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Summary

Xylella fastidiosa subsp. fastidiosa causes Pierce’s
disease of grapevine (PD) and has been present in
California for over a century. A singly introduced
genotype spread across the state causing large out-
breaks and damaging the grapevine industry. This
study presents 122 X. fastidiosa subsp. fastidiosa
genomes from symptomatic grapevines, and
explores pathogen genetic diversity associated with
PD in California. A total of 5218 single-nucleotide
polymorphisms (SNPs) were found in the dataset.
Strong population genetic structure was found; iso-
lates split into five genetic clusters divided into two
lineages. The core/soft-core genome constituted
41.2% of the total genome, emphasizing the high
genetic variability of X. fastidiosa genomes. An eco-
logical niche model was performed to estimate the
environmental niche of the pathogen within California
and to identify key climatic factors involved in dis-
persal. A landscape genomic approach was under-
taken aiming to link local adaptation to climatic
factors. A total of 18 non-synonymous polymor-
phisms found to be under selective pressures were
correlated with at least one environmental variable
highlighting the role of temperature, precipitation and
elevation on X. fastidiosa adaptation to grapevines in
California. Finally, the contribution to virulence of
three of the genes under positive selective pressure
and of one recombinant gene was studied by reverse
genetics.

Introduction

In agricultural ecosystems, bacterial plant pathogens
offer largely untested models to measure a phenotypic
trait such as virulence and map associated genomic loci.
A long standing paradigm in crop–pathogen interactions
is that hosts and pathogens are engaged in gene-for-
gene co-evolutionary dynamics (Keen, 1990). However,
with the development of high-throughput genomics, multi-
ple studies reported that these interactions might also be
influenced by abiotic factors acting on genetic loci (Croll
and McDonald, 2017). While the study of microbial bioge-
ography has expanded in the recent years, the local
adaptation of plant pathogens has not been expansively
examined, despite the fact that these are biologically
amenable systems to study (Kraemer and Boynton,
2017). Furthermore, pathogens in agroecosystems can
have devastating effects on crop yields and epidemics
remain a major concern (Stukenbrock and McDonald,
2008; Fisher et al., 2012). Understanding pathogen evo-
lution and the origin of pathogenicity and virulence
remain central to mitigate impacts and risks of plant
pathogens.

In the last two decades, landscape genetics has
emerged as a discipline aimed at linking population
genetics, spatial statistics and landscape ecology in order
to quantify the effects of landscape features on gene flow
and adaptation (Manel et al., 2003; Manel and
Holderegger, 2013). The heterogeneous space or ‘land-
scape’ affects microevolutionary dynamics at various
scales, leaving genomic signatures that may be identified
(Biek and Real, 2010). To date, in this emerging field,
Dudaniec and Tesson (2016) noted that little attention
has been paid to the linkage between microorganism dis-
persal and environmental factors, despite evidence of
non-random distributions and patterns of isolation by dis-
tance (IBD) within populations (Martiny et al., 2006).
Because of their high dispersal abilities (Taylor et al.,
2006), microbes were long thought to display little genetic
biogeographic differentiation. However, numerous studies
support the idea that microbial species indeed exhibit bio-
geographic patterns (Martiny et al., 2006).

Local adaptation occurs when different biotic and/or
abiotic selective pressures lead to higher fitness in a
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focal population compared to other (Giraud et al., 2017).
Different considerations must be taken into account when
investigating spatially structured microbial populations
compared to macro-organisms, such as large population
sizes, fast generation time, colonization bottlenecks and
seasonal variations (Prosser et al., 2007; Hanson et al.,
2012; Hahn et al., 2015). Recombination also influences
local adaptation by introducing foreign genes and
increasing genetic variance, either allowing for adaptation
or disturbing locally adapted gene combinations
(Bürger, 1999).
Xylella fastidiosa subsp. fastidiosa in California repre-

sents an opportunity to study local adaptation of a plant
pathogen in an agroecosystem. This pathogen is respon-
sible for Pierce’s disease of grapevine (PD), a devastat-
ing disease first described in 1892 in California (Pierce,
1892). Multiple epidemics have been reported across the
state over the past century. The disease is caused by a
blockage of xylem vessels, probably due both to bacterial
populations and/or secretions and plant defence
responses (Sicard et al., 2018). The following reduction
in xylem sap flow leads to leaf scorch and stunted growth
and can result in vine death. The only natural means of
pathogen spread is via xylem sap-feeding insect vectors
(Sicard et al., 2018). X. fastidiosa has been classified into
four subspecies, namely, fastidiosa, multiplex, pauca
and sandyi. A fifth subspecies isolated in mulberry,
subsp. morus, is thought to be the results of inter-
subspecific homologous recombination between subsp.
fastidiosa and multiplex (Nunney et al., 2014; Vanhove
et al., 2019). X. fastidiosa populations have been histori-
cally isolated due to geographical and host barriers, but
the emergence of the pathogen in Europe in 2013
(subsp. pauca) is an example of the potential impacts
associated with human-mediated invasions (Sicard et al.,
2018). The clade of subsp. fastidiosa causing PD is not
native to California; available data suggest a single intro-
duction from Central America (Nunney et al., 2010). This
singly introduced genotype then spread in Californian
vineyards and is now found across the major grape-
growing regions of the state (Tumber et al., 2014). With
favourable climatic conditions plant pathogens are
expected to extend their range (Garrett et al., 2006), and
the impact of climate on X. fastidiosa has been exten-
sively reported (Bosso et al., 2016a). Low winter temper-
atures are known to be the primary limitation of the
geographical range of X. fastidiosa causing PD (Purcell,
1974), suggesting that the disease may increase its distri-
bution due to climate change. As such, this disease sys-
tem offers a broad set of spatial scales to study abiotic
factors that affect plant pathogen distribution.
In the present study, five geographic locations were

