OC in µg m-3, respectively; and EFOC is the emission factor of OC in g kg−1 as 
presented in Chapter 3.  

5.2. Emission Factors for Individual Compounds 

Emission factors (EFs) for speciated organics from the PM samples collected during prescribed 
burn experiments are needed for emission modeling (e.g. FOFEM) to evaluate the potential 
impacts on climate and air quality from this important emission source. The EFs calculated from 
the 1st and 3rd entry burns are intended for use in estimating the prescribed burn emissions from 
mixed conifer forests in the western United States, and to understand whether there are significant 
relationships between EFs and modified combustion efficiency (MCE) for the individual 
compounds as well as for the compounds classified in different chemical functional groups for 
effective parameterization in emission models. 

Over 100 individual compounds were analyzed in the two prescribed burns leading to 114 
individual compound EFs reported from ground and aerial based samples collected in the 1st entry 
2021 prescribed fire, and a smaller set of 28 compounds of these compounds that were also 
measured in ground-based samples in the 2017 3rd entry pilot study. Figure 5.1 shows the results 
for the 10 largest single compound EFs drawn from each of these three sample sets showing the 
large overlap in dominant compounds (14 compounds total). Speciated EFs observed from the 
2019 Springs Fire sample set are included for comparison. Bars indicate the mean EFs for each 
compound, with vertical lines indicating standard errors of the mean for each platform.  

Levoglucosan has the highest measured single compound mean EF in the prescribed burns. 
Levoglucosan is an anhydrosugar pyrolysis product of cellulose (Simonelt et al., 1993; Nolte et 
al., 2001; Simoneit, 2002), with an EF that is 10 times larger than palmitic acid which has the next 
largest measured compound EF. Levoglucosan is typically the most abundant organic compound 
in aerosols emitted from biomass burning (Simoneit, 2002; Jen et al., 2019), is the dominant 
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Figure 5.1 Individual compounds with the largest emission factors (EFs) observed from prescribed 
fire sampling platforms (1st entry burn ground and aerial, 3rd entry burn ground). Bars indicate 
the mean EFs for each compound, with vertical lines indicating standard errors of the mean for 
each platform. A comparison to the same compound EFs measured from a wildfire are presented. 

contributor to the total sugars and anhydrosugars compound classes, and hence is used extensively 
as a BB tracer. Reported EFs for levoglucosan are mostly less than 1g kg−1 from chamber burning 
experiments of individual fuels (Jen et al., 2019). However, chamber-based burning experiments 
typically produce higher average MCEs potentially due to the inability to produce humid burning 
conditions akin to ambient burning, and thus the estimation of EFs from burning individual fuels 
in chambers may not be representative enough of prescribed burn conditions. Smoke samples 
collected during an aircraft-based campaign from a southeast United States prescribed fire  was 
also less than 1g kg−1 (Sullivan et al., 2014; Jen et al., 2019). This may be because the fuels in this 
study were different, and that levoglucosan can undergo evaporation and photo-chemical oxidation 
(Hennigan et al., 2011), hence reported EFs may change as a function of ‘time since emission’ and 
distance from the fire location. To estimate the actual levoglucosan Efs from fires, more immediate 
sampling of smoke in the vicinity of the fire is required. In the FIREX-AQ field campaign, with 
the increased proximity to the fires using a mobile laboratory (rather than aircraft), Liang et al. 
(Liang et al., 2022) reported levoglucosan EFs ranging over an order of magnitude from 0.08-2 g 
kg−1. However, during the FIREX-AQ campaign, the sampling was also done further downwind 
of the exact fire location and sampling included contributions from a wider range of smoke age. 
In the Blodgett Forest prescribed burn experiments (both 3rd and 1st entry burn) the average 
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levoglucosan EFs (mean = 4.4 g kg−1 for 1st entry burn and 2.6 g kg−1 for 3rd entry burn) are 
higher than these previously reported levoglucosan EF values and we infer that is at least partially 
due to our more immediate emission sampling. Sampling locations were chosen specifically to 
capture fresh emissions both on the ground near the fires and in rising plumes above the ecosystem 
using the aerial drone. 

Other individual compounds, nannosan (mean EF= 154 mg kg−1 for 1st entry burn) and galactosan 
(mean EF= 60.8 mg kg−1 for 1st entry burn), which also belong to the class ‘sugar’ appeared as 
some of the highest individual compound emissions. Both EFs for mannosan and galactosan were 
an order of magnitude lower for the FIREX-AQ campaign (mean EF = 10.8 mg kg−1 and mean EF 
= 2.6 mg kg−1 respectively) (Liang et al., 2022). Diterpenoids were the 2nd most abundant chemical 
group found in the 1st entry burn.  The average EFs from 1st entry burn for dehydroabietic acid, 
one of the most important diterpenoids in BB aerosol, was 286 mg kg−1  (Table 5.1). Resin acids, 
such as dehydroabietic acid, are most abundant in conifer stems ((Krokene, 2015; Ramage et al., 
2017; Eksi et al., 2020). In the 3rd entry burns we measured 3x higher EFs for dehydroabietic acid 
(938 mg kg−1) that is likely due to 3x greater levels of coarse woody debris with high coniferous 
signatures being consumed relative to the 1st entry burns (this fuel consumption composition was 
determined specifically for the stands where emissions were measured). Abietic acid and 
sandaracopimaric acid also were among the highest emission compounds with 1st entry burn EFs 
of 38.4 mg kg−1 and 68.6 mg kg−1, respectively. The average EF of the most important biomass 
burning PAH compound, retene, from 1st entry burns was 107 mg kg−1, which is comparable to the 
average EFs of retene reported from the FIREX-AQ campaign, 158 mg kg−1. The difference in 
EFs for retene and overall, all EFs in Figure 5.1 between aerial and ground sampling platform for 
1st entry burns (ground being higher than aerial) is potentially due to differences in average MCE 
values for the samples collected on these two platforms, with the aerial samples covering a broader 
range including higher MCE (Chapter 3). 

Figure 5.2 illustrates the dependence of individual compound EFs on the MCE. Of those 
compounds observed with high prevalence, defined as compounds detected in at least 50% of 
samples, the top 18 compounds with highest linear correlation of EF with MCE are shown. 
Compounds are ordered from top to bottom by high to low EF with the positive or negative 
correlation R for the two prescribed fires. The small set of three wildfire samples were excluded 
from the correlation analysis but included in the figure for comparison to show their general 
agreement with the prescribed fires. As with the OC/EC data presented in Chapter 3, individual 
compounds exhibit weak to zero correlations with MCE with consistent EFs measured across both 
prescribed burns and sampling platforms.   
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Figure 5.2 Individual organic compound emission factor (EF) versus modified combustion 
efficiency (MCE) for compounds with high prevalence (minimum 50% occurrence) across 1st 
entry burn (ground and aerial) and 3rd entry burn (ground) samples. The top 18 compounds were 
selected based on highest linear correlation R across 1st and 3rd entry burn samples, ordered from 
high (top) to low (bottom) EF. 
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Relationships between EF and MCE are sometimes used to provide simple but effective 
parameterizations for modeling biomass burning emissions by accounting for the spatio-temporal 
dependence of emission estimates on combustion state. Being commonly the single most abundant 
species detected in BB emissions, levoglucosan is often treated as a near universal BB tracer. 
Levoglucosan EF has been shown to have some linear MCE relationship in previous fire lab 
experiments (R=0.58) (Jen et al., 2019) and also in the FIREX-AQ field campaign (R=0.87) (Liang 
et al., 2022). However, from both 1st entry and 3rd entry burn prescribed fires we find little to no 
linear MCE relationship with levoglucosan EF (R=0.004). This lack of any strong linear 
dependence was also observed for OC versus MCE (Chapter 3), which likely follows from the 
dominance of the levoglucosan EF to the total OC EF. However, galactosan, belonging to the same 
compound group ‘sugar’, demonstrates a small positive linear correlation with MCE (R=0.411). 
This difference in MCE trend for specific compounds within the same functional class emphasizes 
the importance of speciated organic analysis for understanding the complexity of prescribed fire 
emissions. Dehydroabietic acid and isopimaral both demonstrate mild negative linear relationships 
with MCE (R= -0.232 & R= -0.204 respectively). Yet, this mild relationship diminishes to 
essentially zero for other compounds belonging to the diterpenoids group (e.g., R= 0.003 for 
sandaracopimaric acid). Aromatic compound vanillyl glycol and nitrogen-containing 4-
nitrocatechol also displayed negligible dependence on MCE (R= -0.057 & R= -0.044 respectively, 
Figure 5.2) 

The absence of strong correlations with MCE may be explained by two factors: 1) due to proximity 
of sampling,  the extent of evaporative or oxidative loss in levoglucosan may be lower for the 
sampled location of prescribed fires than wildfires which were sampled further downwind; and 2) 
both fire lab and wildfire samples span a narrow but high range of MCE values with average MCE 
> 0.87. The prescribed fire sampling with ground and especially aerial observations have given us 
the opportunity to explore a wider range of burning conditions with an average MCE <0.87 and 
which shows no linear MCE relationship. Since our observations of prescribed fire generally 
tended to cover a wide range of MCE (see also Chapter 3), we recommend using the mean EFs 
from this field campaign representative of a broad range of MCE regimes emission modeling of 
mixed conifer forest prescription fires.  
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Table 5.1 Study averaged emission factors (EFs) for individual organic compounds. Mean, median, standard error of 
the mean (se) and percent occurrence are listed for 1st (ground and aerial samples) and 3rd (ground samples) entry 
burns. For 3rd entry burn the compounds included are those that are common to 1st entry burn and have at least 50% 
occurrence in 3rd entry burn samples. 
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5.3. Emission Factors for Compound Classes  

In the 2021 prescribed burn and 2019 wildfire sample sets, there are enough positively identified 
measured compounds with distinct moieties to allow classification of the EF data into distinct 
chemical classes. The 2017 pilot study data does not include an identical range of compounds, thus 
it is excluded from the summed compound class comparisons. The compound class names (# in 
class) are sugar (20), diterpenoid (22), (aliphatic) acid (12), aromatic (27), PAH (9), oxygenated 
(11), triterpenoid (4), and nitrogen-containing (5).  

Figure 5.3 provides the mean class-summed EFs for 2021 1st entry burn ground and aerial samples 
with uncertainty bars equal to the standard errors of the mean. Comparable EFs are observed across 
platforms for most of the classes including the three most dominant: sugars, diterpenoids and acids. 
The three wildfire samples, even with much larger uncertainties, show noticeable differences in 
EFs for some classes but especially for sugars and aromatics.  

 

 

Figure 5.3 Emission factors summed by compound class from 1st entry prescribed fire samples 
(ground and aerial). Bars indicate the mean of summed group EFs for each compound by platform, 
with vertical lines indicating standard errors of the mean. The class sums of the same EFs measured 
from a wildfire are included for comparison. 
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Small differences in the mean values for summed EFs for the groups between two different 
platforms for 1st entry burn can be explained at least partially by the difference in average MCE. 
Grouping compounds into classes reveals some trends with MCE more clearly than is observed 
for many individual compound EFs. Figure 5.4 shows the classified EFs versus MCE for the 8 
dominant compound groups for 1st entry burn samples (ground and aerial) and the wildfire 
samples. The linear correlation (R) for each group is calculated for 1st entry ground and drone data 
excluding the wildfire samples. 

 

Figure 5.4 Emission factors in g/kg summed by compound class (sugar, diterpenoid, acid, 
aromatic, PAH, oxygenated, triterpenoid, nitrogen-containing) versus modified combustion 
efficiency (MCE) for 1st entry burn samples (ground and aerial). Linear correlation (R) is 
calculated for 1st entry ground and drone data (not including wildfire)  with individual compounds 
ordered from high (top) to low (bottom) EF. 
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The aromatic group of compounds demonstrates light absorbing properties in the UV-VIS range 
due to the presence of an aromatic nucleus in the compound and hence important from a climate 
modeling perspective (Jacobson, 1999). When grouped, the aromatic compounds display relatively 
stronger negative correlation (R = -0.626) to MCE than the individual aromatic compounds, i.e., 
combustion with lower MCE produces more aromatic compounds. This inference is supported by 
summary statistics of individual aromatic compounds for 1st entry burns (Figure 5.5) in which 1st 
entry ground samples with lower average MCE values have either higher or almost comparable 
median EFs with 1st entry aerial samples. The median EFs for the aromatic compounds from 
wildfire samples with higher MCE values were always lower than the median EFs from both 
platforms of 1st entry burn. The one exception is terephthalic acid that has been associated with 
plastic burning (Simoneit et al., 2005), which may indicate the inclusion of some non-biomass 
fuels in the wildfire samples. 

 

Figure 5.5 Emission factors (EFs) for aromatic compounds. Median values shown as horizontal 
lines within the colored boxes representing the 25th to 75th percentile (interquartile range, IQR). 
Whiskers stretch the IQR by 1.5 times. Data beyond 1.5*IQR is shown with diamonds. 

Similarly, the summed group EFs for the 1st entry burn for both ground and aerial platforms was 
very similar with minor differences for some groups (e.g., PAHs). This is primarily due to the 
samples collected from the ground platform having overall lower average MCE= 0.84 +/- 0.05 as 
compared to the aerial platform with an average MCE=0.89 +/- 0.04 (Chapter 3). This bias is 
noticeable across the individual PAH EFs shown Figure 5.6. 
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Figure 5.6 Emission factors (EFs) for polycyclic aromatic hydrocarbon (PAH) compounds. 
Median values shown as horizontal lines within the colored boxes representing the 25th to 75th 
percentile (interquartile range, IQR). Whiskers stretch the IQR by 1.5 times. Data beyond 1.5*IQR 
is shown with diamonds. 

To provide average emission factors to the emission modeling community, group EFs from the 1st 
entry burn were separated into two combustion regimes (MCE < 0.88 & MCE > 0.88) with results 
summarized in Table 5.2. The summed PAH EFs (mean EF = 235 mg kg−1) from samples with 
MCE < 0.88 are nearly 4 times more than summed PAH EFs (mean EF = 62.8 mg kg−1) for samples 
MCE > 0.88. Higher summed PAH EFs at lower MCE indicate that PAHs are formed by the 
decomposition of di/tri-terpenoid during smoldering (Ramdahl, 1983; Simonelt et al., 1993; 
Standley and Simoneit, 1994; Liang et al., 2022). Prescribed fires have been reported in general to 
occur with lower combustion efficiencies than wildfires (Jaffe et al., 2020), as also shown in 
Chapter 3.  

While we observed that summed EFs were higher in the low MCE regime for PAHs and aromatic 
compounds (~4x and ~2x, respectively, Table 5.2), there are chemical groups within the scope of 
our analysis that exhibit an increase in summed group EFs with increasing MCE (e.g., oxygenated: 
2 times in high MCE range; nitrogen-containing: more than 3 times). The nitrogen-containing 
compound class demonstrates a stronger MCE relationship (R=0.62, Figure 5.4) with MCE 
relative to other groups. This could be explained by the aerial platform’s ability to capture higher 
MCE plumes rising from the prescribed burn that exhibit higher EFs for the sum of nitrogen-
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containing compounds (Figure 5.3 and Figure 5.4). We infer that the increased summed EFs for 
the nitrogen-containing group in the high MCE regime are likely attributable to increased chemical 
production of those compounds under the more intense combustion conditions (e.g, 
hexadecanamide, Table 5.1). We observed a similar increase in summed EFs at high MCE for 
oxygenated compounds. However, unlike the nitrogen-containing group, we see no difference in 
EFs for the oxygenated from ground and aerial platforms (mean in Figure 5.3 and whisker plot in 
Figure 5.7). 

 

Figure 5.7 Emission factors (EFs) for oxygenated compounds. Median values shown as horizontal 
lines within the colored boxes representing the 25th to 75th percentile (interquartile range, IQR). 
Whiskers stretch the IQR by 1.5 times. Data beyond 1.5*IQR is shown with diamonds. 

As mentioned earlier, in this prescribed fire campaign combining ground and aerial measurements 
led to a greater understanding of the prescribed burning emissions as governed by three factors: 1) 
combustion conditions indicated by MCE; 2) fuels consumed and 3) evaporation and oxidative 
aging (either homogenous or  heterogeneous or both). The field experiments were designed to 
determine EFs and evaluate the impact of combustion conditions on the EFs. Combining ground 
and aerial measurements was complementary as we were able to explore a wide range of MCEs 
and it helped to understand the MCE relationships for both individual compounds and chemical 
groups.  

The comparison of EFs from particulate matter samples collected in different platforms (including 
3rd entry burn and 3 samples from wildfires) do not illustrate clear evidence of evaporation loss. 
However, due to the extensive list of compounds analyzed by GC×GC EI-HR-ToFMS (total 
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number of analyzed compounds =114), we can identify a few tracer compounds that are indicative 
of aging. For example, azelaic acid, a dicarboxylic acid, is generally formed by decomposition of 
long chain unsaturated fatty acids (e.g., oleic acid) (Sengupta et al., 2020). The comparison of EFs 
across multiple platforms demonstrates that wildfire samples have higher azelaic acid than 1st entry 
burn samples (Figure 5.7) supporting the interpretation of less aging of smoke sampled during the 
1st entry burn. Nitrocatechols are formed from the oxidation of phenolic compounds by NO3

 or OH 
followed by NO2 (Finewax et al., 2018; Fredrickson et al., 2022). The comparison of EFs for 
nitrocatechol and methyl nitrocatechol across platforms emphasizes a similar interpretation of 
these wildfire samples being more aged than the prescribed fire samples (Figure 5.8). While aging 
is reflected in the comparative EFs across the three sample sets, our results in current form cannot 
be utilized to understand the timescale and modes (homogeneous vs heterogeneous) of aging. 
Dehydroabietic acid EFs in 1st entry (0.283 g kg−1 ) are comparable to wildfire FIREX_AQ (0.363 
g kg−1) (Table 5.1) while EFs for sugars like levoglucosan was lower at least by a factor of two or 
more indicating that they have lower propensity to decompose than sugars with distance and time 
of sampling.  

 

 

 

 

 

 

 

 

  

Figure 5.8 Emission factors (EFs) for nitro-phenol compounds. Median values shown as horizontal 
lines within the colored boxes representing the 25th to 75th percentile (interquartile range, IQR). 
Whiskers stretch the IQR by 1.5 times. Data beyond 1.5*IQR is shown with diamonds.   
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Table 5.2 Mean and standard error (se) of  the mean for study averaged chemical group emission factors in mg 
kg-1 for the Blodgett Forest prescribed fires conducted in 2021. Values are shown grouped by low and high 
modified combustion efficiencies (below and above MCE of 0.88, respectively) with comparison to the 2019 
“Springs Fire” wildfire samples collected by CARB at much higher mean MCE (0.96).  

  Emission factors (mg/kg) 
  1st Entry Prescribed Fire Springs Fire 
  MCE < 0.88 MCE > 0.88 MCE = 0.96 
Group mean se mean se mean se 
sugar 5100 407 5830 113 597 410 
diterpenoid 975 119 719 32.9 1840 1110 
acid 893 55.3 735 15.3 1590 155 
aromatic 571 32.9 246 9.14 51.9 24.0 
PAH 235 33.5 62.1 9.29 510 342 
oxygenated 83.9 9.46 154 2.62 25.0 21.5 
triterpenoid 49.7 5.14 76.9 1.42 23.0 16.2 
nitrogen-containing 13.2 2.74 45.2 0.76 17.3 10.0 

5.4. Summary and Recommendations 

Individual and chemically grouped emission factors were determined for two types of California 
prescribed fires (1st entry and 3rd entry) in the mixed conifer forests of Northern California and one 
California wildfire (“Springs Fire”). Emission factors for most individual compounds were found 
to be insensitive to the combustion phase as indicated by MCE much like the OC/EC results 
reported in Chapter 3. While individual compound emission factors were presented, the grouping 
by chemical class may provide a more useful approach for analyzing and modeling prescribed fire 
emissions. The 2021 1st entry burn study results, as presented in Table 5.2, are more representative 
of the current state of California mixed conifer forests. The four dominant chemical groups 
presented account for 95% of the speciated mass. Depending on fire intensity, two distinct 
combustion phase regimes were identified for use in modeling with an approximate threshold of 
MCE=0.9, the traditional definition of the onset of a flaming state (Akagi et al., 2011). While the 
total sugars emission factor shows little dependence on MCE, like the OC EFs, some chemical 
classes do show measurable differences between the low and high MCE regimes with a few groups 
exhibiting increases in EF with MCE (e.g. oxygenated and nitrogen-containing) that exemplify 
secondary formation while a few others show the typical decrease in EF with MCE under more 
flaming conditions (e.g. aromatics and PAHs).   
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6. Black Carbon Emission Factors and Light Absorbing Properties (AAE) 
from Aethalometer and ABCD Sensor Package 

6.1. Introduction 

Biomass burning is a major contributor to the atmospheric burden of carbonaceous particles in the 
atmosphere, including light absorbing black carbon (BC) and brown carbon (BrC), which 
adversely impacts human health and perturbs the Earth’s radiation balance (Intergovernmental 
Panel On Climate Change, 2023). Whereas BC absorbs sunlight strongly over all visible and near-
infrared wavelegnths, BrC light absorption is spectrally dependent and greatest in the near-UV 
range of visible light (λ≃370–500 [nm]) ((Kirchstetter et al., 2004). The composition of 
carbonaceous aerosols (i.e., relative abundance of BrC and BC) may be quantified by the 
absorption Ångström exponent (AAE), which depends on the combustion source and is used for 
source characterization.  
 
The California Air Resources Board (CARB) produced an inventory of BC emissions for  
California in 2013 as part of the Greenhouse Gas (GHG) Short-Lived Climate Pollutant Inventory 
(see Figure 6.1). The inventory in Figure 6.1 does not include forestry sources of black carbon, 
namely non-agricultural prescribed burns, and wildfire BC emissions. CARB notes that these 
sources of BC are highly variable year-to-year and future projections are highly uncertain, due to 
the increased frequency, intensity, and nonlinear response of wildfire behavior to global climate 
change. CARB instead provides emissions estimates of BC from prescribed burns and wildfires 
on a ten-year averaged basis, as listed in Table 6.1. Both Figure 6.1 and Table 6.1 report BC in 
units of million metric tons of carbon dioxide equivalent 20-year global warming potential 
(MMTCO2e 20-year GWP).    
 

Table 6.1 Ten-year average BC emissions inventory for forestry sources in California. 

Source MMTCO2e (20-year) 

Prescribed burning 3.6 

Wildfires 86.7 

Source: https://ww2.arb.ca.gov/ghg-slcp-inventory 
 
In the CARB forestry BC emissions inventory presented in Table 6.1, BC emissions from 
prescribed burns and wildland fires were quantified with the First-Order Fire Effects Model 
(FOFEM (Keane and Lutes, 2018)). This model takes inputs of geographic region, fuel types, soil 
texture and moisture, and other general burning conditions (i.e., flaming and smoldering 
combustion) and outputs fuel consumption and emissions of air pollutants: CO, CO2, CH4, SO2, 
NOx, PM2.5, and PM10. To estimate BC, a BC/PM2.5 ratio was applied to the total PM2.5 emitted, 
as calculated from fire activity and fuels data. BC emission factors from wildland fires remain 

https://ww2.arb.ca.gov/ghg-slcp-inventory
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uncertain due to their dependence on fuel type, geographic region, combustion conditions and fuel 
moisture. The portion of BC in open burning emitted PM2.5 varies by two orders of magnitude, 
with reported BC/PM2.5 emission factor ratios between 0.8 - 80%.  The CARB BC Emissions 
Inventory Technical Support Document notes that their methodology uses data and assumptions 
with high uncertainty due to large variability in BC/PM2.5 ratios and a lack of sources tests and 
field measurements of wildfire smoke emitted from California-specific fuels. This methodology 
results in a forestry BC emissions inventory that may vary by an order of magnitude depending on 
what BC/PM2.5 ratio was assumed. 

 
This work aims to constrain California’s BC emissions inventory by measuring BC emission 
factors (EFs) at prescribed burns conducted in a typical California forest ecosystem and calculating 
BC EFs and BC/PM2.5 emissions ratios from data obtained from regulatory stations and a low-cost 
BC sensor network during wildfire smoke events. These BC emission factors and BC/PM2.5 
emissions ratios improve the speciation profile for prescribed burn and wildfire smoke in 
California and may be employed in future FOFEM estimates of total BC emissions.  
  

Figure 6.1 Pie chart of CARB 2013 Black Carbon emissions inventory excluding forestry 
sources. Source: https://ww2.arb.ca.gov/ghg-slcp-inventory 

https://ww2.arb.ca.gov/ghg-slcp-inventory
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6.2. Methods 

Data collection and sources 

BC emission factors, pollutant ratios, and optical properties were determined by analysis of BC, 
CO, CO2, and PM2.5 data from two types of data sources: (1) field measurements made during this 
study to characterize smoke produced from the prescribed burning events, and (2) a combination 
of distributed sensor networks and publicly available local and federal air quality databases to 
characterize transported smoke during recent large wildfires in California.  
 
Field measurements were conducted at the Blodgett Forest Research Station during four days of 
prescribed burns. BC was measured alongside CO and CO2 on the ground and aerial platforms. 
BC was measured with a pre-commercial, custom-built Aerosol Black Carbon detector (ABCD, 
(Caubel et al., 2018)) and the Magee Scientific AE33 multi-wavelength dual-spot aethalometer 
(AE33). Both an AE33 and ABCD were deployed on the ground platform and a second ABCD 
was deployed on the aerial platform. CO was measured with a Horiba APMA370 and CO2 with a 
Horiba APCA370 (see Chapter 3, Ground Platform for a detailed description of the gas analyzers). 
All analyzers measured their respective pollutants at a 1 Hz (secondly) time basis. 
 
Distributed networks included the Richmond Air Monitoring Network (RAMN)—part of the 
CARB-funded Community Air Grants Program under Assembly Bill 617—and the Berkeley 
Environmental Air-Quality and CO2 Network (BEACO2N, (Shusterman et al., 2018)), located in 
Richmond and Oakland, CA. BC and PM2.5 were measured in Richmond at 22 locations with co-
located ABCDs and Aeroqual AQY1 Micro Air Quality Monitoring System sensors for four weeks 
in 2020 (12 August–4 September).  During this measurement window, a wildfire smoke plume 
was observed during the time windows listed in Table 6.2, with smoke originating primarily from 
the August Complex, CZU Lightning Complex, LNU Lightning Complex, and SCU Complex 
Fires that began on 16–17 August 2020. CO and CO2 were separately measured at seven 
BEACO2N locations in Richmond and three sites in Oakland, and data were obtained from an API 
download script provided by the Cohen Research Group at UC Berkeley for the period of 2018–
2020. CO2 concentrations are not measured at government regulatory sites in California and the 
availability of CO2 concentrations measured by the BEACO2N network offered an opportunity to 
estimate BC emission factors during extreme wildfire events that transported smoke to the Bay 
Area.  

Table 6.2 Observed wildfire smoke events during Summer 2020 Richmond AB 617 Community Air Monitoring 
campaign 

Wildfire Smoke Event Start Time and Date End Time and Date 

1 00:00 19 August 2020 18:00 22 August 2020 

2 06:00 23 August 2020 16:00 25 August 2020 

3 19:00 27 August 2020 21:00 01 September 2020 
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BC, CO, and PM2.5 data from regulatory sites were obtained through the US Environmental 
Protection Agency (US EPA) Air Quality System (AQS) API for all sites in California during 
2018–2020. BC data reported to the AQS does not include multi-wavelength absorption data, like 
the raw data retrievable from the AE33 deployed at the prescribed burn, or any BC sites in the 
South Coast air basin. Raw multi-wavelength absorption data were acquired by collaboration with 
Bay Area Air Quality Management District (BAAQMD) staff and a public records request to the 
South Coast Air Management District (SCAQMD) for 2018–2020. Maps of the distributed 
networks sites and regulatory sites in the BAAQMD and SCAQMD jurisdictions are provided in 
Figures 6.2 and 6.3.  
 

 

Figure 6.2 Locations of regulatory and distributed network BC, CO, CO2, and PM2.5 sites in the 
San Francisco Bay Area. Insets A and B depict the sites where BC emission factors were 
calculated. Inset A shows the Richmond Air Monitoring Network (RAMN; blue circles) and paired 
BEACO2N CO and CO2 nodes (red triangles). Inset B plots the BAAQMD-operated West 
Oakland and Laney College BC and CO monitoring locations (blue circle and green rectangles, 
respectively) along with the BEACO2N CO2 nodes (red triangles). 
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Figure 6.3 SCAQMD BC, CO, and PM2.5 monitoring locations in the South Coast Air Basin and 
Greater Los Angeles Metropolitan Area. Data from BC, CO, and PM2.5 sites denoted as blue 
circles, green triangles, and orange stars, respectively, were used to calculate BC/PM2.5 ratios and 
∆BC/∆CO enhancement ratios. BC sites denoted by purple crosses were not within a distance 
threshold of a PM2.5 and CO monitor and were only included in the AAE analysis (see text for 
explanation). 

Pollutant peak matching  

Rather than relying on instrument clocks on the ground platform BC and gas analyzers, which may 
drift at different rates, the 1-Hz datasets from each pollutant analyzer were time-aligned with a 
post-processing script that calculated the Pearson correlation, r, of the four days of measurement. 
CO2 timestamps were chosen as the reference time basis, given its relative importance to calculate 
a fuel-based emission factor—CO2 carbon typically accounts for 80% of the fuel carbon in the 
carbon balance. This peak matching analysis assumed when a puff of smoke passed the ground 
platform sampling inlets, all pollutant analyzers should record a peak at approximately the same 
time. For CO, AE33 BC, and ABCD BC, the script altered the datasets timestamp in one second 
increments between –120 seconds to +120 seconds and calculated the Pearson correlation r of the 
matched datasets with altered timestamps to the CO2 with unaltered timestamps. The results of this 
analysis are presented in Figure 6.4 below. Timestamp offset adjustments of –2, +51, and +54 
seconds yielded the best correlations and were applied to the CO, BC AE33, and BC ABCD 
datasets, respectively, to best align each of them to the CO2 timestamp and subsequently compute 
emission factors and other pollutant ratios. 
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Figure 6.4 Pearson correlation coefficients of CO (blue), BC AE33 (orange), and BC ABCD 
(green) matched datasets to CO2 dataset. Vertical lines mark the maximum Pearson correlation 
coefficient at –2, +51, and +54 seconds for CO, BC AE33, and BC ABCD, respectively. 

Measurement principles and Artifact Adjustment Parameter (AAP) of BC data 
Co-location of the AE33 and ABCD BC monitors on the ground platform allowed the research 
team to calculate the ABCD’s loading artifact adjustment parameter for the biomass burning 
aerosols measured in this study. Aethalometers measure changes in light attenuation (∆ATN) of 
deposited carbonaceous aerosols and calculate the corresponding concentration of carbonaceous 
aerosol proportional to the ∆ATN, given a wavelength-dependent mass absorption cross-section 
(Table 6.3). The AE33 multi-wavelength aethalometer measures ∆ATN at seven wavelengths 
from the UV to near-infrared (IR) listed in Table 6.3, which allows the instrument to characterize 
the spectral dependence of light absorption by the aerosols and may be employed for source 
apportionment. 
  
The aethalometer response to each marginal carbonaceous aerosol deposited on its filter becomes 
less sensitive and decreases because of a loading (or sampling) artifact of previously deposited 
aerosols (Kirchstetter and Novakov, 2007). As the ATN increases, the loading artifact causes the 
∆ATN associated with each equal marginal deposition of aerosols to decrease and results in an 
underestimation of the carbonaceous aerosol concentration. A loading artifact correction algorithm 
must be applied to BC concentration data, either in real-time or in post-processing. Different 
carbonaceous aerosols, like from fossil fuel combustion or biomass burning, result in different 
loading artifacts and require compensation schemes to be source or airshed specific. 
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Table 6.3 Measured wavelengths of light attenuation (ATN) and mass absorption cross-sections for the Magee 
Scientific AE33. 

Channel Measurement wavelength 
[nm] 

Mass absorption cross-
section, σair [m2/g] 

1 - Ultraviolet particulate matter (UVPM) 370 18.47 

2 470 14.54 

3 520 13.14 

4 590 11.58 

5 660 10.35 

6 - Black carbon 880 7.77 

7 950 7.19 

 
The AE33 employs a real-time DualSpotTM method, which deposits sampled aerosols on two spots 
at different flow rates, whereby the spot with the higher flow rate loads and the ATN increases 
more quickly than on lower flow rate spot. In this study, the AE33 was operated at Qhigh= 3.5 L 
min-1 and Qlow = 1.5 L min-1. Since both spots sample the same concentration and composition of 
aerosols, the reported BC concentration calculated for both the high-flow and low-flow spots 
should be equal (i.e., BChigh = BClow). Instead, as the filter loads, high-flow spot attenuation signal 
response (ATNhigh) becomes less sensitive than the low-flow spot attenuation signal response 
(ATNlow) such that BChigh < BClow and BChigh ≠ BClow. The AE33 compensates for the loading 
artifact by calculating a compensation parameter kλ at each wavelength: 

𝐵𝐵𝐶𝐶ℎ𝑖𝑖𝑏𝑏ℎ = 𝐵𝐵𝐶𝐶𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠�1 − 𝑘𝑘𝜆𝜆 ∙ 𝐴𝐴𝑅𝑅𝑁𝑁ℎ𝑖𝑖𝑏𝑏ℎ�  [6.1] 

𝐵𝐵𝐶𝐶𝑠𝑠𝑏𝑏𝑙𝑙 = 𝐵𝐵𝐶𝐶𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠(1 − 𝑘𝑘𝜆𝜆 ∙ 𝐴𝐴𝑅𝑅𝑁𝑁𝑠𝑠𝑏𝑏𝑙𝑙)   [6.2] 

where BChigh, BClow, ATNhigh, ATNlow are known and reported by the instrument and kλ is the 
wavelength-specific compensation parameter. To find kλ, equations [6.1] and [6.2] are rearranged 
to equal the compensated BC concentration BCcomp, set equal and kλ is isolated, resulting in 
equation [6.3]: 

𝑘𝑘𝜆𝜆 = 𝐵𝐵𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙−𝐵𝐵𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ
𝐴𝐴𝐴𝐴𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ∙𝐵𝐵𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙−𝐴𝐴𝐴𝐴𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙∙𝐵𝐵𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ

   [6.3] 

The compensation parameter kλ is reported at the same time basis as the instrument operation. 
 

The ABCD does not employ a real-time correction scheme and BC data must be corrected in post-
processing data quality assurance/quality control (QA/QC). Previous studies have used the 
Kirchstetter loading artifact correction (Jimenez et al., 2007), presented as equation [6.4]:  

𝐵𝐵𝐶𝐶𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠 = 𝐵𝐵𝐶𝐶𝑟𝑟𝑟𝑟𝑙𝑙
𝑠𝑠∗exp�−𝐴𝐴𝐴𝐴𝐴𝐴100 �+(1−𝑠𝑠)

   [6.4] 
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where BCraw is the raw BC concentration reported by the ABCD, ATN is instantaneous light 
attenuation, and a is the artifact adjustment parameter (AAP) applied to calculate the compensated 
BC concentration BCcomp. Previous studies determined an appropriate AAP by operating two 
ABCDs at different flow rates, like the AE33 compensation scheme. However, in this work, only 
one ABCD was deployed on each sampling platform. Co-location of the AE33 and ABCD BC 
monitors on the ground platform allowed the research team to calculate the ABCD’s loading 
artifact adjustment parameter for the biomass burning aerosols measured in this study.  
 
The AAP was determined by applying an ordinary least squares (OLS) linear regression of 
compensated AE33 BC data against uncompensated ABCD BC concentration data. ABCD BC 
data was averaged from secondly to minute-averaged data to reduce instrument noise but maintain 
temporal resolution of the smoke emissions profile. Both ABCD and AE33 BC data were filtered 
to exclude BC measurements above 100 μg m-3 and below the minute-averaged mean absolute 
error (MAE) during background measurements, when the BC concentration should have been 
near-zero. The background BC concentration was likely non-zero, with possible sources of BC 
including a gasoline generator located ~25 ft from the ground platform, residual smoke from 
previous days burning, and passing vehicles. Background measurements were collected before the 
start of the third and fourth days of the prescribed burn for around 45 minutes total. The linear 
regression upper threshold of 100 μg m-3 excluded 5% and 6% of ABCD and AE33 BC minute-
averaged measurements for all four days of sampling. The MAE of the ABCD and AE33 on a 
minute-averaged basis were 0.4 and 0.1 μg m-3, with mean minute-averaged concentrations of 0.3 
and 0.08 μg m-3, respectively. 

Figure 6.5 Absolute difference of ordinary least squares (OLS) linear regression of minute-
averaged AE33 and ABCD BC measurements from unity slope for artifact adjustment parameters 
(AAP). 
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To determine the appropriate AAP, we compensated the ABCD BC data with a range of AAPs 
between 0 (uncompensated) to 1 in 0.05 increments with Equation 6.4 and identified the AAP 
where the slope of the OLS linear regression matched a one-to-one line. For each AAP, the 
absolute difference of the linear regression slope and unity slope are plotted in Figure 6.5 above. 
For all AAPs, the coefficient of determination was 0.82 < r2 < 0.85. The slope of the OLS linear 
regression with a = 0.5 was mcomp = 0.99, near unity. This value of a was applied to the BC data 
from the ground and aerial platforms and compared to the un, as shown in Figure 6.6. The 
uncompensated slope with a = 0 was muncomp = 0.87. A slope less than unity indicated that the 
ABCD generally underestimated the BC concentration measured by the AE33. This result was 
consistent with the measurement principle of filter-based photometers, with the uncompensated 

instrument underestimating the aerosol concentration due to a measurement artifact.  

  

Figure 6.6 Ordinary least squares (OLS) linear regression of minute-averaged AE33 and 
compensated minute-averaged ABCD BC data with an artifact adjustment parameter (AAP) of a 
= 0.5. 
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Brown Carbon (BrC) concentration calculation 

The concentration of BrC, or the light absorbing portion of organic aerosol, was calculated for the 
ground platform AE33 by equation [6.5] below: 

𝐵𝐵𝐵𝐵𝐶𝐶 = 𝑈𝑈𝑉𝑉𝑃𝑃𝑀𝑀 − 𝐵𝐵𝐶𝐶  [6.5] 

where 𝐵𝐵𝐶𝐶 was the reported BC concentration and UVPM was the reported BC concentration at = 
370 [nm] (Table 6.3). We assumed a wavelength dependence characterized by AAE = 1 for BC 
and attributed absorption at λ = 370 nm above the BC concentration at λ = 880 nm to be BrC.   

BC emission factor, BC/CO enhancement ratio and BC/PM2.5 ratio calculation 

At the prescribed burn, ground BC and BrC EFs were calculated by integrations of 1 Hz pollutant 
traces for the 30-minute sampling periods that align with the VOC samples presented in Chapter 
4 (n = 34). Three 30-minute sampling periods were dropped due to a lack of observed capture at 
the ground station when smoke was transported vertically and/or away from the sampling inlet. 
Aerial BC EFs were calculated for each drone flight that lasted between 4–15 minutes (n = 30). 
Fuel-based emission factors were calculated by carbon balance: 

𝐸𝐸𝐸𝐸𝐵𝐵𝐶𝐶 = Δ𝐵𝐵𝐶𝐶∗𝑙𝑙𝑐𝑐
(Δ𝐶𝐶𝐶𝐶+Δ𝐶𝐶𝐶𝐶2)∗𝑀𝑀𝑊𝑊𝐶𝐶

 [6.6] 

where ΔBC is the excess BC above background concentration, wc = 0.5 is the weight-fraction of 
carbon in the biomass fuel (ref), ΔCO is the excess CO above background concentration, ΔCO2 is 
the excess CO2 above background concentration, and MWC = 12 g mol-1 is the molar mass of 
carbon. For the prescribed burn emission factors, the background BC concentration was assumed 
to be 0 µg m-3. For BC EFs calculated from ambient data from the distributed network and 
regulatory sites, excess BC above an ambient background concentration was calculated on an 
hourly, hour-of-day (HoD) basis. The background BC for wildfire smoke emission factors 
determined from RAMN and regulatory sites are discussed in subsequent sections.  
 
CO2 concentrations are not reported in the AQS database in California. BEACO2N CO2 nodes 
deployed in the SF Bay Area air basin during 2018–2020, therefore, present a unique opportunity 
to calculate fuel-based BC emission factors when wildfire smoke was transported to the region. 
Unfortunately, BC emission factors could not be calculated for wildfire smoke events in the South 
Coast Air Basin because of the unavailability of CO2 data.  
 
BC/CO enhancement ratios (∆BC/∆CO) were calculated and compared for the prescribed burn 
events and during periods when wildfire smoke was very present in the SF Bay Area and South 
Coast air basins to provide a comparison of the relative emission rates of BC and CO in prescribed 
burns and wildfires. The BC/CO enhancement ratio is defined by Equation 6.7: 

𝐵𝐵𝐵𝐵𝐶𝐶/𝐶𝐶𝐶𝐶 = Δ𝐵𝐵𝐶𝐶
Δ𝐶𝐶𝐶𝐶

= 𝐵𝐵𝐶𝐶𝑙𝑙𝑤𝑤−𝐵𝐵𝐶𝐶𝑏𝑏𝑏𝑏𝑖𝑖2019
𝐶𝐶𝐶𝐶𝑙𝑙𝑤𝑤−𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑖𝑖2019

 [6.7] 
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where BCwf was the hourly BC measured at a regulatory site during a wildfire smoke event, 
BCbkg2019 was the background HoD BC concentration during calendar year (CY) 2019, COwf was 
the hourly CO measured at a regulatory site during a wildfire smoke event, and CObkg2019 was the 
background HoD CO concentration during CY2019 when, absent of wildfires, the background BC 
and CO concentrations were assumed to be zero. 
 