sampled across California resulting in the sequencing
of 122 subsp. fastidiosa genomes obtained from

symptomatic grapevines. The genetic diversity and popu-
lation structure of the plant pathogen were quantified and
the genomic basis of adaptation to abiotic factors at the
scale of California was investigated by using two different
approaches. The first approach consisted of detecting
outlier loci that deviate from genome-wide patterns of
diversity (Vitti et al., 2013). This approach uses large
numbers of single nucleotide polymorphisms (SNPs) and
detects markers that exhibit higher level of genetic differ-
entiation than expected under neutrality (Holderegger
and Wagner, 2008). The second approach, known as
ecological association, detects significant statistical asso-
ciations between potential genetic markers and environ-
mental variables (Mita et al., 2013; Manel et al., 2016).
The list of polymorphisms uncovered from these environ-
mental associations and potentially involved in local
adaptation can then be compared to genomic regions
under selection to provide additional supports of environ-
mental adaptation and reduce false positives (Branco
et al., 2017).

We first modelled the ecological niche of the PD-
causing bacterium in California, and used whole
genome sequence data to explore the genetic structure
of this population. Then, we examined patterns of selec-
tion by investigating genomic signatures of positive
selection and correlate them with altitude, temperature
and precipitation variables. While comparative genomic
studies may reveal genes that contribute to pathogen
virulence (Griswold, 2008), reverse genetics enable to
experimentally test whether these genes are indeed
involved in its pathogenesis. We also selected three
genes under positive selective pressure and one recom-
binant gene and tested their effect on X. fastidiosa viru-
lence on grapes.

Results

Population subdivision, variant detection and spatial
structure

An average of 1 908 446 reads per isolate was obtained
and the mapping of reads to the reference X. fastidiosa
subsp. fastidiosa Temecula1 (ASM724v1) averaged
98.05% (Supporting Information Table S1), with a depth
of coverage of 132.30 � 60.2 SD. Genetic comparisons
were possible due to a conservative variant-calling strat-
egy resulting in a set of high confidence SNPs (see Mate-
rials and Methods). A total of 5218 SNPs were identified
among the 122 isolates sequenced in California
(Table 1). A Bayesian Analysis of Population Structure
(BAPS) revealed the presence of two lineages and five
genetic clusters: cluster 1 in Santa Barbara, cluster 2 in
Temecula, cluster 3 in Bakersfield, cluster 4 in Sonoma
and cluster 5 in Napa (Fig. 1, Supporting Information
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Table S1), harbouring different amount of genetic diver-
sity ranging from 727 to 2875 SNPs (Table 1). Each clus-
ter was roughly associated with its geographic origin, but
a few outliers were present in each genetic cluster indica-
tive of exchange among these subpopulations: cluster
1 (57.1% of isolates were isolated in Santa Barbara, 3 iso-
lates were outliers), cluster 2 (Temecula, 94.7%, 1 out-
lier), cluster 3 (Bakersfield, 84.6%, 4 outliers), cluster
4 (Sonoma, 92.6%, 2 outliers) and cluster 5 (Napa,
88.3%, 5 outliers). Phylogenetic analysis revealed
strongly supported clades. However, gene flow has
occurred among subpopulations as portrayed by Wright’s
FST (Table 2), with values ranging from 0.108 to 0.218.
Signs of isolation by distance were also identified (Mantel
r test = 0.392, P ≤ 0.001), indicative of genetic disparities
over the landscape. The realized niche of subsp. fas-
tidiosa infecting grapevines across California was
predicted using MaxEnt, and selected environmental vari-
ables, precipitation in the coldest quarter (bio19; 46.0%)

and altitude (41.8%) contributed the most to the
model (Fig. 1).