BC/PM2.5 ratios were determined where BC and PM2.5 measurements were co-located in both the 
SF Bay Area and South Coast Air Basins. As noted above, this ratio has implications for use in a 
FOFEM to better estimate statewide BC emissions. The BC/PM2.5 ratio was computed as: 

𝐵𝐵𝐵𝐵𝐶𝐶/𝑃𝑃𝑀𝑀2.5 = 𝐵𝐵𝐶𝐶
𝑃𝑃𝑀𝑀2.5

  [6.8] 

where BC was the hourly BC measurement from a regulatory site or RAMN ABCD node and 
PM2.5 was the hourly fine particulate matter measurement from a co-located PM2.5 regulatory site 
or RAMN Aeroqual node, respectively. It is worth noting that BC and PM2.5 are not conserved 
during transport, and secondary formation may increase levels of PM2.5 as plumes are transported 
to the regulatory sites. While quantitative adjustment of this ratio to account for dilution and 
formation of secondary PM2.5  would require further investigation and modeling, directionally the 
adjustment would further support the use of these BC/PM2.5 ratios over default FOFEM values.  

Absorption Ångström Exponent calculation 

Measurement of carbonaceous aerosols with a multi-wavelength aethalometer provides the 
spectrally dependent absorption of light for an aerosol sample, or a spectral absorption curve. A 
log transformation of the spectral absorption curve may be linearly regressed against the measured 
wavelengths to calculate the absorption Ångström exponent (AAE), or the slope of the log-
transformed OLS linear fit. The AAE is commonly reported in literature to provide source 
characterization of carbonaceous aerosols, usually between fossil fuel where BC is the dominant 
light absorbing species (AAE ~1) and biomass burning combustion that includes a significant 
amount of BrC in addition to BC (AAE > 2). The AAE as defined by Liu et al. (Liu et al., 2018) 
is: 

𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠(𝜆𝜆) = 𝜆𝜆−𝐴𝐴𝐴𝐴𝐴𝐴 [6.9] 

where the AAE is a power-law fit of the aerosol absorption 𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠(𝜆𝜆) against the measured 
wavelength 𝜆𝜆. If equation [6.9] above is log-transformed the AAE may be determined by a linear 
regression: 

ln�𝑏𝑏𝑠𝑠𝑏𝑏𝑠𝑠(𝜆𝜆)� = −𝐴𝐴𝐴𝐴𝐸𝐸 ln(𝜆𝜆) [6.10] 

where the AAE is the slope of the linear regression. In Equation 10, the spectral absorption babs(λ) 
is approximated by the spectral attenuation, ATN(λ), measured by the AE33. In this work, the 
aerosol spectral attenuation and measured wavelength of the AE33 (refer to Table 6.3) were log-
transformed and regressed against each other with an ordinary least squares (OLS) linear 



 83 

regression function in the scipy library in Python. For the prescribed burn data, the OLS linear 
regression was applied on a 1 Hz basis and for the regulatory data at highest temporal resolution 
present in the dataset. AAEs were then averaged to minutely and hourly for the prescribed burn 
and regulatory sites, respectively.  

Wildfire smoke hours identification for regulatory site analyses 

During periods of extreme wildfires when smoke was transported around much of the state, 
measured PM2.5, BC, and CO concentrations at regulatory sites were generally well above the 
typical concentration of these pollutants. To determine the hours when a regulatory site was 
wildfire-smoke impacted, a 50 μg m-3 threshold was applied to all the PM2.5 data in 2018, 2019, 
and 2020. This technique is based the work presented in Chapter 8 in which a daily 35 μg m-3 was 
applied to low-cost PM2.5 sensors to identify wildfire smoke impacted time periods. The hourly 
threshold was applied to SF Bay Area and South Coast datasets separately to produce two lists of 
smoke impacted hours (e.g., 13:00:00 10 September 2020) for each region.  
 
While high hourly PM2.5 tends to be associated with wildfire smoke events, some hours above the 
threshold were likely due episodic high-PM emission events (e.g., fireworks), inversions in coastal 
air basins, high formation of secondary PM2.5, etc. To ensure the hours identified were during 
wildfire smoke events, any day with the hour above the hourly threshold was verified with NOAA 
Satellite Smoke Product (SSP), a satellite product in which NOAA scientists note any smoke or 
dust visible from geostationary satellites (i.e., GOES-WEST) over the continental US. For each 
day with a possible smoke hour, the NOAA SSP was checked to see if it included any mention of 
wildfire smoke over California or the Western United States. If the text narrative included such a 
description, the smoke hour was included in the analysis; otherwise, the possible smoke hour was 
dropped from the list.  
 
For the South Coast Air Basin AQS data, wildfire smoke data qualifiers were also used to identify 
the hours when sites were impacted by wildfire smoke. When AQMDs report pollutant 
concentrations to the AQS, air quality regulators sometimes include a data flag of IT – Wildfire 
US or RT – Wildfire US. The first qualifier, IT – Wildfire US, is for informational purposes only. 
The second qualifier, RT – Wildfire US, indicates that for a criteria air pollutant like PM2.5 or CO, 
the AQMD would like to request an exclusion of this hourly measurement from NAAQS 
attainment calculations. These wildfire qualifiers were not provided for all 24 BC sites used in the 
BC/PM2.5 ratio, ∆BC/∆CO ratio, and AAE analyses, but for any datetime when a site contained a 
wildfire qualifier it was assumed that all sites were wildfire smoke impacted. This second wildfire 
smoke identification method provided a useful comparison to the 50 μg m-3 threshold discussed 
above. 

Background concentration for regulatory BC EFs and BC/CO enhancement ratios 
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For each regulatory and distributed network site, a background concentration of BC, CO, and CO2 
was determined for each wildfire smoke hour. The background pollutant concentrations could not 
be assumed to be zero like at the prescribed burn since the pollutant monitors shown in Figures 
6.3 and 6.4 were deployed to measure regional sources of pollution in the SF Bay Area and South 
Coast Air Basins. For example, many of the BC monitors shown in Figure 6.4 are located near the 
Ports of Los Angeles and Long Beach to measure port and diesel truck emissions. The 
concentration of these air pollutants also varies by season and due to varying meteorology.  
 
Concentration data from CY2019 was used to calculate site-specific BC, CO, and CO2 background 
concentrations since no wildfire hours were identified in CY2019 by the 50 μg m-3 criteria defined 
in the previous section. For the regulatory BC EFs determined at the West Oakland and Laney 
College sites (Figure 6.2B), the three BEACO2N CO2 nodes were averaged to provide better 
temporal coverage during the 2019 background and 2018/2020 wildfire smoke years. The BC HoD 
background concentrations were derived from a window of 31 days of observations in 2019 and 
the BC/CO enhancement ratios from a window 9 days of observations in 2019, both centered on 
the day of the year in the 2018/2020 wildfire years. For example, for the wildfire hour 13:00 10 
September 2020, the BC EF HoD background concentration was calculated as the mean 
concentration at 13:00 for the 15 days before and after 10 September 2019. Similarly, the BC/CO 
enhancement ratio background concentration for this wildfire hour would be the mean 
concentration at 13:00 for the 4 days before and after 10 September 2019.  
 
This method accounts for the diurnal and season variation in pollutant concentrations due to 
activity patterns and meteorology by calculating the background at the same HoD and during the 
same time of year during the 2019 background year. For the BC EFs, most of the 2019 background 
year a full 31 days of HoD measurements were not available as presented in Figure 6.7. For most 
wildfire smoke hour background concentrations at least 5 days of HoD observations were available 
and the pollutant enhancement was not biased by the number of available observations. 
Enhancements less than zero were dropped from the EF and BC/CO enhancement analyses.  
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Figure 6.7 Number of HoD observations used to calculate the wildfire hour background 
concentration against the enhancement of BC, CO and CO2. 
 

For the RAMN BC EFs, each ABCD was paired with the nearest BEACO2N CO/CO2 node 
(Figure 6.2A). The ABCDs in the RAMN were deployed only in 2020 (12 August–4 September). 
As such, a 2019 HoD background concentration could not be established. Instead, the background 
BC concentration was calculated as the average of all hourly BC measurements before the first 
wildfire smoke event (see Table 6.1) from 00:00 12 August 2020 to 00:00 19 August 2020, 
highlighted in blue in the top panel of Figure 6.8. For CO and CO2, the background concentration 
was calculated from 29 July–12 August 2020, also highlighted in blue in middle and bottom panels 
of Figure 6.8. The CO and CO2 background periods were set before the BC background period 
due to the drift of these signals, as seen in the CO2 timeseries in the bottom panel of Figure 6.8. 
This time offset ensures a steady baseline concentration was established before pollutant 
concentration was elevated by the wildfire smoke events. To calculate pollutant enhancements and 
a BC EF with Equation 6, the background concentrations were subtracted from the 24-hour BC 
rolling average and 2-week rolling average of CO and CO2 for each hour during the wildfire smoke 
periods. 
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Figure 6.8 Example pairing of ABCD to the nearest BEACO2N node with the hourly 
concentration of BC, CO and CO2 plotted from top to bottom, overlayed with the 24-hour rolling 
average for BC and the 2-week rolling average for CO and CO2. Background concentration 
periods for each pollutant highlighted in blue; wildfire smoke hours highlighted in yellow (see 
Table 6.1).  

6.3. Results and Discussion 

Prescribed burn ground- and aerial-based black carbon (BC) emission factors 
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Figure 6.9 shows the linear regressions of BC EFs determined at the prescribed burns against 
calculated MCE. The BC EFs generally increased as the MCE approached unity and the 
combustion conditions transition from smoldering regime (MCE < 0.9) to flaming regime (MCE 
> 0.9) with coefficient of determination r2 = 0.48. The modest r2 value indicates that MCE is a 
good but not great predictor of the BC EF, as a wide range of BC EFs were measured for a given 
MCE value. BC EFs averaged ~0.2 g kg-1 when MCE was approximately 0.80 and 1.0–1.5 g kg-1 
when MCE was 0.90 or larger. The ground-based BC EFs were all within the smoldering 
combustion regime, except for one AE33 ground BC EF, whereas the aerial-based BC EFs spanned 
both the flaming and smoldering regimes. In general, the aerial-based BC EFs agreed with the 
ground-based BC EFs within the smoldering regime. Ground-based BC EFs may have been biased 
towards the smoldering regime due to the sampling platform placement on the edge (i.e., the 
adjacent roadway) of the prescribed burn unit. While the aerial-based sampling platform could be 
flown to sample above the flame front moving through the burn unit and continually sample 
emissions in the flaming regime, the ground platform was relatively stationary. Once the initial 
flame front burned past the ground platform, most sampled emissions were likely dominated by 
smoldering combustion. 

Figure 6.9 Ordinary least squares (OLS) linear regression of prescribed burn BC emission factors 
against modified combustion efficiency (MCE) for AE33 ground (black circles), ABCD ground 
(green triangles) and ABCD aerial (purple stars) sampling platforms. 
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Figure 6.10 compares prescribed burn BC EFs from this study those in another study by Aurell 
and Gullet (Aurell and Gullett, 2013) that took place in the southeastern US and employed similar 
sampling techniques. In the Aurell and Gullet study, BC EFs were measured on the ground with 
an all-terrain vehicle (ATV) platform and on an aerial platform held aloft by an aerostat. The BC 
EFs for both the ground- and aerial-platforms exceeded 0.8 g kg-1 in that study and tended to be in 
the near-flaming (MCE = 0.9) or flaming combustion regime (MCE > 0.9). By contrast, only 4 of 
62 (6%) of the combined AE33 and ABCD ground BC EFs in our study exceeded 0.8 g kg-1 or an 
MCE > 0.9. The aerial EFs corresponding to the highest MCE values during the prescribed burns 
in the current study were in general agreement with the EFs measured during the southeastern US 
prescribed burns, which ranged from 0.9–1.4 g kg-1. The absence of low MCEs in the southeastern 
U.S. study may be due to differences in fuel type and fuel moisture that skew the combustion 
conditions towards the flaming regime more than the CA prescribed burn. 
 

 
Figure 6.10 Comparison of prescribed burn ground and aerial BC EFs from this study to 
southeastern US prescribed (Rx) burn BC EFs found by (Aurell and Gullett, 2013), with their 
ground measurements shown as blue circles and aerial samples as orange circles. BC EFs from 
this study are the same as Figure 6.9, with the AE33 ground sampling platform indicated by black 
circles, ABCD ground as green triangles, and ABCD aerial as purple stars.  
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Figure 6.11 compares the prescribed burn BC EFs from this study to those measured during 
laboratory burning of three western US fuel types: conifer, duff, and shrub. These laboratory EFs 
were obtained from the Smoke Emissions Reference Application (SERA) database (Prichard et 
al., 2020). The range of MCEs (~0.80 to 0.95) and BC EFs (0.2–1.5 g kg-1) measured during the 
laboratory burning of western US fuels were similar to those measured in the current study of 
prescribed burning in Blodgett Forest. Like the southeast US field study, nearly all the western 
conifer and shrub fuel types burned in the laboratory were marked by high MCE values that are 
characteristic of flaming combustion. The lab results for western duff generally agree with both 
field studies, with comparable MCEs that indicate burning in the smoldering regime and ground-
based BC EFs less than ~0.8 g kg-1. This result is consistent with the fuel types and smoke 
emissions observed during ground platform sampling, with most of the emissions after the initial 
flame front burned through the unit coming from duff smoldering in the forest understory.   
 

 
Figure 6.11 Comparison of prescribed burn ground and aerial BC EFs from this study to lab BC 
EFs of typical western US fuels from the Smoke Emissions Reference Application (SERA) 
(Prichard et al., 2020). BC EFs from this study are shown in grey with the same symbology from 
Figure 6.9: AE33 ground (circles), ABCD ground (triangles), and ABCD aerial (stars) sampling 
platforms. 
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BC emission factors from regulatory sites and distributed networks 

BC EFs were calculated at two Oakland regulatory sites (BAAQMD’s West Oakland and Laney 
College) and from the Richmond Air Monitoring Network during the periods identified as being 
heavily impacted by smoke from a remote extreme wildfire (see Table 6.1). Summary statistics 
are provided in Table 6.4. The distributions of BC EFs calculated by measuring the composition 
of the transported wildfire smoke are shown along with the BC EF distributions measured at the 
site of the prescribed burns in Blodgett Forest in Figure 6.12. Mean wildfire smoke BC EFs at the 
Oakland regulatory sites and RAMN sites were 0.10 and 0.17 g kg-1, respectively. By contrast, 
mean prescribed burn EFs were all greater than 0.35 g kg-1. BC emission factors for open burning 
of savanna and forests were also much higher (~0.5 g kg-1) than those calculated for the transported 
smoke (Bond et al., 2004). 

Table 6.4 Summary statistics of BC EFs calculated from the prescribed burn, Oakland 
regulatory sites and Richmond Air Monitoring Network (RAMN). 

Source Aethalometer Time Basis 
[minutes] Count 

Mean ± 
Standard Error 

[g/kg-fuel] 

Standard Deviation 
[g/kg-fuel] 

Prescribed burn 
ground 

AE33 30 34 0.46 ± 0.08 0.44 

Prescribed burn 
ground 

ABCD 30 28 0.37 ± 0.08 0.40 

Prescribed burn 
aerial 

ABCD 4-15 
(variable) 

23 0.75 ± 0.09 0.41 

Oakland regulatory 
site wildfire smoke 

AE33 60 1162 0.10 ± 0.01 0.24 

RAMN wildfire 
smoke 

ABCD 60 2392 0.17 ± 0.02 0.98 

 
The lower BC EFs measured during the wildfire event are likely due to: (i) a greater degree of 
smoldering combustion during the wildfire event, (ii) unequal dilution of BC and CO2, for 
example, due to loss of BC during the transport of the smoke to the Bay Area, or (iii) error in 
calculating BC or CO2 enhancements. Prescribed burn sampling took place within a few hundred 
meters of smoke emission with no other significant pollutant sources, whereas transported wildfire 
smoke sampling occurred many kilometers and days after smoke emission. An order of magnitude 
estimate of the loss of BC due to dry deposition during transport requires knowing the BC dry 
deposition velocity, the effective atmospheric mixing height, and the transport time. Prior studies 
of give an estimate of the BC dry deposition velocity (vd = 26 m day-1 (Emerson et al., 2018)). The 
transport time and especially the trajectory of the smoke to the Bay Area and the South Coast air 
basins have not been characterized. Especially uncertain is the effective mixing height of the 
atmosphere as smoke from the  wildfire may have been injected into the stratosphere, where dry 
deposition losses to the earth’s surface would be negligible. Despite major uncertainties, it is 
illustrative to consider that fractional loss of BC due to a first-order dry deposition process (1-
exp(-vdt/H)) is 0.23 for assumed values of transport time (t = 3 days) and atmospheric mixing 
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height (H = 300 m). Although uncertain, this calculation illustrates that BC deposition may result 
in an underestimated BC EF and likely needs to be taken into consideration. 

 
Figure 6.12 Box and whisker plot of BC EFs calculated from the Blodgett prescribed burn, 
Oakland regulatory sites and Richmond Air Monitoring Network (RAMN). Means presented as 
red squares, medians as horizontal dashed lines, boxes as the interquartile range and whiskers as 
10th and 90th percentiles. 

Wildfire smoke sampling also included measurement of other urban sources of BC like industrial 
and mobile sources. While care was taken to ensure the background concentration from urban 
sources was subtracted from the wildfire smoke BC, CO, and CO2 concentrations to calculate an 
enhancement, this method of exploiting regulatory and distributed networks to derive BC EFs was 
challenging. The lack of available statewide CO2 data made it impossible to determine a BC EF 
for 60% of the SF Bay Area regulatory sites (n = 5) and 100% of the South Coast regulatory sites 
(n = 24). CO2 data for RAMN and the Oakland regulatory sites were collected by low-cost sensors 
which had gaps in temporal coverage from 2018–2020 and required averaging of three CO2 nodes 
for the Oakland regulatory BC EFs. Low-cost CO and CO2 sensors, like those at BEACO2N nodes, 
also have greater uncertainty than the high-cost CO and CO2 analyzers on the ground and aerial 
platforms at the prescribed burn. Uncertainty in the CO2 enhancement, which accounts for a 
supermajority of the carbon in the carbon balance in Equation 6.6, may have led to artificially low 
BC EFs if the wildfire smoke enhancement was artificially high. The co-location of regulatory, 
high-cost CO and CO2 instruments with aethalometers would decrease the uncertainty associated 
with calculating a BC EF by the methods presented in this study by establishing a more temporally 
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complete CO and CO2 background concentration and thereby more accurate CO and CO2 
enhancement.  

Regulatory network BC/PM2.5 ratios during wildfire smoke events and ambient conditions 

BC/PM2.5 ratios from wildfire smoke were determined for four datasets of co-located sites. For 
this analysis, sampling sites were considered co-located if they were within 2 km of each other. 
Box and whisker plots of BC/PM2.5 ratios for both wildfire smoke events and ambient conditions 
are presented in Figure 6.13 below. The primary objective of establishing a typical wildfire 
BC/PM2.5 ratio was to apply this ratio to an output PM2.5 mass emissions estimate of a FOFEM. 
By applying this ratio, CARB could better estimate a BC mass emissions estimate for wildfires in 
California (see Introduction).  

 

Figure 6.13 BC/PM2.5 ratios for the SF Bay Area regulatory sites, RAMN, and South Coast 
regulatory sites for both wildfire (left, orange) and non-wildfire (right, blue) hours identified by 
the PM2.5 > 50 μg m-3 and regulatory qualifier methods. The number of paired hourly observations 
(n) and mean ratios (µ) are reported below each box and whisker plot. Means are shown as red 
triangles and medians as horizontal dashed lines, and the box and whiskers represent the 
interquartile range and 10th and 90th percentiles of each distribution. 

In all four datasets, the mean BC/PM2.5 ratio decreased during wildfire smoke events. For the South 
Coast air basin, the ambient non-wildfire BC/PM2.5 ratio was 0.12 by both smoke identification 
methods. The PM2.5 threshold method identified ~5 times more wildfire hours than were reported 
by regulatory qualifiers in the South Coast BC and PM2.5 data and had a slightly higher wildfire 
BC/PM2.5 ratio of 0.07 compared to 0.05. In general, mean wildfire BC/PM2.5 ratios in both air 

FOFEM BC/PM2.5 ratio = 0.20 
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basins (excluding RAMN) were 0.04–0.07 whereas ambient non-wildfire BC/PM2.5 ratios 
averaged 0.09–0.12. It should be noted that RAMN was deployed for three weeks in August 2020 
and the ambient non-wildfire distribution may not represent the seasonal variation in BC/PM2.5 
ratios in Richmond, CA.  
 
The depression of BC/PM2.5 ratios during wildfire smoke events is due to much greater emissions 
of PM2.5 from wildfires compared to BC. In the 2013 CARB forestry BC emissions inventory 
(Table 6.1), a BC/PM2.5 ratio of 0.2 (20%) was assumed for brush and timber fire. Box and whisker 
plots of wildfire smoke BC/PM2.5 ratios presented in Figure 6.13 indicate that this value 
overestimates the fraction of BC in wildfire PM2.5 by a factor of 3–4 for hours identified by this 
study as extreme smoke events. The formation of secondary PM2.5 would further lower the 
BC/PM2.5 ratios compared to fresh emissions, implying that the assumed 20% BC composition of 
wildfire PM2.5 leads to a significant overestimate of BC from wildfires in California. If the wildfire 
BC/PM2.5 ratios in this study were employed in the FOFEM methodology used in the CARB 
forestry BC emissions inventory, the total BC forestry emissions would decrease by the same 
factor. 
 
The effect of which BC and PM2.5 data are identified as wildfire-smoke impacted was evident in 
the two South Coast datasets. In general, the regulatory qualifier approach was more conservative 
and depended upon an air quality regulator flagging data as wildfire smoke impacted from 
observation or weather reports. It is unknown if this data flagging is a standard operating procedure 
at AQMDs or if, for example, only PM2.5 used for attainment receive wildfire smoke flags. The 
PM2.5 threshold approach may filter out some wildfire smoke events were the PM2.5 concentration 
was less than 50 μg m-3 and limit the analysis to high PM2.5 smoke events.  

Regulatory network BC/CO enhancement ratios during wildfire smoke events and ambient 
conditions 

In addition to the PM2.5 threshold, the BC/CO enhancement may be useful as a means of 
identifying periods when wildfire smoke is present in AQMD air basins. BC and CO are both 
products of incomplete combustion and are emitted from biomass burning, however BC is 
preferentially produced during flaming while CO is preferentially produced during smoldering 
combustion conditions. The BC/CO enhancement ratios (∆BC/∆CO) were calculated on a 
minutely-basis at the prescribed burn and an hourly basis for both air basins for both wildfire and 
non-wildfire hours by the two methods of wildfire hour identification. Summary statistics for these 
ratios are reported in Table 6.5 and box and whisker plots of BC/CO enhancement distributions 
are presented in Figure 6.14.  
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* Prescribed burn BC/CO enhancement ratios averaged on a minutely time basis 
 

 
Figure 6.14 BC/CO enhancement ratios for the prescribed burn ground platform (AE33) (green), 
SF Bay Area and South Coast air basins for both wildfire (left, orange) and non-wildfire (right, 
blue) hours identified by the PM2.5 > 50 [μg/m3] and regulatory qualifier methods. Means presented 
as red squares, medians as horizontal dashed lines, boxes as the interquartile range and whiskers 
as 10th and 90th percentiles. 

In both air basins, the ∆BC/∆CO attributable to wildfire smoke, especially using the hours of data 
where PM2.5 concentrations exceeded the 50 µg m-3 threshold, had higher mean and medians than 
∆BC/∆CO from ambient pollution conditions. In the SF Bay Area air basin, wildfire smoke 
elevated the ∆BC/∆CO from 1.3 to 4.0 µg m-3 ppm-1. In the South Coast air basin, wildfire smoke 
elevated the BC/CO enhancement from 2.8 to 5.7 µg m-3 ppm-1 when the wildfire smoke hours 
were based on the PM2.5 threshold. Interestingly, the ∆BC/∆CO ratio was approximately the same  
for ambient pollution conditions and wildfire smoke hours when the latter was based on the 
regulatory qualifier method. A possible explanation for this is that the PM2.5 threshold is a better 
discriminator for wildfire smoke than is the regulatory qualifier. The interquartile ranges of 

Table 6.5 Summary statistics of BC/CO enhancement ratios from the prescribed burn and 
regulatory sites 

Source and Wildfire Identification 
Method 

Wildfire 
Hours? Count Mean ± Standard Error 

[µg/m3/ppm] 

Standard 
Deviation 

[µg/m3/ppm] 
Prescribed Burn – Ground AE33*  N/A 1081 3.8 ± 0.9 28 

SF Bay Area PM2.5 threshold  
Yes 2650 4.0 ± 0.06 3 
No 151646         1.3 ± 0.005 2 

South Coast PM2.5 threshold 
Yes 957 5.7 ± 0.3 9 
No 154289 2.8 ± 0.005 2 

South Coast Regulatory Qualifier 
Yes 795 3.3 ± 0.1 3 
No 154554 2.8 ± 0.01 2 
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∆BC/∆CO ratios measured in the Bay Area and South Coast air basins when they were heavily 
impacted by transported wildfire smoke were greater than the interquartile range of ∆BC/∆CO 
measured on the ground at the prescribed burn. As discussed, the ground AE33 BC and CO 
measurements mostly captured smoldering emissions, when CO emissions were higher (by 
definition), and BC emissions were lower (see Figure 6.9). Wildfires ∆BC/∆CO were likely higher 
due to the capture of flaming emissions, where BC emissions would be higher and CO emissions 
lower. 

Absorption Ångström Exponent (AAE) for prescribed burn and transported wildfire smoke 

The AAE, like the BC/PM2.5 ratio, provided another measure of the effect transported wildfire 
smoke has on the composition and optical properties of carbonaceous aerosols in an urban airshed. 
This analysis would not have been possible without direct sharing of multi-wavelength absorption 
data between BAAQMD and SCAQMD staff and the research team, as these data are notpublicly 
available. Distributions of AAEs for the prescribed burn (from the ground AE33), SF Bay Area 
air basin and South Coast Air basin are presented in Figure 6.15 below. Descriptions of the 
enveloped box and whisker plots provided in the Figure 6.15 caption.  
 
The mean AAE was highest at the prescribed burn with a value of 2.6 and measured by the ground 
AE33. Biomass burning smoke containing light absorbing organic carbon (i.e., BrC) typically has 
an AAE > 2 whereas the aerosols in urban areas dominated by fossil fuel combustion (e.g., from 
diesel engines) typically have an AAE ≅ 1. When impacted by transported wildfire smoke, the SF 
Bay Area AAE increased from an urban background of 1.3 to 1.7 and South Coast from 1.2 to 1.6 
or 1.4, depending on which smoke identification method was used. These results indicated that 
while wildfire smoke did increase the AAE distribution above an ambient value of 1.2–1.3, 
carbonaceous aerosols during smoke events were not overwhelmingly dominated by biomass 
burning BrC but were a mix of biomass burning and fossil fuel combustion BC and BrC.  
The distributions of AAE between smoke and ambient conditions overlapped considerably (Figure 
6.15). As a result, the prescribed-burn-measured AAE alone is unable to identify periods when 
regulatory sites are heavily influenced by wildfire smoke.  
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Figure 6.15 Violin plots of Absorption Ångström Exponent (AAE) distributions, calculated from 
multi-wavelength absorption data for prescribed burn (green), wildfire smoke (left, yellow), and 
non-wildfire ambient periods (right, blue) in the SF Bay Area and South Coast air basins. Means 
are shown as red triangles and medians as horizontal dashed lines; the boxes and whiskers 
represent the interquartile range and the 10th and 90th percentiles. The shaded areas indicate the 
density distribution of the data, with wider sections indicating a higher probability that members 
of the population take on the given value and skinnier sections representing a lower probability. 
The number of hourly (minutely for the prescribed burn) observations (n) and mean value (µ) are 
reported below each distribution. 
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7. First Order Fire Effects Model (FOFEM) validation 
A version of this chapter will be submitted to the International Journal of Wildland Fire under 
the title “Fuel Loadings Prove the Critical Constraint for Smoke Predictions using FOFEM as 
applied to a Mixed Conifer Forest in California”, with the following authors: Tasnia, A. 1, Lara, 
G.1, Foster, D.2, Sengupta, D.3, Butler, J.4, Kirchstetter, T. 4, York, R.5, Kreisberg, N.6, Goldstein, 
A. G. 3, Battles, J. 2,*Barsanti, K. C. 1 

7.1. Introduction 

As the number of catastrophic wildfires increases across the western United States (US), land 
management practices such as prescribed burning become increasingly important to minimize the 
risks and occurrences of these fires. Although prescribed burns are performed under specific 
conditions favorable for dispersion of smoke, the air quality effects of prescribed burning events 
are not negligible and must be considered (Hardy et al., 2001), particularly with calls to 
significantly increase the amount of prescribed burning in the western US. Air quality and smoke 
management teams have programs in place that establish procedures and requirements for 
monitoring the impacts of smoke on air quality. These programs depend on reliable and connected 
landcover databases, meteorological monitoring tools, and various fire behavior and emission 
models. A comprehensive smoke management plan therefore considers the perspectives and needs 
of both land and air quality management teams (Riebau and Fox, 2001). 

Fire behavior models provide information on the spread rate and heat intensity of a fire (Scott and 
Burgan, 2005), while smoke models provide information on the spatial and temporal distributions 
of smoke plumes, sometimes including smoke composition (Liu et al., 2019). Fire and smoke 
models are integrated in the widely-used First Order Fire Effects Model (FOFEM, (Keane and 
Lutes, 2018)). FOFEM assists resource managers in predicting the first order effects, or immediate 
consequences, of a fire including tree mortality, soil heating, mineral soil exposure, fuel 
consumption, and smoke emissions. FOFEM generates quantitative reports for fuel consumption 
and smoke emissions of a prescribed burn or wildfire using flexible inputs that allow representation 
of a diverse range of regions, seasons, and ecosystems to inform fuel loading inputs, fuel 
consumption algorithms, and applied emission factors (Reinhardt and Dickinson, 2010). 

FOFEM inputs and algorithms are described in Keane and Lutes (Keane and Lutes, 2018). Briefly, 
as relevant for this work, fuel loading can be based on default fuelbed assumptions for user-defined 
landcover classifications or can be entirely user-defined. Fuel consumption is calculated in 
FOFEM using the Burnup model, and is sensitive to vegetation cover group, fuel category, and 
moisture of the region being modeled. Canopy fuel consumption is user-defined as a percentage 
of crown and foliage canopy consumed.  FOFEM has two options for emission factors (EFs): 
Default EF and Expanded EF. The Expanded EF setting selects EFs for over two hundred smoke 
components informed by Urbanski (Urbanski, 2014). Short-term flaming (STFS) EFs are applied 
to litter, herbaceous, shrubs, and canopy fuel components, or fuels that are consumed early in the 
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fire. Duff residual smoldering combustion (DuffRSC) EFs are applied to all duff consumed. 
Woody fuels can have STFS EFs, or coarse wood residual smoldering combustion (CWDRS) EFs, 
depending on the combustion intensity as calculated by the Burnup model. There are six different 
STFS EFs, each representing a different forest cover type including: Southeastern Forest, Boreal 
Forest, Western Forest-Rx (prescribed), Western Forest-WF (wildfire), Shrubland, and Grassland 
STFS EFs. 

The ability to predict smoke-derived pollutant concentrations using smoke models is important for 
regulatory communities, particularly for mitigating risk to the most vulnerable communities and 
for managing prescribed burns as we move towards fire being necessary to restore landscapes. 
Smoke models are a key decision support tool in smoke mitigation and evaluation of the 
performance of these models is useful for building their efficacy. In this work detailed fuel loading, 
fuel consumption, and emissions measurements from prescribed fires at the Blodgett Forest 
Research Station in northern California were leveraged to evaluate the sensitivity of FOFEM 
smoke predictions to fuel loading, fuel consumption, and EFs; and the ability of FOFEM to 
represent measured emissions including fine particulate matter (PM2.5), carbon monoxide (CO), 
and carbon dioxide (CO2). Simulation results were compared with data to understand the limits of 
application, data needs, and performance of FOFEM for this forest type.  

7.2. Methods 

FOFEM Model Inputs 

FOFEM 6.7 was used to predict fuel consumption and smoke emissions during the BFRS 
prescribed burns. Model inputs can generally be separated into two categories: those that were 
selected from a range of options and those that were measured and entered as discrete values. The 
values that were used in this work are summarized in Table 7.1 (range inputs) and Table 7.2 
(measured/discrete inputs). The sensitivity studies were performed by changing the input values 
in Table 7.2 as further described below. The input values in Table 7.1 were held constant for all 
simulations, with the exception of the F-BFRS simulation in which fuel moisture was based on 
measured values. With the range value of ‘moderate’ selected, 10-hr fuel moisture was 10% and 
100-hr fuel moisture was 18%; measured values were 10% and 30%, respectively. 

Table 7.1 Range inputs for FOFEM simulations 
Field Name Description Selected Range 
10 Hour Moisture Moisture of the 10 Hour fuels Moderate 
1000 Hour Moisture Moisture of the 1000 Hour fuels Moderate 
1000 Hour Weight 

Distribution 
How 1000 hour fuel is distributed into size classes Even 

Duff Moisture Duff moisture range (%) 75% 
Duff Moisture Method Method used to measure duff moisture Entire 
Region Select which region of 4 available fire is located in Pacific West 
Season Season in which fire event took place Spring 
Fuel Category How fuel is present. ‘Natural’, ‘Piles’, ‘Slash’ Natural 
Soil Family Type of soil in environment. 5 soil type options Coarse-Loamy 
Soil Moisture Soil moisture range (%) 15% 
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Table 7.2 Discrete value inputs for FOFEM (F) simulations. 

Field  
F-BFRS (measured) F-FCCS-M  (CARB) F-FCCS-

053 
(default) 

F-FCCS-024 
(LANDFIRE) Plot A Plot B Plot C Plot A Plot B Plot C 

Cover Group 
(as input in 
FOFEM) 

FCCS -
999: No 
Data 

FCCS -
999: No 
Data 

FCCS -
999: No 
Data 

Multi- 
FCCS 
(4, 16, 
601, 
602, 
601, 
633) 

Multi- 
FCCS 
(4, 7, 
16, 610, 
633, 
635) 

Multi- 
FCCS 
(4, 610, 
611, 
627, 
633, 
635) 

FCCS 053: 
Pacific 
ponderosa 
pine forest 

FCCS 024: 
Pacific 
ponderosa 
pine – 
Douglas-fir 
forest 

Litter 
(kg/m2) 3.49 2.76 3.87 2.54 3.08 2.96 0.34 0.40 

1 Hour 
(kg/m2) 0.13 0.13 0.10 0.28 0.56 0.41 0.02 0.02 

10 Hour 
(kg/m2) 0.43 0.43 0.35 0.60 1.47 0.82 0.34 0.04 

100 Hour 
(kg/m2) 1.01 0.81 1.61 1.55 2.17 1.91 0.34 0.17 

1000 Hour 
(kg/m2) 1.72 2.19 1.65 7.90 15.53 12.72 3.47 1.19 

1000 Hour 
Percent 
Rotten 

25.9% 53.1% 49.7% 79.9% 81.9% 68.0% 29.0% 47.2% 

Duff (kg/m2) 3.52 3.09 5.06 4.68 8.07 7.91 2.29 0.86 

Duff Depth 
(in) 0.89 0.81 1.29 0.61 0.95 0.9 1.50 0.60 

Herbaceous 
(kg/m2) 0.00 0.00 0.00 1.02 0.36 0.42 0.01 0.11 

Shrub 
(kg/m2) 0.13 0.13 0.08 2.51 3.19 3.38 0.00 0.00 

Crown 
Foliage 
(kg/m2) 

1.52 1.50 1.91 3.80 8.53 6.07 1.73 1.03 

Crown 
Branch 
(kg/m2) 

4.93 4.68 6.16 0.95 2.14 1.52 0.43 0.26 
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The sensitivity of FOFEM predictions, specifically fuel consumption and smoke emissions, to fuel 
composition and loading was evaluated by conducting simulations using three different inputs for 
cover type: measured fuel loadings from the BFRS study and two FCCS inputs. The simulation 
using measured fuel loadings is hereafter referred to as F-BFRS. For the first simulation using 
FCCS inputs it was assumed that FCCS fuelbed ID 053, Pacific ponderosa pine forest, best 
represented the BFRS plots based on vegetation composition and is hereafter referred to as F-
FCCS-053. For the second simulation using FCCS inputs, burned areas were plotted in ArcGIS 
Living Atlas and matched with Landscape Fire and Resource Management Planning Tools 
Program (LANDFIRE) raster layers (2016 Remap, (“LANDFIRE Program,” 2016)). Using this 
approach it was assumed FCCS fuelbed ID 024, Pacific ponderosa pine–Douglas-fir forest, best 
represented the BFRS plots and is hereafter referred to as F-FCCS-024.  

The expanded EF option was used in all simulations. EFs for the components of interest in this 
work (PM2.5, CO, and CO2) under short-term flaming (STFS) and/or residual smoldering 
combustion (RSC) conditions are listed in Table 7.3. 

Table 7.3 Expanded emission factors (g/kg) for Western Forest-Rx, Western Forest-WF, Woody RSC, and Duff 
RSC.  

Cover 
Type Description Fuel Applied To Type CO  

(g/kg) 
CO2  

(g/kg) 
PM2.5 

 (g/kg) 
Western 
Forest- 
Rx 

Prescribed fire – Montane 
conifer forest of Idaho, 
Montana, eastern Oregon, 
southern British Columbia 

Litter, fine woody 
(1-hr, 10-hr, 100-
hr), herb, shrub, 
foliage and branch  

STFS 17.57 1598 105 

Western 
Forest-
WF 

Wildfire - Montane conifer 
forest of Idaho, Montana, 
eastern Oregon, southern 
British Columbia 

Litter, fine woody 
(1-hr, 10-hr, 100-
hr), herb, shrub, 
foliage and branch 

STFS 23.2 1600 135 

Woody 
RSC* 

Residual smoldering of coarse 
woody debris 

Woody fuels when 
fire intensity is <15 
kW 

CWDRSC 33 1408 229 

Duff 
RSC 

Average of residual smoldering 
of duff / organic soils mostly 
based on measurements from 
the southeast and residual 
smoldering of duff from Alaska 
(mostly laboratory based) 

Duff DuffRSC 35.3 1371 257 

*When fire intensity is less than 15 kW/m2, representative of smoldering conditions, CWDRSC EFs are applied to 
coarse woody fuels, otherwise STFS EFs are applied. 

FOFEM Model Simulations 

The modeling simulations were designed to evaluate the sensitivity of FOFEM smoke predictions 
to fuel loading, fuel consumption, and EFs; and the ability of FOFEM to represent measured PM2.5, 
CO, and CO2 emissions. A total of five model simulations were run with inputs summarized in 
Table 7.4. To evaluate fuel loadings, outputs from the FOFEM simulations F-FCCS-053 and F-
FCCS-024 were compared with measured fuel loadings. To evaluate consumption, outputs from 
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FOFEM simulations F-BFRS, F-FCCS-053, and F-FCCS-024 were compared with measured 
consumption (BFRS-M). To evaluate sensitivity to uncertainty in EFs, two additional simulations 
(-WF) were run using Western-Forest WF EFs in place of Western-Forest Rx EFs. Canopy 
consumption was set to 0% when using the Rx EFs and 75% when using the WF EFs. Predicted 
emissions were compared between F-BFRS and F-BFRS-WF and between F-FCCS-024 and F-
FCCS-024-WF. 

The ability of FOFEM to represent measured emissions was evaluated by comparing the output of 
simulations F-BFRS and F-FCCS-024 with measurements. Predicted PM2.5, CO, and CO2 

emissions were converted from units of kg/m2 to total emissions in units of kg using the measured 
area of each of the plots. 

We also compared our measurements and FOFEM modeling inputs and predictions with FOFEM 
inputs and predictions produced by CARB staff in May 2022. The CARB FOFEM simulations 
utilize default FOFEM EFs and rely on a more sophisticated assignment of fuel classifications in 
which multiple FCCS classes are used to represent the fractional distribution of fuels within each 
burn unit. Those simulations are hereafter referred to as “F-FCCS-M”. The 10-hr fuel moisture 
value was 10% and the 100-hr fuel moisture was 10.6% based on gridMET raster averaged over 
the burn period. 

Table 7.4 Summary of FOFEM simulations. 
Name Fuel Cover and Loading Western Forest EFs % Canopy Burned 

F-BFRS  Measured  Rx 0% 
F-BFRS-WF  Measured  WF 75% 
F-FCCS-053 FCCS Default Rx 0% 
F-FCCS-024 FCCS LANDFIRE Rx 0% 
F-FCCS-024-WF FCCS LANDFIRE WF 75% 

7.3. Results 

Fuel Composition 

The measured and predicted (F-FCCS-053 and F-FCCS-024) fuel compositions are shown in 
Figure 7.1. For the observations and the F-FCCS-CARB simulations, area weighted averages were 
calculated for subsequent measurement-model comparisons. The FCCS 024 classification 
generally represented the measurements well with a maximum difference of 16% (woody fuels) 
between measurements and model. The differences between the measured and predicted 
distributions were greater for the FCCS 053 classification with a maximum difference of 27% 
(woody fuels). Both FCCS classifications resulted in underprediction of the fractional distribution 
of litter and crown fuels: FCCS 024 by 10% and 8%, respectively, and FCCS 053 by 16% and 
15%, respectively. Both FCCS classifications resulted in overprediction of the fractional 
distribution of woody fuels, by 16% for FCCS 024 and 27% for FCCS 053. The duff fuel 
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distribution was underpredicted by 0.5% using FCCS 024 (within sampling error between units) 
and overpredicted by 3.9% using FCCS 053. In all cases the shrub fraction was negligible (< 1%); 
in all but the FCCS 024 case the herbaceous fraction also was negligible. The F-FCCS-M results 
are not shown in Figure 7.1, but the predicted distributions were similar to the other FOFEM 
simulations, with the largest overestimation for woody fuels (23%), the largest underestimation 

for crown fuels (18%), and the best agreement for the herbaceous fraction (+2%) and duff (-3%). 