Pan-genome analysis

To investigate the pan-genome of this population, we per-
formed de novo assemblies on the entire dataset
(Supporting Information Table S2). Isolates had an aver-
age of 2 517 953 bp, and a N50 and L50 of 51 903 bp
and 20.97 respectively. The genetic diversity in the five
different clusters ranged from 6.15 × 10−5 to 3.36 × 10−5

(Table 1). Due to quality issues, two isolates were
removed (Je9 and Je17) from the dataset. Analysis of the
core and accessory genomes revealed the presence of
4583 genes, with 1073 (23.4% in ≥99% of isolates) core
genes and 816 (17.8% in 99%–95% of isolates) soft-core
genes, 756 shell genes shared by 15%– 95% of the pop-
ulation (16.5%) and 1938 cloud genes shared by less
than 15% of the population (42.5%; Fig. 2C). Presence of

Table 1. Population genetic statistics for clusters of Pierce’s disease causing Xylella fastidiosa strains causing disease in California grapevines.

Cluster SNPa η π θ Tajima’s D

Santa Barbara (cluster 1, n = 7) 727 297 5.97 × 10−5 6.64 × 10−5 −0,549
Temecula (cluster 2, n = 16) 2316 219 3.38 × 10−5 4.83 × 10−5 −1.170
Bakersfield (cluster 3, n = 26) 1362 184 6.15 × 10−5 5.07 × 10−5 0.842
Sonoma (cluster 4, n = 28) 2875 211 5.76 × 10−5 5.18 × 10−5 0.450
Napa (cluster 5, n = 43) 2479 135 3.36 × 10−5 4.35 × 10−5 −0.844
Total (n = 120) 5218 5240 0.275 0.187 1.580

Note: A total of 5218 SNPs were identified. In the core genome Santa Barbara isolates (cluster 1) displayed the highest number of mutations
(η = 297), where Napa only harboured 135 mutations. Each cluster displayed similar nucleotide diversity (π) and population mutation rates (θ),
but Tajima’s D values were negative for clusters 1, 2 and 5, indicative of a recent population expansion.
a. Single nucleotide polymorphism mapped to the X. fastidiosa subsp. fastidiosa Temecula1 reference.

Fig. 1. Distribution of and phyloge-
netic placement of the Pierce’s
disease-causing Xylella fastidiosa
subsp. fastidiosa populations within
California. The predicted niche of the
population was estimated using
MAXENT; area values closer to
1 (red) indicate higher likelihood of
pathogen occurrence. [Color figure
can be viewed at
wileyonlinelibrary.com]
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homologous recombination was investigated using
ClonalFrameML and fastGEAR on the core genome
alignment (725 750 bp). The relative effect of recombina-
tion to mutation was: r/m = 6.797 (i.e. recombination gen-
erated more substitutions than mutation), the relative rate
of recombination to mutation was R/θ = 0.524, and the
average length of imports equal to δ = 406 bp.
ClonalFrameML and fastGEAR analyses identified
98 and 47 recombining segments respectively
(Supporting Information Fig. S6). Recombining elements
were mapped to the reference genome; 64 and 28 of the
recombining segments found respectively by
ClonalFrameML and fastGEAR were identified and
mapped to known genes (Supporting Information
Tables S9 and S10). Ten of these genes were found
using both methods, including an ABC transporter
(cvaB), a cardiolipin synthase (cls), a transcriptional reg-
ulator (attO) and a cation acetate symporter (ppa_1).
Analysis of depth coverage variation has the potential

to reveal duplications. A total of 30 genes were found to
have an average coverage ≥2 (Supporting Information
Table S12). These genes encoded mostly for hypotheti-
cal proteins (n = 16) or phage-related proteins (n = 12).
Interestingly, each cluster seemed to have a gene dupli-
cation for PD_0789, a resolvase/integrase-like protein
(GO:0003677; GO:0000150; GO:0006310; Supporting
Information Table S12). Additionally, Clusters 1 and
3, which are part of the same lineage, had a higher aver-
age coverage for PD_1184 (mean = 1.977 and 1.874
respectively), a toxin-like protein. We interpreted these as
loci duplications conserved in these populations.
To investigate the temporal evolution of the grapevine

genotype, an ML phylogeny was constructed using the
core genome of the 120 isolates with an additional 24 pre-
viously published subsp. fastidiosa genomes. Published
isolates include the following regions: eastern United
States (n = 3) and Mexico (n = 2) with known isolation
times for a time total time period dating from 1987 to
2015 (28 years, Supporting Information Fig. S7,
Table S2). Tip-dating inference using BEAST led to the
inference of a substitution rate of 6.37724 × 10−7 per site
per year (95 Confidence Interval (CI): 3.9277 × 10−7,
9.0912 × 10−7). The evolutionary rate was then extrapo-
lated to the whole subspecies using BEAST (Fig. 2A).

The split between the Mexican outgroup and the rest of
the USA isolates was estimated at 1269 CE (CI:
850 CE–1668 CE). A divergence between eastern and
western isolates was estimated at 1827 CE (1676 CE–
1946 CE). Based on these estimations, the time to most
common recent ancestor (TMRCA) of subsp. fastidiosa
in California dates to 1960 CE (1851 CE–1976 CE).