Fuel Loading 

Though the measured fuel distributions were better represented by the F-FCCS-024 simulations, 
both the F-FCCS-024 and F-FCCS-053 simulations severely underpredicted, by up to 90%, 
measured fuel loads (Figure 7.2, Table 7.5). The most severe underpredictions were in the litter, 
duff, and crown fuel components, where FCCS 024 underpredicted loadings by 3.0 kg/m2, 2.9 

Figure 7.1 Fractional distribution of fuel type measured at Blodgett Forest Research Station in 
units A, B, and C, and as estimated using FCCS fuelbed ID 053 (default) and FCCS fuelbed ID 
024 (LANDFIRE) in FOFEM. 
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kg/m2, and 5.5 kg/m2, respectively, and FCCS 053 by 3.0 kg/m2, 1.5 kg/m2, and 4.7 kg/m2, 
respectively. The agreement was better for woody fuels, but underpredicted using FCCS 024 (57%, 
1.9 kg/m2) and overpredicted using FCCS 053 (26%, 0.9 kg/m2).  In contrast, the fuel loads were 
generally overpredicted in the F-FCCS-M simulations, particularly the woody fuels, duff, and 
shrub (Table 7.5).  

Figure 7.2 Fuel loading (kg/m2) measured at Blodgett Forest Research Station in units A, B, and 
C, and estimated using FCCS fuelbed ID 053 (default) and FCCS fuelbed ID 024 (LANDFIRE). 
 

Table 7.5 Fuel loadings (kg/m2) for each fuel component. Measured values (BFRS) and FOFEM model runs by 
CARB (F-FCCS-M)  represent the area-weighted average of units A, B, and C. 

Fuel 
Component 

(kg/m2) 

BFRS 
Data  

F-FCCS-
M  

(CARB) 

% 
Error 

F-FCCS-
053 

(default) 

% 
Error 

F-FCCS-024 
(LANDFIRE) 

% 
Error 

Litter 3.35 2.83 -16% 0.34 -90% 0.40 -88% 

All Woody Fuels 3.31 14.81 347% 4.17 26% 1.42 -57% 

Duff 3.74 6.64 77% 2.29 -39% 0.86 -77% 

Herbaceous 0 0.65 - 0.01 -- 0.11 -- 

Shrubs 0.12 2.96 2298% 0 - 0 -- 

Crown 
(branch+foliage) 

6.81 7.39 8% 2.16 -68% 1.29 -81% 
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Fuel Consumption 

When measured fuel loadings were used as inputs for the FOFEM simulations, FOFEM predicted 
fuel consumption reasonably well (Figure 7.3, Tables 7.5 and 7.6). The measured area-weighted 
average consumption was 5.9 kg/m2, while the predicted consumption in F-FCCS-M was 7.7 
kg/m2. The default assumption in FOFEM is that 100% of litter is consumed, which results in an 
overestimation of litter consumption relative to measurements. The underestimates in the modeled 
fuel loadings were reflected in the predicted fuel consumption (Figure 7.3, Tables 7.5 and 7.6). 
Total fuel consumption in F-FCCS-024 was 1.0 kg/m2, resulting in an 83% underprediction of 
total fuel consumption compared to the measurements. Total fuel consumption in F-FCCS-053 
was 3.1 kg/m2, resulting in a 47% underprediction compared to the measurements.  

Figure 7.3 Fuel consumption (kg/m2) measured at Blodgett Forest Research Station (BFRS-M) 
and predicted using measured fuel loadings (F-BFRS), FCCS fuelbed ID 053 (default) and FCCS 
fuelbed ID 024 (LANDFIRE). 

 



 105 

Table 7.5 Measured and modeled fuel consumption (kg/m2) for each fuel component. “F-“ denotes a FOFEM 
model run and the information in the () describes the source of inputs. 

 BFRS-M F-BFRS 
(measured) 

F-FCCS-M  
(CARB) 

F-FCCS-053 
(default) 

F-FCCS-024 
(LANDFIRE) 

Litter (kg/m2) 2.2 3.4 2.8 0.3 0.4 

1 Hour (kg/m2) 0.1 0.1 0.4 0.0 0.0 

10 Hour (kg/m2) 0.3 0.4 0.9 0.3 0.0 

100 Hour (kg/m2) 0.6 1.1 1.7 0.3 0.0 

1000 Hour (kg/m2) 0.9 0.6 5.2 0.9 0.0 

Duff (kg/m2) 1.5 2.0 4.4 1.2 0.4 

Herbaceous (kg/m2)    0.6 0.01  0.1 

Shrub (kg/m2) 0.0 0.1 1.8 0.0 0.0 

Crown Foliage 
(kg/m2)           

Crown Branch 
(kg/m2) 0.3 0.01 0.0 0.0 0.0 

 
 

Table 7.6 Measured and modeled total fuel consumption (kg) for each fuel component. “F-“ denotes a FOFEM 
model run and the information in the () describes the source of inputs. 

Fuel 
Component 

(kg) 
BFRS Data  

F-BFRS 
(measured)   
(% Error) 

F-FCCS-M 
(CARB)  

(% Error) 

F-FCCS-053 
(default) 

(% Error) 

F-FCCS-024 
(LANDFIRE) 

(% Error) 

Litter 5.2 x 105 8.0 x 105 (55%) 6.7 x 105 (30%) 8.1 x 104 (-84%) 9.5 x 104 (-82%) 

All Woody 
Fuels 4.4 x 105 5.5 x 105 (25%) 2.0 x 106 (348%) 3.7 x 105 (-15%) 3.3 x 104 (-93%) 

Duff 3.6 x 105 4.7 x 105 (29%) 1.1 x 106 (190%) 2.8 x 105 (-23%) 1.1 x 105 (-71%) 

Herbaceous - - 1.5 x 105 3.2 x 103 2.7 x 104 

Shrubs 5.4 x 103 1.7 x 104 (209%) 4.4 x 105 (8152%) - -  

Crown* 
(branch+ 
foliage) 

7.1 x 104 - 1.6 x 104  - - 

*Canopy consumption was set to 0% in the three FOFEM model runs F-BFRS, F-FCCS-053, and F-FCCS-024. 
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Emissions 

Total emissions (kg) for CO, CO2, CH4 and  PM2.5, from the F-BFRS, F-FCCS-M, F-FCCS-053, 
and F-FCCS-024 simulations are shown in Table 7.7, along with the calculated modified 
combustion efficiency (MCE). The differences between the FOFEM simulations largely reflect 
the differences in the fuel loadings, with lower emissions in the F-FCCS-053 and F-FCCS-024 
simulations relative to F-BFRS, and higher emissions in the F-FCCS-M simulation. The MCE 
values were lower in the F-FCCS-053 simulations, reflecting more smoldering combustion than in 
the other simulations. In the F-FCCS-053 simulation, total fuel consumption was dominated by 
duff and woody fuels, which are consumed during smoldering combustion. Additionally F-FCCS-
053 had the lowest litter consumption, which is consumed during flaming combustion. While the 
magnitude of emissions was different between F-BFRS, F-FCCS-M, and F-FCCS-024, the relative 
abundances were similar, reflecting similarities in distribution of fuel components. The relative 
PM2.5 emissions were higher in F-FCCS-024, reflecting higher consumption of duff than in the F-
BFRS and F-FCCS-M simulations. 

Table 7.7 Measured and modeled emissions (kg) for air quality and climate pollutants.  

Pollutant 
(kg) BFRS 

F-BFRS 
(measured)  
(% error)   

F-FCCS-M 
(CARB) 

(% error)  

F-FCCS-053 
(default) 

(% error) 

F-FCCS-024 
(LANDFIRE) 

(% error) 

CO 2.5 x 105 3.6 x 105 (46%) 2.7 x 106 (982%) 1.6 x 105 (-35%) 4.8 x 104 (-81%) 

CO2 2.2 x 106 3.2 x 106 (48%)  2.1 x 107 (859%)  1.0 x 106 (-54%)   3.9 x 105  (-82%) 

PM2.5 5.2 x 104 5.4 x 104 (3%) 2.1 x 105 (300%) 2.3 x 104 (-57%) 7.0 x 103 (-87%) 

MCE 0.90 0.90 0.89 0.86 0.89 

Measured vs. Modeled Emissions 

Total PM2.5, CO, and CO2 emissions measured at BFRS and modeled using F-BFRS and F-FCCS-
024 are shown in Table 7.7. The differences between the measured emissions (“BFRS”) and the 
predicted emissions using measured inputs (“F-BFRS”) are largely due to the errors in predicted 
consumption and to a lesser extent, the uncertainty in the EFs. The overprediction of emissions in 
the F-FCCS-M simulation reflects the overestimation of fuel loading, and particularly loading and 
consumption of woody fuels and duff. The underprediction of emissions in the F-FCCS-053 and 
F-FCCS-024 simulations reflects the underestimation of fuel loading.  
 
The FOFEM modeling simulations demonstrated the high sensitivity of modeled emissions to fuel 
loading, and highlighted the critical need for better constraints on fuel loading. Consumption 
estimates and uncertainty in EFs (at least for these major pollutants) resulted in differences 
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between measured and modeled emissions, but to a lesser extent than fuel loading. This supports 
findings in the emissions literature that total emissions are most sensitive to fuel characteristics, 
including fuel type/component and fuel loading, as noted by Larkin et al. (2012). They also noted 
that a potential caveat to this observation is for the VOCs, which were not fully evaluated in this 
work (primarily due to the limited overlap in measured and modeled VOCs). 
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8. Wildfire Smoke Impacts on Indoor Air Quality Assessed using 
Crowdsourced Data in California  

A version of this chapter was published in the Proceedings of the National Academy of Sciences 
(118 (36) e2106478118, 2021) under the title “Wildfire smoke impacts on indoor air quality 
assessed using crowdsourced data in California”, with the following authors: Liang, Y., D. 
Sengupta, M.J. Campmier, D.M. Lunderberg, J.S. Apte, A.H. Goldstein. 

Significance 

Wildfires are an increasingly large source of particulate matter (PM2.5) in the western US. Previous 
characterizations of exposure to wildfire smoke particles were based mainly on outdoor 
concentrations of PM2.5. Since people mainly shelter indoors during smoke events, the infiltration 
of wildfire PM2.5 into buildings determines exposure. We present analysis of infiltration of wildfire 
PM2.5 into more than 1,400 buildings in California using more than 2.4 million sensor hours of 
data from the PurpleAir sensor network. Our study reveals that infiltration of PM2.5 during wildfire 
days was substantially reduced compared with non-fire days, due to people’s behavioral changes. 
These results improve understanding of exposure to wildfire particles and facilitate informing the 
public about effective ways to reduce their exposure. 

Abstract 

Wildfires have become an important source of particulate matter (PM2.5, < 2.5 µm diameter) 
leading to unhealthy air quality index occurrences in the western United States. Since people 
mainly shelter indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into 
buildings is a key determinant of human exposure, and is potentially controllable with appropriate 
awareness, infrastructure investment, and public education. Using time-resolved observations 
outside and inside over 1400 buildings from the crowdsourced PurpleAir sensor network in 
California, we found that the geometric mean infiltration ratios (indoor PM-2.5 of outdoor 
origin/outdoor PM2.5) reduced from 0.4 during non-fire days to 0.2 during wildfire days. Even with 
reduced infiltration, mean indoor concentration of PM2.5 nearly tripled during wildfire events, with 
lower infiltration in newer buildings and those utilizing air conditioning or filtration. 

8.1. Introduction 

Fine particulate matter (PM2.5) air pollution is the single-largest environmental risk factor for 
human health and death in the United States (US) (CDC). Wildfires are a major source of PM2.5, 
and are documented to cause adverse respiratory health effects and increased mortality ((Reid C. 
E. et al., 2016). Toxicological and epidemiological studies suggest that PM-2.5 from wildfires is 
more harmful to the respiratory system than equal doses of non-wildfire PM2.5 (Wegesser T. C. et 
al., 2009; Aguilera et al., 2021). The number and magnitude of wildfires in the western US has 
increased in recent decades due to climate change and land management (Westerling et al., 2006; 



 109 

Dennison et al., 2014; Abatzoglou and Williams, 2016). Although the annual mean level of PM2.5 
has substantially declined over this period following the implementation of extensive air quality 
policies to reduce emissions from controllable sources, the frequency and severity of smoke 
episodes with PM2.5 exceedances has increased sharply due to wildfires in the Pacific Northwest 
and California ((McClure and Jaffe, 2018; O’Dell et al., 2019)). The annual mean PM2.5 in 
Northern California has increased since 2015 (SI Appendix, Figure S8.1) due to massive seasonal 
fire events, and these events have become the dominant cause of PM2.5 exceedances. 
 
People in the United States spend 87% of their time indoors (Klepeis et al., 2001). However, the 
protection against air pollutants of outdoor origin provided by buildings is commonly overlooked 
in air quality, epidemiologic, and risk assessment studies (Goldstein et al., 2021). To accurately 
characterize and reduce population exposures to wildfire PM2.5, it is necessary to understand then 
optimize how buildings are used by their occupants to mitigate exposure. Previous estimations of 
indoor particles of outdoor origin typically relied on measurements from a limited number of 
buildings, and extrapolation of these measurements to other buildings based on the empirical 
infiltration and removal parameters (Diapouli et al., 2013; Barkjohn et al., 2021a). However, such 
extrapolation is not applicable to wildfire events because it does not take into account the 
distribution of protection provided by buildings (including natural and mechanical ventilation) due 
to lack of data measuring infiltration under representative conditions. The infiltration of outdoor 
particles is dependent on people’s behavior (Chen and Zhao, 2011; Baxter et al., 2017; Goldstein 
et al., 2021)), which changes during wildfires (and in 2020 during the COVID-19 pandemic). 
Pollution levels during wildfire events, and knowledge of those pollution levels through available 
air quality data, directly impact human responses aimed at controlling the infiltration of outdoor 
PM2.5 including reducing ventilation, using air conditioning, and using active filtration. 
Statistically robust observations of the variability of PM2.5 infiltration during actual wildfire events 
across a broad cross-section of normally occupied residences provides the opportunity to 
understand the distribution of real infiltration rates affecting human exposure, and the factors 
controlling them, potentially informing guidance towards improvement. 
 
Here, we exploit a recent trend in air quality sensing – public data from a network of ubiquitous 
crowdsourced low-cost PM2.5 sensors – to characterize how indoor air quality during wildfire 
episodes is affected by buildings and their occupants. We demonstrate that buildings provide 
substantial protection against wildfire PM2.5, and that behavioral responses of building occupants 
contribute to effective mitigation of wildfire smoke. Real-time PM2.5 sensors based on aerosol light 
scattering have proliferated as easy-to-use and low-cost consumer devices in recent years, 
providing a novel opportunity to explore the indoor intrusion of wildfire PM2.5. Among various 
devices available, the crowdsourced PurpleAir network has developed the most extensive public-
facing network currently available. As of June 2, 2021, there are 15,885 publicly accessible active 
PurpleAir sensors reporting data from across the earth, 76% are outdoor (12,088), and 24% are 
indoor (3,797). Of these PurpleAir sensors, 57% are installed in California (9,072), split into 69% 
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outdoor (6,273) and 31% indoor (2,799). As shown in Figure 8.1, California accounts for 74% of 
all indoor PurpleAir sensors worldwide, with adoption increasing most rapidly following 
individual wildfire episodes, as noted by prior work (Krebs et al., 2021). We focus here on 
analyzing the data from these sensors deployed across the metropolitan regions of San Francisco 
and Los Angeles, California, where the public adoption of indoor and outdoor PurpleAir sensors 
is especially high, at least partially in response to the high frequency of recent wildfire events. 
Analyses are presented for the wildfire season in the San Francisco Bay Area of Northern 
California (NC) during August-September 2020 (denoted NC 2020) and November 2018 (NC 
2018), and for the Los Angeles area of Southern California (SC) in August-September 2020 (SC 
2020). Maps of the measurement regions are provided in SI Appendix, Figures S8.2 and S5.3. We 
analyzed the data from over 1,400 indoor sensors and their outdoor counterparts to characterize 
levels of and dynamics of indoor PM2.5 and the fraction of outdoor PM2.5 that entered buildings, 
comparing wildfire and non-fire periods. The vast majority (> 87%) of sensors in our dataset are 
in buildings that are unambiguously identified as residential. We mainly focus on residential 
buildings, which is facilitated by linking individual PurpleAir sensor locations with a dataset of 
detailed home property characteristics (Zillow). 

 
Figure 8.1 Number of publicly accessible indoor PurpleAir sensors in the United States and 
California. Shadings show major wildfire periods (start date to containment date of fires with > 
50,000 total acres burned) in California. Wildfire periods are from CAL FIRE website 
(https://www.fire.ca.gov/incidents/). 

https://www.fire.ca.gov/incidents/
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8.2. Materials and Methods 

Selection of Sensor Correction Models. The performance of low-cost PM2.5 sensors is dependent 
on humidity, temperature, particle size distribution and level of particulate matters (Zheng et al., 
2018, 2019; Ardon-Dryer et al., 2020; Bi et al., 2020; Delp and Singer, 2020; Holder et al., 2020; 
Kuula et al., 2020; Barkjohn et al., 2021a, 2021b). To evaluate the performance of the PurpleAir 
sensors against reference US EPA PM2.5, we linked hourly average measurements from all 16 
reference monitors in the study domain (for the entire study period) with surrounding (within 5 
km) outdoor PurpleAir sensors, as detailed in the SI Appendix (section “Selection of Sensor 
Correction Models”, Figures S8.6-S8.9, Tables S8.1 and S8.2). We then evaluated the relationship 
between PM2.5 data from PurpleAir sensors and US EPA monitors for multiple calibration schemes 
in three categories: (i) previously reported calibration factors for wildfire smoke from the literature 
(Barkjohn et al., 2020b; Holder et al., 2020), (ii) parsimonious empirical calibration relationships 
based on linear regression using this dataset, and (iii) a machine learning (random forest) based 
calibration scheme using this dataset. Our parsimonious ordinary least-square fit (correction factor 
= 0.53, intercept = 0) provided good agreement with the EPA measurements for this dataset, with 
R2 = 0.87 and normalized root mean square error = 0.50. For the range of increasingly complex 
calibration models considering extra parameters for the PurpleAir vs. reference monitor that we 
developed, we found moderate further improvement to sensor precision and accuracy, but with 
qualitatively unchanged results (see SI Appendix). Accordingly, we rely on our no-intercept linear 
calibration equation for its more straightforward interpretability in our core analyses. 

Decomposition of Indoor PM2.5 In addition to infiltration of PM2.5 from outdoors, cooking, 
cleaning and resuspension are the main sources of indoor PM2.5 (Ferro et al., 2004; Patel et al., 
2020; Tian et al., 2021). Prior to assessing the amount of indoor PM2.5 resulting from infiltration 
of wildfire smoke, we first identified and removed the events (peaks) caused by indoor sources 
based on the magnitude and duration of indoor PM2.5 peaks. Details of the algorithm can be found 
in the SI Appendix. 

Other QA and QC 

As described in detailed QA/QC procedures in the SI Appendix, we sought to ensure appropriate 
sensor selection, and to exclude sensors that were likely mislabeled. 

Mass Balance Model. We explored the dynamics of indoor PM2.5 with a well-mixed box model. 
When the indoor and outdoor particles are in steady state, and the indoor source is small, we have: 

  [8.1] 

where a is the air exchange rate, P is the penetration factor of particles, kloss is the loss rate constant 
including deposition and indoor filtration. Cin and Cout are the indoor and outdoor concentrations, 
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respectively (Wallace and Williams, 2005; Chen and Zhao, 2011). Fin is the infiltration factor 
(which is close to the infiltration ratio). 

Particle Loss Rate Constant Calculation. After major indoor emission events, the indoor 
concentration of PM2.5 will decay following: 

  [8.2] 

Therefore, (a+kloss) can be estimated by fitting the curve of Cin(t) (Stephens and Siegel, 2012). We 
define the total indoor particle loss rate constant (λt) as: 

  [8.3] 

Details of the derivation of these equations and the algorithms are provided in the SI Appendix. 

Building information. Property data were obtained by matching coordinates associated with the 
PurpleAir sensors to addresses. The list of addresses was then inputted to Zillow, a publicly 
accessible website to find the publicly available building information such as building age and 
livable area. Zillow uses existing building information and a proprietary algorithm to derive an 
estimate of the current (as of December 2020) price of the home or apartment. More details are 
provided in the SI Appendix. 

Data availability Data used in this work can be freely downloaded from the PurpleAir and EPA 
websites (links are provided in the SI Appendix). 

8.3. Results and Discussion 

PM2.5 inside and outside an example house. Figure 8.2 displays the PM2.5 concentrations 
measured by an indoor sensor and its nearest outdoor counterpart on wildfire days and non-wildfire 
days (classified by whether the daily average PM2.5 level measured by the nearest EPA Air Quality 
Measurement Station was above or below 35 µg m-3). The outdoor PM2.5 concentration was clearly 
affected by wildfire plumes for August 14-28, September 6-15, and September 28-30. On fire days, 
the 10-min average outdoor PM2.5 exceeded 250 μg m-3 several times. The indoor concentration 
was more than doubled in these periods due to the infiltration of wildfire particles. We also 
observed peaks of indoor PM2.5 exceeding the outdoor PM2.5 even on the most polluted days. These 
peaks typically lasted between 1 hour and 4 hours, which match well with the characteristics of 
cooking/cleaning peaks, reported in studies such as Patel et al. and Tian et al. (Patel et al., 2020; 
Tian et al., 2021). Figure 8.2C shows the concentration profiles of indoor and outdoor PM2.5, and 
2D shows the outdoor PM2.5 and indoor PM2.5 with outdoor origins (after removal of identified 
indoor emission events). The infiltration of outdoor wildfire smoke caused the concentration of 
indoor PM2.5 to exceed 75 μg m-3 in this building occasionally (Figure 8.2D).  
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Figure 8.2 Relationship of indoor and outdoor PM2.5 for an example house (A) Scatterplots of 
calibrated PM2.5 measured at 10-min resolution by an indoor PurpleAir sensor against the nearest 
outdoor PurpleAir measurement, differentiating fire days (red) and non-fire days (blue), illustrative 
of the levels of PM2.5 pollution of buildings in the NC 2020 case. (B) Scatterplots of calibrated 
indoor PM2.5 of outdoor origin against outdoor PM2.5. (C) Concentration time profile of calibrated 
indoor and outdoor PM2.5 measured by the two sensors. (D) Concentration time profile of 
calibrated infiltrated PM2.5 and outdoor PM2.5. The figures demonstrate the indoor PM2.5 were 
clearly affected by the outdoor smoke, and our algorithm can effectively remove the indoor peaks 
due to indoor emissions. 
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Table 8.1 Statistics of the concentration indoor/outdoor ratios for buildings with PurpleAir sensors 
in August-September 2020 in the San Francisco Bay Area (35 µg m-3

 daily average PM2.5 

concentration measured at the nearest EPA measurement site was used as the threshold for fire 
days and non-fire days). N = 1274. Unhealthy days are defined as days with daily average EPA 
PM2.5 concentration above 55.4 µg/m3. GM = Geometric Mean, GSD = Geometric Standard 
Deviation. 

 

Mean 
outdoor 
conc µg 

m-3 

Mean indoor conc µg m-3 Indoor/outdoor ratio Infiltration ratios 

 Mean ± 
s.d. Mean ± s.d. GM, GSD Mean ± 

s.d. GM, GSD Mean ± s.d. GM, GSD 

Non-fire 
days 9.1±4.0 4.1±2.5 3.7, 1.6 0.90±0.88 0.73, 1.8 0.45±0.15 0.42, 1.5 

Fire days 45.4±17.0 11.1±8.3 8.9, 2.0 0.41±0.44 0.31, 2.1 0.27±0.14 0.23, 1.8 
Unhealthy 

days 61.2±20.5 13.5±10.6 10.3, 2.1 0.31±0.42 0.23, 2.1 0.23±0.14 0.19, 1.9 

 

Quantile-quantile plots (SI Appendix, Figure S8.4) show the mean concentration of indoor PM2.5 
in all the buildings can be satisfactorily described by the Weibull distribution. Parameters of the 
Weibull fit are shown in Table S8.5 in the SI Appendix. Parameters of the SC 2020 and NC 2018 
cases are not shown here due to the small sample sizes, which are less representative of all the 
buildings in these areas at that time. 

Differences of infiltration on fire days and non-fire days. Taking all the buildings in the NC 
2020 case into consideration, we found that the mean concentration of indoor PM2.5 nearly tripled 
on the fire days compared to the non-fire days due to the infiltration of outdoor smoke (Table 8.1, 
SI Appendix, Figure S8.4). On the fire days, the average outdoor concentration of PM2.5 was more 
than 4 times the mean indoor PM2.5. Figure 8.3A displays the distribution of the mean 
indoor/outdoor PM2.5 ratio of each building on the fire days and the non-fire days. The average 
indoor/outdoor PM2.5 ratios for many buildings exceeded 1 due to indoor emission events, 
particularly on non-fire days. On fire days, the majority of indoor PM2.5 infiltrated from outdoors, 
but the indoor/outdoor PM2.5 ratios were much lower because people closed their buildings and 
many also filtered their indoor air for protection from the smoke. Figure 8.3B shows the ratio of 
indoor PM2.5 of outdoor origin to outdoor PM2.5 (defined as the infiltration ratio). The infiltration 
factor (Fin) is the steady-state fraction of outdoor PM2.5 that enters the indoor environment and 
remains suspended there (Chen and Zhao, 2011). It quantifies the extent that the building provides 
protection against outdoor particles (Goldstein et al., 2021). For particulate matter, Fin can be 
obtained from the ratio of indoor/outdoor concentration when there are not additional indoor 
sources or loss processes (Wallace and Williams, 2005; Bhangar et al., 2011). On fire days (PM2.5 

> 35 µg m-3), due to the predominance of PM2.5 of outdoor origin, the infiltration ratio approaches 
the infiltration factor. The infiltration factors of PM2.5 for different buildings in NC 2020 have a 
geometric mean (GM) of 0.23 (0.16, 0.36 for 25th and 75th percentiles, same below). On non-fire 
days (PM2.5 < 35 µg m-3), the GM infiltration ratio increases to 0.42 (0.35, 0.56), while on days 
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with unhealthy air quality (PM2.5 > 55.4 µg m-3), the GM infiltration ratio reduces to 0.19 (0.13, 
0.31) (Table 5.1). However, around 18% of buildings had PM2.5 infiltration factors above 0.4 on 
the fire days (Figure 8.3B). Occupants of these exposure hotspot buildings could have experienced 
much higher levels of wildfire smoke. For context, infiltration factors of homes and commercial 
buildings measured in the US are usually above 0.5 (Chen and Zhao, 2011; Wu et al., 2012), and 
the infiltration factor of office buildings with 85% ASHRAE filters were predicted to be around 
0.18 (Riley et al., 2002).  The difference in mean infiltration ratio between fire days and non-fire 
days are most apparent in the daytime (SI Appendix, Figure S8.5), consistent with more ventilation 
typically occurring during daytime (Erhorn, 1988). The lower infiltration factors for the buildings 
on fire days indicates the efficacy of reduced ventilation and enhanced removal of particles as 
people took measures to protect themselves from smoke exposure, and that more behavioral 
changes happened in daytime. Infiltration ratios of PM2.5 were not significantly different between 
fire days and non-fire days in the SC 2020 case (Figure 8.4), in contrast to the 2020 NC 
observations. This difference is probably because the hotter weather in Southern California caused 
more frequent use of air conditioning systems (and shutting windows), which is implied by a higher 
2 pm mean indoor-outdoor temperature difference (~4ºC) than buildings in the San Francisco Bay 
Area (~2ºC). Another possibility is that the PM2.5 pollution levels in the Greater Los Angeles area 
were not high enough to induce people to change their behaviors (SI Appendix, Figures S8.6-S8.9).  

 
 
Figure 8.3 Distribution of the indoor/outdoor ratio and the infiltration ratio in the San Francisco 
Bay Area in August and September 2020. (A) Mean Indoor/Outdoor PM2.5 ratio of buildings 
during fire days and non-fire days and (B) mean infiltrated PM2.5/Outdoor PM2.5 ratio of buildings 
during fire days and non-fire days. Buildings have lower indoor/outdoor PM2.5 ratio and infiltration 
ratio on fire-days. 
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Figure 8.4 Violin plots of particle infiltration ratios during fire and non-fire periods. N = 1274 
buildings, 2.1×106 sensor-hours for NC 2020, N = 115 buildings, 2.8×105 sensor-hours for SC 
2020 and N = 52 buildings, 4.4×104 sensor-hours for NC 2018. Each violin plot shows the 
probability density of the infiltration ratio and a boxplot of interquartile range with whiskers 
extended to 1.5 times the interquartile range. Circles indicate the median, and horizontal lines 
indicate the mean. 
 

Infiltration and building characteristics. Differences in fire-day infiltration ratios may also stem 
from differences in building characteristics. As shown in Table S8.4 in SI Appendix, buildings with 
fire-day infiltration ratio < 0.14 were widely distributed in the study area. However, buildings with 
fire-day infiltration ratio > 0.4 were mostly located in San Francisco where the climate is cooler 
and air conditioning is much less common. Buildings in California Climate Zone 12 (Northern 
California Central Valley) had lower infiltration ratios than any other climate zones in the San 
Francisco Bay Area (SI Appendix, Figure S8.10). Due to the summer hot weather, substantial 
cooling is required for buildings in this zone (Pacific Energy Center, 2006). Air conditioning and 
associated filtration systems apparently decrease the indoor PM2.5 in those buildings. In addition, 
since the mid-late 1990s, most new residential buildings in the US are equipped with air 
conditioning systems (US Census Bureau, 2019). Since 2008, new buildings in California are 
mandated to have mechanical ventilation systems (California Energy Commission, 2008). Many 
of the newer buildings also have filtration systems (Singer et al., 2020). The changes in the building 
stock are apparent in the resulting data, as residences built after 2000 had significantly lower 
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infiltration ratios on both fire days and non-fire days compared with older buildings (SI Appendix, 
Figure S8.10), which is consistent with the findings of a recent wildfire smoke infiltration study in 
Seattle (Xiang et al., 2021). We further classified the buildings in the NC 2020 case into cool 
buildings and hot buildings based on whether the 95th percentile indoor temperature reached 30ºC. 
These cool buildings were more likely to have air conditioning systems on. As shown in SI 
Appendix, Figure S8.11, the cool buildings have significantly lower fire-day infiltration ratios than 
the hot ones (p < 0.01), and around 17% of cool buildings had extremely low infiltration ratios (< 
0.1). In sum, these results demonstrate that (i) this sensing and analysis approach yields findings 
in line with mechanistic plausibility (ii) and that the diversity of building characteristics within a 
region leads to substantial heterogeneity in the degree to which populations are protected indoors 
from wildfire PM2.5.   

 
Figure 8.5 Frequency distribution of indoor PM2.5 total loss rate constants (λt) in buildings in the 
San Francisco Bay Area on the fire days and non-fire days in August-September 2020 (decay peaks 
were found in N = 1000 buildings). A reduced total PM2.5 loss rate constant on the fire days 
indicates a reduction in ventilation. 
 
Decay rate constants for PM2.5 were determined for all indoor observations using a box model 
(Equation 2). The difference in the decay rate constants of PM2.5 indoors further reveals why the 
infiltration ratio was lower on fire days. Figure 8.5 shows the distribution of mean total loss rate 
constant of PM2.5 on fire days and non-fire days in the buildings. The mean and median total loss 
rate constants (λt) are 1.5 h-1 and 1.2 h-1 on fire days, and 2.2 h-1 and 1.9 h-1 on non-fire days, 
respectively. Comparing individual buildings on fire days and non-fire days, 67% of them have 
lower particle loss rate constants on fire days, indicating a high percentage of buildings whose 
occupants took effective action to reduce PM2.5 infiltration. During the fire days, the decrease in 
air exchange rate exceeded the enhanced indoor filtration, making the loss rate smaller. Since the 

infiltration ratio (infiltration rate/total loss rate, )  was also lower on fire days, it can 
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be inferred that the infiltration rate (air exchange rate × penetration factor, aP) was lower on fire 
days (Equations 8.1 and 8.3). We expect both air exchange rate and penetration factor to drop on 
fire days. Closure of windows and doors will lead to a lower air exchange rate. The usage of 
filtration systems on incoming air and closure of openings will lead to a lower penetration factor 
(Diapouli et al., 2013).  For the SC 2020 case, the mean estimated particle loss rate constants (1.3 
h-1 on fire days and 1.4 h-1 on non-fire days) are lower than in the San Francisco Bay Area (SI 
Appendix, Figure S8.12), which further implies that a larger fraction of PurpleAir sensor owners 
in the Los Angeles area kept their windows/doors closed.  
 
People are more likely to open the windows when the indoor temperature is higher than the outdoor 
temperature in summer (Andersen et al., 2013; Yan et al., 2015). In the NC 2020 and SC 2020 
cases, the difference in daytime indoor/outdoor temperature alternated between positive and 
negative values (SI Appendix, Figure S8.13). However, in the NC 2018 case, due to the colder 
outdoor temperatures in November, we infer that people probably closed their windows for a 
longer time, explaining the lower loss rate constants observed. This was expected to reduce the 
difference between the infiltration ratio on fire days and non-fire days. However, this ratio is still 
statistically significantly higher (p < 0.05) on fire days, which suggests the widespread application 
of filtration systems. 

Our conclusions come with caveats. First, we treated each building as a well-mixed box, which 
assumes the indoor sensor measurement can represent the PM2.5 levels of the entire building. 
Second, our algorithm to remove the indoor-source peaks could miss lower indoor emission events. 
In addition, we assumed a universal quasi-linear response for all the PurpleAir sensors throughout 
the analysis period. Such treatment could lead to biases, but our results should still reflect the 
average trend. Indoor environments with PurpleAir sensors may not be representative of the entire 
distribution of buildings (details are provided in the SI Appendix). Adoption of PurpleAir sensors 
(at least ~200 US dollars per sensor) is higher among affluent people concerned about exposure to 
PM2.5. Consistent with the expectation of an affluent “early-adopter” effect, PurpleAir owners live 
in homes with estimated average property values 21% greater than the median property value for 
their cities (SI Appendix, Table S8.3 and Figure S8.14). The 2015 U.S. Residential Energy 
Consumption Survey shows that households with less than $40,000 annual income are less likely 
to use air-conditioning equipment than other households (Residential Energy Consumption Survey 
(RECS), 2015). Low-income houses tend to be older, and they are shown to have larger leakage 
than other houses (Chan et al., 2005; Adamkiewicz et al., 2011). Lower-income households can 
therefore have disproportionately higher exposure to wildfire smoke. Finally, although we were 
not able to disentangle the influence of multiple regionally varying parameters (such as building 
type, floor area, property values) on penetration of wildfire smoke with the current distribution of 
indoor sensors, more extensive sensor adoption in coming years may allow future work to address 
this limitation.   

This work demonstrates that crowdsourced environmental sensing can provide valuable 
information about how people are protecting themselves from the increasingly severe 
environmental hazard of wildfire smoke. We find that common adaptation measures, including 
reducing ventilation and active air filtration, effectively mitigate the average indoor exposures of 
all the buildings by 18% and 73% relative to indoor baseline and outdoor conditions, respectively. 
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This work further suggests that such protective measures could be enhanced through public 
education to substantially mitigate indoor exposures at the population scale in the future. Given 
anticipated increases in wildfire smoke in coming decades, it is critical to evaluate these findings 
in other settings, including in lower-income communities and in other climate regions affected by 
wildfires. While our data imply that early adoption of crowdsourced indoor PurpleAir sensors 
seems to be propelled by wildfire events (Figure 8.1), gaining more broadly representative insight 
into the distribution of indoor PM conditions might benefit from complementary approaches to 
disseminating these sensors, such as targeted deployments in lower-income communities. Overall, 
our results suggest the increasing ubiquity of indoor and outdoor air pollution sensors can aid in 
understanding exposures to episodic pollution sources such as wildfires.  
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9. Summary and Conclusions 
Through this contract, we were uniquely able to: 1) combine detailed pre- and post-fire fuel 
measurements with comprehensive ground and aerial measurements, and 2) compare measured 
fuel consumption and emissions with model predictions using the First-Order Fire Effects Model 
(FOFEM). Fuel and emissions measurements were obtained from 1st and 3rd entry prescribed burns 
at the Blodgett Forest Research Station (BFRS), representing differences in land management 
practices. The burns were in a mixed conifer forest, where the third-entry burns were burned twice 
previously for management purposes. These two extremes capture what will in the future become 
a gradient in management status. This allowed us to characterize smoke emissions, measured and 
modeled, as a function of fuel consumption and land management practices, and to develop 
datasets for use by air quality management and scientific communities. 
 
The main focus of this contract was the 1st entry prescribed burns that were conducted over four 
consecutive days in April 2021. These burns occurred during spring conditions that allowed for 
high fuel consumption without excessive risk of escape and with minimal smoke impacts on 
downwind communities. Pre- and post-fire fuel measurements were conducted to assess 
distributions of plant species and fuel components (i.e., litter, duff, fine woody debris, etc.) and 
carbon losses. The spring burns met or exceeded the management goals to: 1) consume at least 
50% of surface fuels, primarily litter and fine woody debris (FWD, includes 1-, 10-, and 100-hour 
fuel categories); and 2) manage the burn intensity to avoid either low or high intensity scenarios 
that would typically be undesirable for most management contexts (i.e., limit the crown scorch of 
canopy trees to less than 50% on average and limit post-burn mortality to no more than 10% of 
trees greater than 50 cm diameter at breast height).  

Prior to treatment, the fuel load in the 1st entry burn was nearly double that of the 3rd entry burn. 
Total pre-fire ground and surface fuel load for the 1st entry burn was 104 Mg ha-1; for the 3rd entry 
burn it was 55 Mg ha-1. The percent of fuel consumed by the prescribed burns was also greater at 
1st entry: 53% vs 35%. However the composition of the consumed fuels was similar between the 
two studies. The similarity in consumed fuels between the 1st and 3rd entry burns was reflected in 
the overlap in modified combustion efficiency (MCE) values observed during these burns and 
consistencies between measured emission factors (EFs). The 1st entry burn consisted of three 
separate units burned over four days, in which unit A was burned over two days and units B and 
C were burned over the third and fourth day respectively. The composition and combustion of 
fuels across the units was very similar and also reflected in consistencies between measured EFs. 
The similarities between the 1st entry units and between the 1st and 3rd entry burns led to our first 
recommendation of pooling data from these studies to obtain a single set of EFs. 

Smoke was sampled using ground and aerial (drone) platforms. From these samples, we 
characterized gas- and particle-phase constituents including organic compounds, carbon monoxide 
and dioxide (CO, CO2), black carbon (BC), brown carbon (BrC), and total fine particulate matter 
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(PM2.5). Smoldering conditions were sampled using both ground and aerial platforms, while 
flaming conditions were largely only sampled by the drone. The average MCE values ± 1 standard 
deviation was 0.83 ± 0.03 for ground sample sets in 2017 (3rd entry) and 2021 (1st entry) and 0.87 
± 0.05 for the aerial sample set.   The drone also sampled more concentrated smoke and thus the 
samples had generally higher mixing ratios for measured volatile organic compounds (VOCs). 
When we compared EFs, which take into account dilution, there was generally good consistency 
between measured EFs from the ground and the drone, with some exceptions for individual gas 
and particle phase compounds. This led to our second recommendation of pooling ground and 
drone data for EF calculations. 
 
Many constituents in smoke have been shown to exhibit clear trends with MCE. Flaming-dominant 
compounds tend to be higher and higher MCE values and smoldering-dominant compounds tend 
to be higher at lower MCE values. BC showed the strongest correlation with MCE across all 
sampled ranges and EC increased at the highest MCE values. There was little to no correlation 
between OC, PM2.5, and individual VOCs across the range of MCE values sampled. For some 
particulate-phase constituents, we presented EFs separated into two combustion regimes (MCE < 
0.88 & MCE > 0.88) to show where differences were observed. Our third recommendation is thus 
that for most compounds reported here and across the range of sampled MCE values, EFs are 
independent of MCE. 
 
Relationships between BC and PM2.5 and BC and CO were explored in the data from BFRS, as 
well as data obtained from local air quality stations. In all datasets, the mean BC/PM2.5 ratio 
decreased during smoke events. This is due to the much greater emissions of PM2.5 from wildfires 
compared to BC. In general, mean wildfire BC/PM2.5 ratios in studied air basins were 0.04–0.07 
whereas ambient non-wildfire BC/PM2.5 ratios averaged 0.09–0.12. For regulatory modeling, a 
BC/PM2.5 ratio of 0.2 (20%) was assumed for brush and timber fire. The analysis of BC/PM2.5 
ratios presented here indicate that this value overestimates the fraction of BC in wildfire PM2.5 by 
a factor of 3–4. Our fourth recommendation is thus to revise the assumed BC/PM2.5 ratios for 
wildfires in emissions modeling. 
 
Measured concentrations and EFs from samples collected during the 2021 1st entry prescribed 
burns were compared with data from samples of California wildfires collected by CARB staff 
using their mobile platform in coordination with the FIREX-AQ aircraft campaign. Lower VOC 
mixing ratios were measured in the wildfire samples than in the prescribed burns, which was likely 
due to enhanced evaporation and aging in the wildfire samples given that they were collected much 
farther from the fires than the BFRS samples. Wildfire samples also had higher azelaic acid than 
1st entry burn samples, supporting the interpretation of less dilution and aging of smoke sampled 
during the 1st entry burn. The agreement between the 2021 1st entry burn ground and drone samples 
with published values was compound dependent. Generally there was a range of values for all 
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compounds considered and there were no systematic biases in BFRS ground/drone measurements 
vs. literature.  
 