Selection

In order to investigate signs of natural selection, two
gene-based methods were used: dN/dS (ω) and the
McDonald–Kreitman (MK) test. In addition, one univariate
outlier test, XTX, based on high confidence SNPs, was
also used. The core genome was generated based on de
novo assemblies and the dN/dS ratio was estimated using
codeml. The SNP outlier XTX method identified 190 SNPs
that were mapped to the reference genome leading to
the identification of 60 genes and a total of 64 non-
synonymous mutations (Supporting Information
Table S8). Some of the gene products under selection
encoded for proteins involved in pathogenesis
(GO:0009405) such as a hemolysin-type calcium binding
domain (cluster 3, 4 and 5), DNA recombination
(GO:0006310) and proteolysis (GO:0006508; Supporting
Information Table S11). Additionally, selection was inves-
tigated within each genetic cluster to assess whether the
different clusters were under different selective pres-
sures. The results of that analysis are summarized in the
Supporting Information.

Selection, recombination and virulence

Three genes encoding for hypothetical proteins and dis-
playing high values of dN/dS in at least one of the five
clusters (PD_0516 > 2.8 in cluster 4 and 5;
PD_2073 > 2.6 in cluster 4; PD_0616 > 1 in cluster 3)
were knocked out to determine their effect on X. fas-
tidiosa virulence in grapes. One recombinant gene with
unknown function (PD_0579, Supporting Information
Table S9) was also selected. The PD_2073 mutant did
not survive on selective growth media pointing towards
an essential physiological role. The other three knockout

Table 2. FST statistics for X. fastidiosa genetic clusters from grapevines in California.

FST Cluster 1 (n = 7) Cluster 2 (n = 16) Cluster 3 (n = 26) Cluster 4 (n = 28) Cluster 5 (n = 43)

Santa Barbara (cluster 1, n = 7) 0.000 0.108 0.146 0.218 0.137
Temecula (cluster 2, n = 16) 0.108 0.000 0.179 0.132 0.111
Bakersfield (cluster 3, n = 26) 0.146 0.179 0.000 0.197 0.212
Sonoma (cluster 4, n = 28) 0.218 0.132 0.197 0.000 0.155
Napa (cluster 5, n = 43) 0.137 0.111 0.212 0.155 0.000
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mutants (PD_0516, PD_0579 and PD_0616 mutants),
and the virulent wild-type (WT) PD strain STL, were
mechanically inoculated into susceptible grapevines. No
difference in disease severity was observed among the
different strains. A more detailed summary of the results
is available as Supporting Information.

Association analysis of climatic variables

The association analyses between SNPs and environ-
mental variables were performed using the Bayes’ factors
and non-parametric Spearman’s Rho methods
implemented in Bayenv2, and latent factor mixed model

Fig. 2. Characterization of Xylella fastidiosa subsp. fastidiosa in California.A. Clustering of subsp. fastidiosa genetic clusters; a core genome phy-
logeny of the 120 isolates with tips coloured by region of isolation, Santa Barbara (cyan), Bakersfield (dark green), Temecula (green), Napa (yel-
low), Sonoma (blue), other isolates are left in black. Asterisks highlight isolates from outside of California, with the outgroup CFBP8073 being
from Mexico.B. Chart showing proportion of shared genes among the genomes.C. Representation of the gene in the core, soft-core and acces-
sory genome for the 120 Californian isolates. [Color figure can be viewed at wileyonlinelibrary.com]
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(LFMM). Thirty genes, which were found to be
responding to positive selective pressure, were signifi-
cantly correlated with a climatic variable using two Envi-
ronmental Association Analysis (EAA) methods. A total
of 59 SNPs were significantly associated with at
least one environmental variable, including 18 non-
synonymous (NSY) mutations (Table 3, Fig. 3, Suppor-
ting Information Fig. S2). Among the 18 correlated NSY
loci, four were associated with altitude, three with annual
mean temperature (bio1), four with mean temperature in
the warmest quarter (bio10) and three with mean temper-
ature in the wettest quarter (bio8). Precipitation variables
were also correlated with 81 SNPs including four NSY
mutations that were found to be associated with precipi-
tation in the wettest month (bio13). Only one NSY muta-
tion was detected with all three methods (snp_977382;
Fig. 3F, Table 3 and Fig. S2): a mutation on the
PD_0789 gene encoding for a recombinase protein. The
C to T transition on the first codon led to a change from
leucine to phenylalanine and was significantly correlated
with mean temperature in the warmest quarter (bio10).
Finally, one SNP (snp_1295815, Fig. 3D) on gene
PD_1095 (hypothetical protein) was associated with four
different variables. Lower altitude and temperature in the
northern part of California seemed to have an effect on
these isolates.
Among Sonoma isolates, which experience lower