For the FOFEM modeling simulations, model performance was improved with the use of measured 
fuel loadings as inputs. In the context of fuel composition, the FCCS 024 classification generally 
represented the measurements well with a maximum difference of 16% (woody fuels) between 
measurements and model. The differences between the measured and predicted distributions were 
greater for the FCCS 053 classification with a maximum difference of 27% (woody fuels). Both 
the F-FCCS-024 and F-FCCS-053 simulations severely underpredicted fuel loadings, by up to 
90%, which translated into severe underpredictions of consumption and emissions. The FOFEM 
modeling simulations demonstrated high sensitivity of modeled emissions to fuel loading, and 
highlighted the need for better constraints on fuel loading. Consumption estimates and uncertainty 
in EFs (at least for these major pollutants) resulted in differences between measured and modeled 
emissions, but to a lesser extent than fuel loading. This led to our fifth recommendation, that better 
characterization of fuel loading in the western US may be the highest priority for improved smoke 
modeling. 
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10. Recommendations 
Based on our measurements of prescribed burn emissions from 1st and 3rd entry mixed conifer 
forest, and comparison to the literature and the FOFEM model, we recommend the following: 
 
1) Pool data from the 2017 and 2021 studies to obtain a single set of EFs, representing the 

combined 1st and 3rd entry burns, for use in modeling emissions from prescribed burns of 
managed and previously unmanaged mixed conifer forests. 
 

2) Pool ground and drone data for mean EF recommendations to represent the full range of 
burning conditions observed. 

 
3) For most compounds reported here and across the range of sampled MCE values, EFs from 

controlled burns should be assumed as independent of MCE for the purposes of emissions 
modeling. 

 
4) Revise the assumed BC/PM2.5 ratios for wildfires in emissions modeling. 

 
5) Prioritize improving characterization of fuel loading to increase accuracy of smoke emission 

modeling. 
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Appendices  

Chapter 8 Supplementary Information 

8.4.1 Extended Materials and Methods  
Data Sources and Study Regions. The PurpleAir sensors report the mass of size-resolved 
particulate matter, as well as environmental parameters such as temperature and relative humidity 
(RH). Data from many of these sensors are voluntarily shared online by the owners (including the 
citizens, and government agencies like the California Air Resources Board, Bay Area Air Quality 
Management District and Southern California Air Resource Board). For this study we downloaded 
the 10-min average PM2.5 concentration data from the PurpleAir website 
(https://www2.purpleair.com/). For the NC 2020 case, we used data from the areas boxed by 
latitudes [38.77º N, 38.04º N] and longitudes [123.19º W, 121.15º W]; [38.04º N, 37.98º N] and 
[123.19º W, 121.60º W]; [37.98º N, 37.67º N] and [122.69º W, 121.90º W]; [37.67º N, 37.21º N] 
and [122.47º W, 121.36ºW] for August and September 2020 (Figure S8.2). These boxes cover 
most of the San Francisco Bay Area and part of the Sacramento County. In this period, residents 
in this area experienced smoky days caused by the LNU Lightning Complex Fire, the August 
Complex Fire, the SCU Lightning Complex Fires, the CZU Lightning Complex Fires, and at the 
end of September the Glass Fire, as well as the massive fires in Oregon 
(https://www.fire.ca.gov/incidents/2020/). The same study area was used in the NC 2018 case, 
although fewer sensors were operating at that time. The study area for the SC 2020 case is boxed 
by [33.47º N, 34.50º N] and [116.85º W, 119.40º W], as shown in Figure S8.3. 
 
Selection of Sensor Correction Models. Plantower sensors (Plantower Technology) used by 
PurpleAir measure the mass of particulate matter by measuring light scattering at 680±10 nm 
(Sayahi et al., 2019). The manufacturer has a proprietary algorithm to convert the light scattering 
signal to the mass concentration of particulate matter. The effective measurement range of PM2.5 
according to the manufacturer’s product manual is 0-500 µg m-3, with resolution of 1 µg m-3 

(https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pmS8003-
manual_v2-3.pdf). The response time of the sensors is less than or equal to 10 s.  Each sensor is 
also embedded with a BME 280 sensor (Bosch Sensortec) to measure the temperature, pressure, 
and relative humidity in real time. The working temperature and relative humidity ranges are -10 
to 60ºC and 0-99%, respectively. The performance of low-cost PM2.5 sensors is dependent on 
humidity, temperature and level of particulate matters (Ardon-Dryer et al., 2020; Barkjohn et al., 
2020a; Bi et al., 2020; Delp and Singer, 2020; Holder et al., 2020; Zheng et al., 2018). Many 
corrections have been proposed to convert the raw PM2.5 data (PM2.5 CF=1) measured by Plantower 
sensors to values consistent with research grade instruments. In our analysis, hourly average 
primary PM2.5 data measured by 16 EPA Air Quality Measurement Stations (AQMSs) in August 
and September 2020 in the study area was downloaded from the EPA AirNow’s API website 
(https://docs.airnowapi.org/). According to the California Air Resource Board 
(https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-
monitoring-network-report), the primary PM2.5 monitors in these sites are MetOne BAM (beta-ray 
attenuation) continuous monitors. For each EPA measurement site, we compared the data 
measured by outdoor PurpleAir sensors within 5 km (using at most 50 sensors near each EPA site 
to avoid data being skewed towards a small number of sites). We excluded outdoor sensors that 
(a) reporting less than 4 weeks of data. (b) had weak correlation with the EPA station’s 

https://www2.purpleair.com/
https://www.fire.ca.gov/incidents/2020/
https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf
https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf
https://docs.airnowapi.org/
https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-monitoring-network-report
https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-monitoring-network-report
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measurement (r < 0.8) because it might be affected by other local pollution sources or it could be 
listed as an outdoor sensor by mistake, (c) reported PM2.5 larger than 800 µg m-3 and sensors always 
reporting data lower than 10 µg m-3 as they were either malfunctioning or were operating outside 
of the recommended limits of detection. In total, data from 446 outdoor sensors surrounding the 
16 EPA sites were included in the correction factor evaluation. 
 
To get correction factors for converting PurpleAir sensor measurements to federal 
reference/equivalent method measurements, some studies performed a linear regression of PM2.5 
measured by the PurpleAir sensors with data from nearby EPA regulatory instruments ((Delp and 
Singer, 2020), while others also considered the effect of temperature and relative humidity on the 
sensor’s performance ((Zheng et al., 2018; Barkjohn et al., 2021a, 2021b). There are two main 
types of PurpleAir sensors available for purchase on the PurpleAir website 
(https://www2.purpleair.com/collections/air-quality-sensors). The PA-I sensors only have one 
channel (Plantower PMS 1003) for PM measurement. Each PA-II PurpleAir sensor has two 
Plantower PMS 5003 sensors inside (Channel A and Channel B). Ideally, it is good to average the 
values reported by the two sensors and to remove some abnormal data because of sensor failures 
that can be captured by the difference of PM reported for the two channels. However, many sensors 
did not report PM2.5 data from Channel B, presumably because they were the indoor PA-I sensor 
model. To incorporate as many sensors (buildings) as possible in the analysis, we only used 
Channel A data if data from both channels are available. According to the evaluation by Barkjohn 
et al. (8), the PM2.5 concentrations reported by Channels A and B agree well. In line with this prior 
result, we compared 42 sensors with fully available Channel A and B data and found excellent 
agreement [slopes of linear fit between two channels’ PM2.5 data have IQR of (0.97, 1.06) with 
median at 1.01; R2 of fit between two channels’ PM2.5 are all above 0.95]. More broadly, we believe 
that many instances of abnormal data are reliably excluded by our other QA/QC procedures 
(described in “Other QA and QC” section below). The sensors report both PM2.5 CF = 1 data and 
PM2.5 CF = ATM (atmospheric) data. It is not known how the CF = 1 data are converted to CF = 
ATM data in the proprietary algorithm from the manufacturer. However, it is known that the ATM 
data can result in a nonlinearity for concentrations below and above around 20-40 µg m-3

 (Kelly et 
al., 2017; Malings et al., 2020), while CF = 1 data do not have this problem. The PM2.5 CF = 1 data 
have also been shown to correlate better with the EPA federal reference methods or federal 
equivalent methods. The PM2.5 CF = 1 data were therefore chosen as the raw input data in our 
calibration.  
 
Seven correction methods were compared in our analysis, with their performance summarized in 
Table S8.1. Method 1 and 2 are based on linear regressions (ordinary least square method) of the 
EPA PM2.5 data with the PurpleAir PM2.5 CF = 1 data (of individual sensors, not the average of all 
sensors within 5 km of each AQMS). Method 3 uses an orthogonal distance regression (ODR) 
with zero intercept. The Barkjohn et al. (Barkjohn et al., 2021b) US fire correction was based on 
comparison of PurpleAir measurement data with collocated federal equivalent methods in 7 sites 
across the United States affected by prescribed fires, ambient aged fires, woodstove fires and 
wildfires. It considers the effect of relative humidity on the measurement. A similar field 
comparison was performed by Holder et al. (Holder et al., 2020). The correction factors from these 
two studies were also evaluated here for our dataset. We also constructed a “New fit incorporating 
RH” correction by a multivariate regression of EPA PM2.5 against PM2.5 and RH measured by 
nearby outdoor PurpleAir sensors using data in August and September 2020 from the San 

https://www2.purpleair.com/collections/air-quality-sensors
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Francisco Bay Area. In some studies, a nonlinear RH term RH2/(1-RH) was used  (Zheng et al., 
2018; Barkjohn et al., 2021b). However, recently it has been demonstrated that a linear term of 
RH can perform even better than the non-linear term (Barkjohn et al., 2021a). Therefore, the linear 
RH function is used in our “New fit incorporating RH” correction. Finally, using EPA PM2.5 as the 
response, and PM2.5 and RH reported by the nearby PurpleAir sensors as input, we trained a binary 
decision tree for regression model using the Statistics and Machine Learning Toolbox in 
MATLAB. The temperature term was not included in our correction models because it has been 
shown that including the temperature term can only negligibly improve the performance of such 
correction models ((Zheng et al., 2018; Barkjohn et al., 2021a). The commonly used Lane Regional 
Air Protection Agency (LRAPA) correction, which uses the CF = ATM data in the correction 
equation (Barkjohn et al., 2021a), was not compared here.  
 
Adding a non-zero intercept to the model did not substantially improve the R2 or reduce the root 
mean square error (RMSE). A major disadvantage of adding such an intercept is it can lead to an 
overestimation when the PM2.5 concentration is very low. We also evaluated whether the linear 
regression of the EPA PM2.5 data with the PurpleAir PM2.5 (CF = 1) data are sensitive to the 
distance threshold. Table S8.2 shows that the regression coefficients are not very sensitive to the 
distance threshold from 2 km to 20 km.  
 
In ordinary least square regression, it is assumed that the independent variable is free from errors 
(Wu and Yu, 2018). However, this assumption may not be true for PurpleAir sensor measurements. 
We therefore also calculated the slope using orthogonal distance regression (ODR). The ODR 
minimizes the sum of orthogonal distances of the data points from the regression line (Wu and Yu, 
2018). Using the ODR method changed the correction factor by only 0.01 and increased the RMSE 
(Table S8.1). Adding RH in the linear regression also only made an almost negligible 
improvement. We therefore chose the linear regression without intercept correction. In this case, 
the fitted correction factor is 0.53. Figure S8.6 displays the hourly concentration time profiles of 
PM2.5 measured by each EPA monitor in the San Francisco Bay Area, and the average 
concentrations of PurpleAir sensors (after correction with CF = 0.53) within 5 km in August and 
September 2020. They agree reasonably well with each other.  
 
It is important to note that the correction equations evaluated here are only applicable for this 
analysis, and they should not be generalized to other places and/or at other times. As shown in 
Holder et al. (Holder et al., 2020), even the correction factors for wildfire smoke from different 
fires in the US can differ by a factor of more than 2. It is also worth noting that our analysis is not 
heavily dependent on the exact correction factor because the concentration ratios are the targets. 
The correction factors only affected which peaks were defined as indoor source peaks. When 
wildfire smoke affected a region, the composition of indoor and outdoor PM2.5 were expected to 
be similar because wildfire particles dominated even in the indoor environments (Table 5.1). 
Therefore, it is reasonable to use the same correction for both indoor and outdoor PM2.5, especially 
we focus on the indoor/outdoor ratios, as suggested by Bi et al. (Bi et al., 2021). 
 
As shown in Table S8.1 and Figure S8.15, the binary decision tree method can improve the 
correlation of PurpleAir data with EPA measurements. Results from the same analysis with this 
correction are shown in Figure S8.16. The trend of the result is the same as the no-correction case, 
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but the difference between the fire days and non-fire days are larger, which is probably due to a 
non-zero intercept in the correction. 
 
We also performed regression for the correction of Greater Los Angeles Area sensors (SC 2020 
case). Based on linear regression of EPA monitor data with the nearby PurpleAir sensor using the 
same approach as in the NC 2020 case, a correction factor of β1 = 0.58 was adopted (NRMSE = 
0.42, see Figures S8.8-S8.9). Similar analysis has been performed by Delp and Singer (Delp and 
Singer, 2020) for San Francisco Bay Area sensors in November 2018. A correction factor of β1 = 
0.48 was adopted in our analysis.  
 
Other QA and QC. We selected indoor sensors that had measurement value for at least 1/6 of the 
time (~10 days) in the two-month period considered in our study. We found 1459 indoor monitors 
in this region meeting this criterion. For each indoor sensor selected, we used its longitude and 
latitude to locate the nearest outdoor sensor. More than 2000 outdoor sensors in this region reported 
at least 10 days data during the period considered, compared with only 16 EPA Air Quality 
Monitoring Stations (AQMS) in this region. The geometric mean (GM) distance from an indoor 
sensor to the nearest AQMS is 6.7 km, but it is only 0.21 km to the nearest outdoor sensor (Figure 
S8.17). The substantially reduced distance allows much more accurate evaluation of 
indoor/outdoor concentration relationships. To prevent the possibility that the nearest outdoor 
sensor was located near major pollution sources, when the nearest outdoor sensor is more than 500 
m away from the indoor sensor, we required the 50th percentile concentration at this outdoor node 
when it was not affected by wildfires to be below 25 µg m-3, according to the levels and spatial 
decay rate of PM2.5 measured near roads (Lena et al., 2002; Tiitta et al., 2002; Karner et al., 2010; 
Apte et al., 2017). We further required the outdoor sensor to cover at least 85% of the time when 
the indoor sensor reported data. If the PM2.5 concentration measured by an “indoor” sensor is 
correlating too well with a nearby outdoor sensor (r2 > 0.8), it is likely that this sensor was placed 
outdoors. This mislabeled or dislocated sensor is therefore not used in the analysis. Figure S8.18 
shows an example of an indoor node discarded for this reason. We removed 165 “indoor” sensors 
from the analysis because of this problem. Another 20 indoor sensors were not considered because 
we could not find a nearby outdoor sensor that reported data for more than 85% of the time when 
the indoor sensor reported data. With all these criteria in place, data from N = 1274 indoor sensors 
in this region could be used. The same procedure was applied to data in the NC 2018 and SC 2020 
cases. Negative values of PM2.5 concentration were also discarded. 
 
Decomposition of Indoor PM2.5 We separated the indoor PM2.5 from indoor and outdoor origins 
by removing short-term indoor PM2.5 peaks that were unlikely due to penetration. A very similar 
approach has been demonstrated in previous studies by Allen et al. (Allen et al., 2004, 2003). 
According to high time-resolution measurements of particulate matter in previous indoor studies, 
the major indoor emission processes (mainly cooking and cleaning) typically last for half an hour 
to an hour, and after that a longer period is needed for the PM2.5 perturbation to decay to less than 
half of its peak value (Patel et al., 2020). When these processes happen, the indoor level of PM2.5 
was at least 30 µg m-3. We therefore selected all the peaks with half-prominence width (w) between 
1 hour and 4 hour and prominence level above 30 µg m-3 as indoor-source peaks. It is possible that 
in some buildings the windows were opened for around an hour during the fires and created peaks 
that meet this criterion. Out of the 1274 buildings considered, we identified these large indoor 
source peaks in 834 buildings. Buildings without such peaks might be commercial buildings 



 140 

without large indoor PM2.5 sources, or the sensor in that building was placed in a location free 
from large indoor emissions. We assumed the indoor PM2.5 other than that caused by these large 
peaks to be infiltrated PM2.5. We reconstructed the infiltrated PM2.5 by linearly interpolating indoor 
PM2.5 concentration 3w before and after these large peaks with respect to time. The long 3w 
window was chosen to ensure that the indoor source peaks can be more thoroughly removed. For 
data outside of this window, the indoor concentration was assumed to be equal to the infiltrated 
PM2.5. As a QA/QC step, if the calculated non-cooking indoor concentration was higher than 
outdoor concentration, that data point was removed from the analysis. 
 
Mass Balance Model and Total Indoor Particle Loss Rate Constant Calculation. The indoor 
concentration of PM2.5 depends on infiltration, indoor emission, and loss. We explored the 
dynamics of indoor PM2.5 with a box model. If we assume the PM2.5 is well-mixed indoors, the 
mass balance of PM2.5 in a building can be written as:  

  (S8.1) 
where V is the volume of the room, a is the air exchange rate, P is the penetration factor of particles, 
kloss is the loss rate constant including deposition and indoor filtration, and S is the indoor emission 
rate. Cin and Cout are the indoor and outdoor concentrations, respectively (Wallace and Williams, 
2005; Chen and Zhao, 2011). Dividing by V on both sides, we can simplify the equation to: 

 (S8.2) 
When the indoor and outdoor particles are in steady state, and S is small, we have: 

 (S8.3) 
where Fin is the infiltration factor. For particulate matter, Fin can be obtained from the ratio of 
indoor/outdoor concentration when there are no outdoor sources (Bhangar et al., 2011; Wallace 
and Williams, 2005). Another way to estimate Fin is to regress the indoor PM2.5 on outdoor values 
(Ott et al., 2000). However, this method has been shown to underestimate the infiltration factor 
while overestimating the indoor background (Wallace and Williams, 2005), or produce infiltration 
factors outside [0,1] ((Bi et al., 2021). Therefore, the ratio method was used for our analysis. 

During the peak of cooking-like indoor particle release events, the indoor PM2.5 resulting 
from cooking is much larger than the infiltrated smoke. When the indoor emission event is over, 
we assume the indoor source term becomes 0, and we have: 

 (S8.4) 
Therefore, (a+kloss) can be estimated by fitting the curve of Cin(t) (Stephens and Siegel, 2012). We 
define (a+kloss) as the total indoor particle loss rate constant (λt). A peak prominence of 30 µg m-3 
(20 µg m-3 in the SC 2020 case to incorporate more peaks) was used as the threshold to find large 
indoor peaks that were subsequently used in the particle loss rate constant calculation. If windows 
were opened and then closed, the decay of resulted indoor PM2.5 can also be described by Equation 
S4. Those peaks were also included because the decrease of indoor PM2.5 under that circumstance 
can also be described by the exponential decay. The decay rate constant is also not substantially 
affected by the correction factor used because the correction factor affects Cin and Cin, peak in the 
same way. To get total particle loss rate λt = a+kloss, Equation S4 can be rewritten as:  
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(S8.5) 
 

We then linearly fitted this equation by least square method to get slope λt for the decay of each 
peak of indoor PM2.5. In this part, we no longer require the width of the peak to be above 1 hour. 
In this way, indoor PM2.5 peaks resulting from short-time window opening were also used to get 
λt. The 95% confidence interval of λt was also calculated. To ensure the exponential decay model 
is applicable, if the lower bound of the confidence interval of λt for a peak was below zero, this 
peak was not used as data for Figure 8.5.  
 
The decrease of indoor PM2.5 concentration can also be caused by the decrease of outdoor PM2.5 
concentration. In such cases, the assumption that incoming outdoor PM2.5 source is stable no longer 
holds. Therefore, if the indoor PM2.5 was decaying together with the outdoor PM2.5 measured by 
the nearest sensor (r2 > 0.8), this peak was excluded from the analysis. For the 1274 buildings 
considered in the NC 2020 case, we observed such decay peaks in 1000 buildings. On average, 4.7 
decay peaks were captured in each building in the two-month period. 

 
Uncertainty of the infiltration ratios and the decay rate constants 
We roughly estimated the uncertainty of the infiltration ratios of individual sensor pairs, based on 
the idea that disagreement among any two paired sensors would lead to an uncertain estimate of 
the ratio of concentrations between those sensors. Thus, we gain a magnitude estimate of the 
uncertainty of the indoor/outdoor concentration ratio by examining the disagreement among a 
large number of paired nearby outdoor sensors across the PurpleAir dataset in our domain. We 
consider two timescales: (1) the uncertainty of the indoor/outdoor ratios of the 10-min data, 
reflecting the transient noise at short time scales, and (2) the uncertainty of the infiltration ratio for 
a building over the two-month period in the analysis, reflecting the possible range of persistent-
sensor-to-sensor bias. To do so, we first found the outdoor sensors that were used to calculate 
indoor/outdoor ratios. Since it is possible that the nearest outdoor sensor of multiple indoor sensors 
is the same sensor, for the 1274 pairs of sensors, there are only 784 outdoor sensors used. For each 
sensor, we tried to find the nearest outdoor sensor within 1 km, which was successful for 775 
sensors. For each pair of sensors i at time j, we calculate the ratios of xi,i/yi,j, where xi,I is the 
concentration of the ith of the 775 used outdoor sensors at time t, and yi,j is the concentration of its 
nearest outdoor sensor. We make Ri as: 

(S8.6) 

 Then we concatenate the Ri array into Rall array by: 

(S8.7) 

The uncertainty of the indoor/outdoor ratio of 10-minute data is reflected by the variation of Rall, 
which yields 0.886, 1.005, and 1.138 as 25th, 50th, and 75th percentiles values, respectively.  
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The uncertainty of the infiltration ratio for a building over the two-month period can be roughly 

estimated by the statistics of , which has 0.955, 1.035, and 1.131 as 25th, 50th, and 75th 
percentiles values, respectively. Therefore, we can conclude that the uncertainty of the infiltration 
ratio for a building over the two-month period is less than ±10%.  