annual mean temperature compared to the rest of the
dataset (z = 4.115; P ≤ 0.001, calculated in a Wilcoxon
rank sum test), a mutation inducing a glutamine to histi-
dine change was observed in the PD_1517, a gene
encoding for an arginine deaminase (Fig. 3B,
snp_629619). Similar associations were observed for the
PD_0515 and PD_1095 genes (Fig. 3A and Supporting
Information Fig. S2). Higher temperature in Southern Cal-
ifornia compared to Napa and Sonoma regions
(z = 2.872; P ≤ 0.005) also led to significant association
between snp_161654 on PD_0127 and mean tempera-
ture in the wettest quarter (bio13). Lower elevation levels
in Napa and Sonoma counties (z = 3.240; P ≤ 0.001)
were associated with SNPs in the PD_0515, PD_0764,
PD_1095 and PD_1243 genes. Precipitation in the
warmer quarters (bio18), and in the wettest month
(bio13), which are more abundant in Northern California
(z = 5.671; P ≤ 0.001), were correlated with a NSY muta-
tion on gene PD_0790 encoding for a DNA primase
(snp_978167; Fig. 3E) and PD_0620, a glycine decar-
boxylase (snp_765080; Fig. 3C). One NSY mutation
change in gene PD_0744 (encoding for a surface pro-
tein), was present in the genetic cluster 2 (Temecula at
93.75%), and was associated with elevation and found to
be under positive selection (MK test = 0.788, Supporting
Information Table S7). The average elevation for this
cluster was higher than for other genetic clusters.

Discussion

This study used data on the genetic diversity of a popula-
tion of X. fastidiosa subsp. fastidiosa causing disease in
grapevines at a regional scale (i.e. state of California,
USA). The sampling design provided a broad set of spa-
tial scales to study the influence of physical (abiotic) fac-
tors on the distribution of this plant–pathogen. Selection
pressures are acting on this population derived from a
single introduction event, and that lineage-specific selec-
tion is at play and can be identified within the different
genetic clusters. A total of 5218 SNPs were uncovered in
the dataset, which represents as much genetic diversity
as that of the four ST53 genomes (4076 SNPs) described
in Giampetruzzi et al. (2017), which are associated with
an epidemic in olive trees in Italy. This finding highlights
the clonal character of subsp. fastidiosa in California
grapevines. However, signs of population structure were
detected in the form of two lineages, one formed by
strains from Bakersfield and Santa Barbara, the other
formed by Temecula and northern California strains. Pop-
ulation subdivisions were more marked between isolates
from Bakersfield and the northern regions, with FST

values reaching 0.197 and 0.212 for Sonoma and Napa
counties respectively. Gene flow remained limited
between the northern clusters (FST = 0.155), probably
due to the Mayacamas Mountains acting as a physical
barrier between the two counties, limiting insect vector
dispersal. It is not clear what ecological process has led
to the geographic structuring of pathogen populations
observed here.

The tip dating approach displayed significant temporal
signal, allowing for evolutionary rate estimation
(6.3772 × 10−7 mutation per site per year; CI:
3.9277 × 10−7, 9.0912 × 10−7). This value approaches
the rate previously estimated for a subsp. pauca clade
(7.6204 × 10−7 mutation per site per year; Vanhove
et al., 2019). We estimated the introduction date of
subsp. fastidiosa in the USA to be between 850 CE and
1668 CE, and in California to be between 1851 CE and
1976 CE. This study confirms that PD-causing subsp.
fastidiosa is not native to the United States, as hypothe-
sized by Nunney et al. (2010). Hewitt (1958) argued that
the pathogen originated from the Gulf Coastal Plain of
the USA based on the resistance of wild grapevines in
that region, a hypothesis not supported by our results.
Each main population was estimated to have a most
recent common ancestor in the mid-1900s, although it is
known that PD occurred in these regions in the early
1900s (Hewitt, 1958). One explanation, assuming the
dating estimates are correct, is that genetic sweeps
occurred when the area dedicated to grapevines in Cali-
fornia doubled in the 1970s (Geisseler and Horwath,
2016), which could be associated with landscape
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changes and modifications to farming practices, or trans-
portation and establishment of novel genotypes in vari-
ous regions (Sicard et al., 2018). Regardless, while the
inferred dates and respective CI are ecologically reason-
able, considering the history of PD in the USA, additional
sampling efforts from other locations are expected to pro-
vide more robust data on the origin of PD in the USA.
The core/soft-core genome constituted 41.2% of the

4583 genes in the population, similar to what has been
observed for other bacteria and X. fastidiosa (Lapierre
and Gogarten, 2009; Mira et al., 2010). The large acces-
sory genome, 1938 cloud genes shared by <15% of the
population (42.3%), appeared similar to other study. In a
study of 205 multidrug-resistant (MDR) Serratia mar-
cescens in the United Kingdom and Ireland,
Moradigaravand et al. (2016) found an accessory
genome value of 61.3%. Analysis of depth of coverage

variation revealed duplications that could contribute to
pathogenesis. In the first lineage, 10 genes had double
coverage including PD_1184, a toxin protein and
PD_0789 (an integrase involved in DNA recombination).
On the other hand, depth of coverage variation was more
pronounced in the second lineage, with over 35 genes
found in each of the three genetic clusters. These are
expected to be conserved duplications, and are poten-
tially important for host (plant or insect) colonization.

Various selective forces are acting on the population of
subsp. fastidiosa analysed. Tajima’s D values were neg-
ative in genetic clusters 1, 2 and 5. This metric searches
for genomic regions undergoing a selective sweep
(Tajima, 1989). Negative Tajima’s D values are indicative
of a surplus of rare alleles, signatures of positive selec-
tion or recent population expansion (Charlesworth, 2006).
ClonalFrameML and fastGEAR analyses revealed the

Fig. 3. Six SNPs displaying the highest differences between the population carrying the reference nucleotide and the population with the mutation
are shown. Each map is composed of the environmental variable associated with the correlated SNP. The change in aminoacid is indicated and
density plots portray the values of the environmental variable for the two populations of isolates (wild-type and mutant). The full maps of the
18 non-synonymous mutations associated with a climatic variable can be found on Supporting Information Fig. S2. [Color figure can be viewed at
wileyonlinelibrary.com]
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exchange of genetic material occurring among the
genetic clusters. Recombination is recognized as a main
driver of genetic diversity in this species (Nunney et al.,
2014). In this population, the relative effect of recombina-
tion and mutation to substitution accumulation was 6.797.
Previous work found that recombination contributed twice
as much (Vanhove et al., 2019), indicating that recombi-
nation within subsp. fastidiosa in California is more fre-
quent than in other populations of X. fastidiosa studied. It
is possible that allele exchange has limited fitness conse-
quences, given the population is host-limited and rela-
tively young. Additionally, the singly-introduced genotype
affecting grapevines in California has recombined with
endemic subsp. multiplex, potentially facilitating subsp.
fastidiosa adaptation to grapevines and environmental
conditions (Vanhove et al., 2019).

Recombining genes that persist within populations may
confer benefits to the strains that harbour them. We here
tested whether a recombining gene, PD_0579, had an
effect on X. fastidiosa virulence. The deletion of this gene
did not have any effect on multiplication or movement of
the bacterium within grapevines or on disease symptom
development, pointing towards its lack of effect on X. fas-
tidiosa virulence in this plant species. Similarly, the three
genes under positive selection tested biologically had no
effect on disease symptom development or in planta
movement. These strains might have already been
selected for their fast multiplication and movement in
grapes and as a consequence, may already be well
adapted to this host. These genes may be associated
with insect colonization, for example, or abiotic stresses
among other possibilities. A NSY mutation in one of the
candidate genes, PD_0516, was significantly associated
with the annual mean temperature, suggesting that genes
involved in local adaptation might not necessarily be
associated with pathogenicity. PD_2073 encodes a hypo-
thetical protein within an operon including six other genes
with homology to the type I restriction and modification
system (ProOpDB; Taboada et al., 2011), its mutant did
not grow in vitro. This gene may also be part of this large,
multi-functional enzyme complex.

Selective pressures imposed by biotic and abiotic fac-
tors may provide higher fitness to local populations in
relation to those from other regions. Comparing the rate
of synonymous and non-synonymous mutations has
been widely used in microbial genomics (Giraud et al.,
2017). Other studies have previously identified genes in
bacterial plant pathogens using this approach. For
instance, Richard et al. (Richard et al., 2017) reported
selection in genes involved in resistance to copper-based
insecticide in Xanthomonas citri pv. citri. In the present
study, the reverse-ecology approaches identified signa-
tures of adaptation in genes involved in several functions
including response to antibiotics (mrcB), pathogenesis

(btaE and upaG), heme transport (ccmC) and cell adhe-
sion (pilA_1). These findings highlight the adaptive poten-
tial of X. fastidiosa, a concern for regions outside its
historical range in the Americas associated with recent
disease outbreaks (Sicard et al., 2018).

We used an ecological niche modelling approach to
understand the abiotic niche requirements of subsp. fas-
tidiosa in California grapevines. The predictive environ-
mental model described where PD has been reported
over past years (Tumber et al., 2014). These analyses
confirmed the influence of climate on the chronic estab-
lishment of the bacterium, as previously suggested
(Purcell, 1997). This approach has been previously used
to predict the X. fastidiosa ecological niche in Italy and
across the Mediterranean basin (Bosso et al., 2016a).
Minimum temperature in the coldest month (Bio6) and
altitude were identified as important factors in shaping X.
fastidiosa distribution. A colder winter climate has been
previously shown to be a limiting factor for X. fastidiosa
survivorship in grapevines (Purcell, 1977).