The decay rate calculation should have a very small uncertainty due to any bias in PA sensors 
because it uses measurements only from a single indoor sensor. We were fitting the decay curves 
of individual sensors by: 

 (S8.5) 

in which Cin(t) ratios by the same sensor (especially in the same peak) should have very small 
uncertainty. 

Given the reasons stated above, we expect the exposure reduction calculations have even lower 
uncertainties because we are averaging the exposure reduction of the 1274 buildings. Assume 
uncertainty of the infiltration ratio for a building over the two-month period is 10%, the average 

of infiltration ratios of all the buildings will have an uncertainty of   
following central limit theorem. More conservatively, the median uncertainty of the infiltration 
ratio over two months, as reported for 774 sensor pairs above, was 1.035, or 3.5%. In either case, 
this uncertainty is quite small. We expect that the average exposure reduction would have a 
quantified uncertainty of similar or better magnitude to the I/O ratio, in other words, well less than 
5%. Other unquantifiable uncertainties – e.g., differential or non-linear response of the PurpleAir 
to time-varying aerosol properties – add additional uncertainties that are more difficult to directly 
estimate, but we believe that these uncertainties do not fundamentally undermine the validity of 
our qualitative results. 

 

Building information. Property data for PurpleAir Indoor-Outdoor comparison analysis were 
obtained by matching coordinates to addresses, verifying the addresses, looking up the addresses 
on publicly available property listing services, and finally quality control of the resulting data. The 
latitude-longitude coordinates were obtained from the publicly available PurpleAir database 
formally from a PurpleAir JSON file (purpleair.com/json – defunct as of December 2020), now 
available through the official PurpleAir API (api.purpleair.com). The coordinates contain 6 
decimal places of precision and thus are accurate to under 10 meters, however, the placement is 
based on the available WiFi signal and can be edited by the sensor owner to be located anywhere 
on the map. As such, there is some uncertainty introduced into the reverse geocoding process, but 
since citizen scientists are interested in air quality within their own homes and research groups 
require spatial fidelity it can be assumed these coordinates are approximately correct. 
 
After obtaining the list of coordinates, the Google and ArcGIS geocoding engines performed 
reverse geocoding scripted using the Python library OSMnx 1.0.1 
(osmnx.readthedocs.io/en/stable/). About 38.5% of addresses in the SF Bay region disagreed 
between Google and ArcGIS lookups. The reasons for the disagreements are due to placement in 
homes leading to low confidence assigning addresses to lots such as on a street corner. The sensor 

http://purpleair.com/json
http://api.purpleair.com/
http://osmnx.readthedocs.io/en/stable/
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labels and manual searches on Google Maps were used to confirm the address. If the sensor label 
contains the address or a partial address or is obvious from the Google Map manual search, the 
confidence to the matched address is high. If the reverse geocoded searches match, then the 
confidence is medium, otherwise, it is assigned low confidence. From this analysis of valid 
addresses (n=1274), 13% were assigned high confidence, 73% were assigned medium confidence, 
and 14% were assigned low confidence. For low confidence addresses, the ArcGIS address was 
used. 
 
The list of addresses was then manually inputted to Zillow, a publicly accessible website which 
offers data on homes and apartments using multiple listing services and county databases including 
building age, HVAC information, and livable area. Zillow furthermore uses existing publicly 
available information as well as a proprietary algorithm to derive an estimate of the current (as of 
December 2020) evaluation of the home or apartment (rent if a rental unit) termed a “Zestimate®.” 
If the address matches an apartment complex, the first listed unit was then used to find the year of 
construction, HVAC information, and a bell-weather of the typical price and area of apartments 
since these can vary within complexes. From the 1274 address, 79.5% returned the year of 
construction, 83.6% returned HVAC data, 76.7% returned a price estimate, and 72.2% returned 
the area.  Out of the 1274 buildings analyzed, 1112 (87%) buildings were found to be residential. 
Among these residential buildings, 80%, 13%, and 4% were matched to single-family houses, 
condominiums or multi-family buildings, and apartments, respectively.  
 
As an additional sensitivity analysis, we restricted our dataset to the 87% of buildings that could 
unambiguously be ascertained to be residential. For this restricted dataset, the mean infiltration 
ratios on both fire days and non-fire days changed by less than 0.01. 
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8.4.2 Supplementary figures and tables 
 

 

Figure S8.1 A. Annual average PM2.5 concentrations in 3 Air Basins in California from 1999 to 
2019 (Data retrieved from California Air Resource Board website https://www.arb.ca.gov/adam). 
The missing point is because of insufficient data available to determine the value. B. San Francisco 
Bay Area Air Quality Index (AQI) category in August and September 2020 based on 24-hour 
average level of PM2.5 at each EPA Air Quality Measurement Station. 0 - 15.4 µg/m3: Good; 15.5 
- 35.4 µg/m3: Moderate; 35.5 - 55.4 µg/m3: Unhealthy for sensitive groups; 55.5 - 150.4 µg/m3: 
Unhealthy; 150.5 - 250.4 µg/m3: Very unhealthy. 

 

  

https://www.arb.ca.gov/adam
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Figure S8.2 A. Study regions in the San Francisco Bay Area. Google Earth imagery © 2020 
Google. PurpleAir sensors in the three boxes were analyzed together. B. Locations of all the indoor 
PurpleAir sensors included in the NC 2020 case. 

 

 

Figure S8.3 A. Study region in the Greater Los Angeles Area. Google Earth imagery © 2020 
Google. B. Locations of all the indoor PurpleAir sensors included in the SC 2020 case. 
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Figure S8.4 Quantile-quantile plots of mean indoor PM2.5, on the fire days (A) and non-fire days 
(B) against Weibull distribution. The reference line represents the theoretical Weibull distribution. 

 

 

 

Figure S8.5 Diel plots (local time) A. Infiltrated PM2.5 /outdoor PM2.5 on fire days and B. 
Infiltrated PM2.5 / outdoor PM2.5 on non-fire days C. Diel plot of the difference in infiltrated PM2.5 

/ outdoor PM2.5 (non-fire days – fire days). Gray shading in A & B shows the standard deviation. 
Data are average of all the PurpleAir sensors in the NC 2020 case. The difference in mean 
infiltration ratio between fire days and non-fire days are most apparent in the daytime, consistent 
with more ventilation typically occurring during daytime. 
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Figure S8.6 Hourly time profile of PM2.5 concentration of the EPA monitors (black) and mean 
(purple) ± standard deviation (gray) of PM2.5 (corrected) measured by nearby PurpleAir sensors in 
the San Francisco Bay Area in August and September 2020. The plots only include EPA 
monitoring stations having at least three outdoor PurpleAir sensors within 5 km of them. The EPA 
measurement and nearby PurpleAir sensors measurement agree reasonably well with each other. 
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Figure S8.7 Scatter plot of PM2.5 (µg m-3) of the EPA monitors and mean PM2.5 (corrected) 
measured by nearby PurpleAir sensors in the San Francisco Bay Area in August and September 
2020. 
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Figure S8.8 Hourly time profile of PM2.5 concentration of the EPA monitors and mean (purple) ± 
standard deviation (gray) of PM2.5 (corrected) measured by nearby PurpleAir sensors in the Greater 
Los Angeles Area in August and September 2020. The plots only include EPA monitoring stations 
having at least three outdoor PurpleAir sensors within 5 km of them. 
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Figure S8.9 Scatter plot of PM2.5 (µg m-3) of the EPA monitors and PM2.5 (corrected) measured by 
nearby PurpleAir sensors in the Greater Los Angeles Area in August and September 2020 
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Figure S8.10 Infiltration ratio of buildings in different climate zones A. on fire days (ANOVA p 
= 0.004); B. non-fire days (ANOVA p < 10-3) in August and September 2020. Only climate zones 
with at least 10 indoor sensors being analyzed are included in this figure. Reference cities for 
different climate zones (which were included in our study) are: Zone 2-Napa, Zone 3-San 
Francisco & Oakland, Zone 4-San Jose, Zone 6-Los Angeles (LAX), Zone 8-Long Beach, Zone 
9-Los Angeles (Civic Center), Zone 12-Sacramento (California Energy Commission, 2018). 
Infiltration ratio of residential buildings (NC 2020 case) built in different periods C. on fire days 
(ANOVA p = 0.004); and D. on non-fire days (ANOVA p < 10-3). Only residential buildings are 
considered in C and D. Buildings in Zone 12 had lower infiltration ratios than other Northern 
California climate zones considered. 
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Figure S8.11 Infiltration ratio on fire days for cool buildings (95th percentile indoor temperature 
< 30ºC, N = 142) and hot buildings (95th percentile indoor temperature ≥ 30ºC, N = 1132) in the 
San Francisco Bay Area in August and September 2020. The cool buildings have significantly 
lower fire-day infiltration ratios than the hot ones (p < 0.01), and 17% of cool buildings had 
extremely low infiltration ratios (< 0.1). 
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Figure S8.12 Violin plot of total particle loss rate constant in buildings in on the fire days and 
non-fire days. NC = San Francisco Bay Area, SC = Los Angeles Area. Each violin plot shows the 
probability density of the total PM2.5 decay rate and a boxplot of interquartile range with whiskers 
extended to 1.5 times the interquartile range. Circles indicate the median, and horizontal lines 
indicate the mean. 
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Figure S8.13 Diel plots (local time) of average temperature measured by PurpleAir sensors in the 
San Francisco Bay Area in August-September 2020 (A. Indoor B. Outdoor) and November 2018 
(C. Indoor D. Outdoor); and in August-September 2020 in Greater Los Angeles Area (E. Indoor 
F. Outdoor). Gray shading shows the standard deviation. In the Summer 2020 cases, the difference 
in daytime indoor/outdoor temperature alternated between positive and negative values. In the NC 
November 2018 case, the indoor temperature was almost always higher than the outdoor 
temperature. 
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Figure S8.14 Median price of homes with indoor PurpleAir sensors vs. Median Housing Price in 
that city, sized by the number of indoor sensors in that city (only showing data from cities with at 
least 10 buildings with valid indoor sensors in the NC 2020 case). PurpleAir owners live in homes 
with estimated average property values 21% greater than the median property value for their cities. 
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Figure S8.15 A. Hourly PM2.5 measured by EPA AQMS against the linearly corrected (correction 
factor = 0.53) PM2.5 data measured by nearby PurpleAir sensors; B. Hourly PM2.5 measured by 
EPA AQMS against PM2.5 measured by the PurpleAir sensors after the binary tree correction, both 
for data in San Francisco Bay Area in August and September 2020. This figure demonstrates the 
binary tree model can improve the precision and accuracy of the sensors. 

 

 

 

Figure S8.16 Binary tree PM2.5 correction case. A. Distribution of mean Indoor/Outdoor PM2.5 

ratio during fire days and non-fire days for the buildings; B. Distribution of Infiltrated/Outdoor 
PM2.5 ratio during fire days and non-fire days for the buildings. C. Probability density distribution 
of total indoor particle loss rate constants of PM2.5 for the NC 2020 case. This figure demonstrates 
the binary tree correction does not meaningfully affect the fire day/non-fire day comparison. 
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Figure S8.17 Distribution of distance from the indoor sensor to A. the nearest EPA air quality 
measurement station and B. the nearest outdoor PurpleAir sensor in the NC 2020 case. The 
geometric mean (GM) distance from an indoor sensor to the nearest AQMS is 6.7 km, but it is 
only 0.21 km to the nearest outdoor PurpleAir sensor. 

 

 

Figure S8.18 Concentration timelines of PM2.5 reported by an “indoor” sensor and the nearest 
outdoor sensor. Because the indoor concentration measured is too close to and too well correlated 
with the outdoor concentration, this sensor might be placed outdoors. This node was therefore not 
used in this analysis.
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Table S8.1 Parameters and performance of 7 correction methods for the outdoor sensors in the 
San Francisco Bay Area in August and September 2020 (NC 2020 case). Parameters are for the 

correction equation . RH is between 0 and 1.  

 

 

Linear 
regression 
with 
intercept 

Linear 
regression 
no intercept 

Linear 
regression 
no intercept 
(ODR) 

Barkjohn et 
al. (2020b) 
US fire 
correction 

Holder et al. 
(2020) 
wildfire 
correction 

New fit 
incorporating 
RH 

Binary 
decision 
tree with 
RH 

β0 
[µg m-3] 3.52 n/a n/a 5.60 -3.21 3.92 n/a 

β1 0.50 0.53 0.54 0.53 0.51 0.50 n/a 

β2 n/a n/a n/a -0.084 n/a -0.80 n/a 
RMSEa [µg 
m-3] 12.2 12.6 12.6 12.8 13.9 12.2 7.7 

NRMSEb 0.48 0.50 0.50 0.51 0.55 0.48 0.39 
Regression 
R2 0.88 n/a n/a n/a n/a n/a n/a 

R2 of 
calibrated 
data against 
EPA 
reference 
measureme
nts 

0.88 0.87 0.87 0.88 0.88 0.88 0.95 

 

The root mean square error (RMSE, in [µg m-3]) is calculated by 

, 

where N is the number of 1-hour PM2.5 [µg m-3] data points. xh is hourly averaged sensor PM2.5 
concentration [µg m-3] for hour h after correction. Rh is the hourly concentration of PM2.5 [µg m-

3] measured by the EPA AQMS. 

 

The root mean squared error normalized to the observed mean (NRMSE) is calculated by: 

, 

where Rh is the mean PM2.5 [µg m-3] observed by reference EPA AQMS. 
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Table S8.2 Corrections based on linear regression of EPA monitor PM2.5 measurements with 
PurpleAir Sensors within a certain distance in the San Francisco Bay Area in August and 
September 2020 (NC 2020 case). Number of sensors refer to the total number of sensors near EPA 
monitoring sites that meet the requirements described in the “Selection of correction method” 
section in the SI Appendix. At most 50 sensors near each EPA site were included. Parameters are 
for the correction equation. 

Distance (km) 2 5 10 20 
Number of sensors 104 442 624 750 
Intercept β0 ≠ 0 
β0 [µg m-3] 3.26 3.52 3.77 4.05 
β1 0.50 0.50 0.50 0.49 
R2 0.89 0.88 0.87 0.85 
RMSE [µg m-3] 11.5 12.2 12.7 13.5 
NRMSE 0.46 0.49 0.51 0.53 
No intercept (β0 = 0) 
β1 0.53 0.53 0.51 0.52 
R2 n/a n/a n/a n/a 
RMSE [µg m-3] 11.8 12.6 13.1 13.9 
NRMSE 0.47 0.50 0.52 0.55 
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Table S8.3 Median prices of homes with PurpleAir sensors compared to Home Value Index in 
cities with at least 10 buildings with valid indoor sensors in the NC 2020 case, as of December 
2020. Prices were rounded to nearest thousand. 

 

Median price of 
homes with 
PurpleAir 
sensors 

Number of 
buildings with 
PurpleAir 
sensors 

Zillow Home 
Value Index of 
that city 

Price 
Difference a 

Alameda $1,143,000 18 $1,119,000 2% 
Albany $1,257,000 14 $1,170,000 7% 
Atherton $7,306,000 10 $6,579,000 11% 
Belmont $2,240,000 13  $1,902,000 18% 
Berkeley $1,616,000 93 $1,411,000 14% 
Campbell $1,344,000 11 $1,441,000 -7% 
Davis $666,000 19 $759,000 -12% 
El Cerrito $1,045,000 14 $ 1,006,000 4% 
Emeryville $822,000 11 $ 583,000 41% 
Lafayette $1,992,000 33 $ 1,499,000 33% 
Los Altos $3,653,000 35 $ 3,429,000 7% 
Los Gatos $2,264,000 22 $ 2,142,000 6% 
Menlo Park $3,645,000 32 $2,417,000 51% 
Mill Valley $1,911,000 18 $1,746,000 9% 
Moraga $1,886,000 11 $1,726,000 9% 
Mountain View $2,317,000 44 $1,851,000 25% 
Oakland $1,300,000 104 $851,000 53% 
Orinda $1,941,000 24 $2,292,000 -15% 
Palo Alto $3,594,000 47 $3,151,000 14% 
Portola Valley $3,523,000 17 $4,099,000 -14% 
Redwood City $2,196,000 35 $1,628,000 35% 
Richmond $807,000 12 $635,000 27% 
Sacramento $469,000 39 $400,000 17% 
San Carlos $2,248,000 16 $2,003,000 12% 
San Francisco $1,696,000 193 $1,400,000 21% 
San Jose $1,460,000 49 $1,141,000 28% 
San Mateo $1,919,000 28 $1,461,000 31% 
San Rafael $1,447,000 15 $1,214,000 19% 
Santa Rosa $713,000 21 $637,000 12% 
Saratoga $3,109,000 11 $3,053,000 2% 
Sunnyvale $1,654,000 31 $1,771,000 -7% 
Walnut Creek $1,414,000 21 $958,000 48% 

aPrice difference = (Median price of homes with PurpleAir sensors - Median City Home Value)/ 
Median City Home Value 
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Table S8.4 Mean ± standard deviation of fire-day infiltration ratios and the number of buildings 
with fire-day infiltration ratios below 0.14 or above 0.40 in cities with at least 10 buildings with 
valid indoor sensors in the NC 2020 case. 

 

City 

Number of 
buildings with 
PurpleAir 
sensors 

Mean ± SD of 
Fire-day 
infiltration ratio 

No. of Buildings 
with Fire-day 
infiltration ratio 
< 0.14 

No. of Buildings 
with Fire-day 
infiltration ratio 
> 0.40 

Alameda 18 0.19±0.09 5 1 
Albany 14 0.31±0.11 0 3 
Atherton 10 0.31±0.12 1 3 
Belmont 13 0.27±0.08 1 1 
Berkeley 93 0.27±0.10 10 13 
Campbell 11 0.24±0.13 0 2 
Davis 19 0.17±0.16 11 2 
El Cerrito 14 0.27±0.10 2 1 
Emeryville 11 0.26±0.16 3 1 
Lafayette 33 0.23±0.11 5 4 
Los Altos 35 0.33±0.19 7 12 
Los Gatos 22 0.34±0.15 2 7 
Menlo Park 32 0.27±0.12 3 5 
Mill Valley 18 0.36±0.18 1 6 
Moraga 11 0.16±0.10 4 0 
Mountain View 44 0.25±0.14 12 5 
Oakland 104 0.25±0.12 14 11 
Orinda 24 0.24±0.19 11 5 
Palo Alto 47 0.28±0.17 12 15 
Portola Valley 17 0.27±0.12 2 3 
Redwood City 35 0.30±0.15 8 11 
Richmond 12 0.25±0.16 4 2 
Sacramento 39 0.29±0.19 10 10 
San Carlos 16 0.20±0.10 5 1 
San Francisco 193 0.28±0.12 24 35 
San Jose 49 0.26±0.14 14 10 
San Mateo 28 0.26±0.11 3 2 
San Rafael 15 0.31±0.16 3 5 
Santa Rosa 21 0.31±0.15 4 6 
Saratoga 11 0.30±0.18 0 2 
Sunnyvale 31 0.22±0.15 8 7 
Walnut Creek 21 0.21±0.14 9 1 
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Table S8.5 Weibull parameters of the concentration indoor/outdoor ratios for buildings with 
PurpleAir sensors in August-September 2020 in the San Francisco Bay Area (35 µg m-3

 daily 
average PM2.5 concentration measured at the nearest EPA measurement site was used as the 
threshold for fire days and non-fire days). N = 1274. Unhealthy days are defined as days with daily 
average EPA PM2.5 concentration above 55.4 µg/m3.  

 Mean indoor conc µg m-3 Indoor/outdoor ratio Infiltration ratio 

 γ β γ β γ β 
Non-fire 
days 4.65 1.82 1.00 1.35 1.00 1.35 

Fire days 12.4 1.50 0.45 1.26 0.30 2.00 
Unhealth
y days 14.9 1.40 0.34 1.19 0.26 1.74 

 

Quantile-quantile plots (SI Appendix, Figure S8.4) show the mean concentration of indoor PM2.5 
in all the buildings can be satisfactorily described by the Weibull distribution. The scale parameter 
and shape parameter of the Weibull fit are γ and β, respectively. The probability distribution 

function for x is , where x > 0. Parameters of the SC 2020 and NC 2018 
cases are not shown here due to the small sample sizes, which are less representative of all the 
buildings in these areas at that time. 
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