The ecological determinants leading to subsp. fas-
tidiosa adaptation to grapevines in California were stud-
ied in relation to the spatial genomic structure observed
in this dataset. This approach aimed to characterize the
association between genetic loci, selection pressures
and abiotic factors. Eighteen NSY mutations were
detected using EAAs methods. GO term analyses rev-
ealed that these genetic changes were primarily associ-
ated with genes involved in recombination, glycine
catabolism and protein phosphorylation. A SNP in a rec-
ombinase protein (PD_0789) was found using all three
landscape genomic methods and may play a role in the
ability of the pathogen to adapt to its environment. Both
an ABC transporter (PD_0501) and an arginine deami-
nase (PD_0517) had SNPs correlated with a temperature
variable. In these cases, few isolates acquired the muta-
tion, which then spread within focal populations. One
NSY (snp_1446184) was significantly correlated with alti-
tude and minimum temperature in the coldest month,
which appeared as a potential limiting factor for pathogen
expansion. PD has been reported in areas where winter
temperature reaches 1–4�C (Purcell, 1997) but freezing
exposures led to the elimination of the disease (Purcell,
1980). These findings provide evidence that epidemiolog-
ical dynamics can be directly influenced by abiotic factors
over short timescales as suggested by Biek and Real
(2010). The role of abiotic factors in agroecosystems
might be relevant to pathogen adaptation and future stud-
ies should consider such interactions.

The present study revealed the genomic structure of a
PD-causing X. fastidiosa subsp. fastidiosa population in
California, and shed light onto the environmental factors
associated with the adaptation of this plant pathogen.
Evidence of local adaptation was observed and despite
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the presence of a robust population structure, the study
supports the single-introduction hypothesis (Nunney
et al., 2010). The relatively young age of this population
resulted in the formation of distinct genetic clusters dis-
playing signs of homologous recombination. The study of
selection and gene–environment associations revealed
the presence of traits associated with climatic variables
(Branco et al., 2017). Whether local adaptation is
favourable or detrimental to pathogenicity remains to be
examined.

Experimental procedures

Environmental sampling

We collected samples of European grapevine (Vitis vinif-
era) plants expressing Pierce’s disease symptoms in
commercial vineyards across California (Supporting Infor-
mation Table S2). A total of 122 isolates were obtained
across 900 km in California from five different counties,
Temecula (n = 23), Santa Barbara (n = 5), Bakersfield
(n = 27), Napa (n = 41) and Sonoma (n = 28). The age of
the vines, when available, ranged from 1994 to 2014; all
samples were collected in 2015. Isolation in the labora-
tory was performed on PD3 solid medium (Davis et al.,
1981a), followed by triple cloning on PD3. For long-term
storage, strains were stored at −80�C in PW broth (Davis
et al., 1981b) with 30% glycerol. DNA extraction was per-
formed using commercial kit (DNeasy Blood & Tissue Kit;
Qiagen) according to instructions by the manufacturer.

Whole-genome sequencing, SNP calling and ploidy
analysis

High molecular weight DNA was extracted, and DNA
libraries were prepared for Illumina MiSeq paired-end
sequencing. DNA from all samples was sent for sequenc-
ing at the QB3 Vincent J. Coates Genomics Sequencing
Laboratory. Raw reads and other information regarding
each isolate have been submitted to the NCBI database
(MiSeq project: SUB3867588). Reads were mapped to X.
fastidiosa subsp. fastidiosa Temecula1 (ASM724v1;
ENA assembly: GCA_000007245.1). Alignments were
performed with the Burrows-Wheeler Aligner (BWA)
0.7.15 aln (Li and Durbin, 2009) with a quality threshold
of 15 (Rhodes et al., 2014). FastQs were converted to
SAM format using BWA and converted to BAM files, and
the BAM files were then sorted and indexed with
SAMTOOLS version 1.3.1 (Li et al., 2009). Duplicate
reads were marked with PICARD TOOLS (v.2.4.1). The
BAM files were processed around insertions or deletions
(INDELs) using the GATK RealignerTargetCreator and
IndelRealigner (McKenna et al., 2010). Single nucleotide
polymorphisms (SNPs) and INDELs was identified using

GATK UNIFIEDGENOTYPER version 3.6 in haploid
mode (DePristo et al., 2011; Auwera et al., 2013). SNPs
and INDELs were filtered to call only high-confidence var-
iants, according to whether they were present in 80% of
reads. Resulting variants were mapped to genes using
VCF-annotator (Broad Institute, Cambridge, MA) and the
latest release of X. fastidiosa subsp. fastidiosa Temec-
ula1 (ASM724v1.36). Mapped reads for each isolate are
given on Supporting Information Table S1.

De novo assembly and pan-genome analyses

Data processing was similar as previously done
(Vanhove et al., 2019). Genomes were assembled using
SPAdes 3.6.0 using the careful parameter (Bankevich
et al., 2012); total contig length is summarized in
Table S2. progressiveMauve was used to order contigs
(Darling et al., 2010) and Prokka used for annotation
(Seemann, 2014). A pan genome of the 122 isolates was
constructed using Roary (Page et al., 2015). Recombina-
tion events were identified by finding regions of enriched
SNP density by using ClonalFrameML (Didelot and Wil-
son, 2015) and fastGEAR (Mostowy et al., 2017). To
detect change in ploidy (i.e. duplications), the mean cov-
erage for each isolate was determined using
‘DepthOfCoverage’ from the GATK pipeline under default
setting; the subsp. fastidiosa Temecula1 genome was
used as a reference and coverage was normalized and
averaged over a 500 bp window. Average coverage for
each genetic cluster was computed and regions dis-
playing a normalized coverage ≥2 were considered dip-
loid events. The ontology of genes of interests was
investigated. GO terms were then assigned using
Blast2GO (Conesa and Götz, 2008) using a minimum
E value of 1 × 10−10.

Phylogeny, population assignment and molecular dating

Whole-genome SNP files were converted to Nexus and
Phylip formats. A maximum likelihood tree was generated
with RAxML (1000 bootstrap replicates and a generalized
time reversible (GTR) substitution matrix (Stamatakis,
2006), and visualized with FIGTREE v. 1.4 (Rambaut,
2012). Bayesian Analysis of Population Structure (BAPS;
Corander et al., 2004) was used to assign isolates to
genetic clusters. We investigated the presence of a tem-
poral signal in the data set by using our 120 isolates and
an additional 24 previously published subsp. fastidiosa
genomes. The non-recombining core genome of strains
with known isolation dates (1987–2015, 27 years of evo-
lution) was obtained and used for this analysis
(Supporting Information Fig. S7; https://localtempo
ralsignal.shinyapps.io/LocalTemporalSignal/). We refer to
Vanhove et al. (2019) for details on this analysis, as the
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procedures used here are the same as performed in that
study.

Population genetics and detection of regions under
positive selection

Population level statistics were generated for each X. fas-
tidiosa subsp. fastidiosa genetic cluster. The number of
segregating sites (S), total number of mutations (η),
nucleotide diversity (π), Waterson’s estimator (θ) and
Tajima’s D were estimated using VARISCAN V.2.0
(Vilella et al., 2005) on the core genome alignment with-
out the recombination regions (Table 1). Fixation index
(FST) statistics were calculated using BEDASSLE
(Bradburd et al., 2013). In addition, several statistical
methods are available (Vitti et al., 2013) to detect signa-
tures of Darwinian selection. Candidate loci under selec-
tion were investigated using XTX, a population
differentiation statistic analogous to FST that accounts for
variance–covariance of the population using Bayenv2
(Günther and Coop, 2013). On the other hand, gene-
base methods compare the rate of synonymous (dS) and
nonsynonymous (dN) mutations in protein-coding genes
(Yang and Bielawski, 2000). The ratio of the rates of syn-
onymous and non-synonymous substitution (dN/dS) is
commonly used to characterize microbial adaptation
(Hurst, 2002). The McDonald–Kreitman (MK) test iden-
tifies patterns of selection by comparing the number of
silent (dN) and non-silent substitutions (dS) with the num-
ber of silent (pS) and non-silent polymorphism (pN) of an
outgroup species (Stoletzki and Eyre-Walker, 2011). A
dN/dS analysis and a McDonald–Kreitman (MK) test
(McDonald and Kreitman, 1991) were performed using
annotated high-confidence SNP mapped to the reference
strain Temecula1. SNPs with allele frequency <20% were
removed and only genes with ≥5 SNPs were considered
to improve test performance as recommended by Liti
et al. (2009)). The X. fastidiosa subsp. multiplex M12
strain (Chen et al., 2010) was used as an outgroup for
the MK test. The dN/dS (ω) ratio was estimated using de
novo assemblies after removing recombination events
(identified with ClonalFrameML), and Codeml from the
PAML4.1 package (runmode 0, model 0 was used
assuming constant dN/dS; Yang, 2007); gene clusters
were generated by Roary using gene annotation from
Prokka (Seemann, 2014).

Ecological niche modelling, biogeography and
environmental association analysis

California provides an appropriate setting to model the
distribution of X. fastidiosa subsp. fastidiosa infecting
grapevines. MaxEnt is a species habitat modelling soft-
ware that uses maximum entropy to model the

geographic distribution of a species (Phillips and Dud’ik,
2008). The software uses presence-only data and cli-
matic variables. The ecological niche of the X. fastidiosa
distribution was modelled using WorldClim layers v.2 and
altitude, which were obtained from the WORDCLIM data-
base at 30 arc-seconds resolution (Fick and Hijmans,
2017). Each variable was tested for colinearity using a
Pearson’s |r| ≤ 0.80 implemented in the R package ppcor
as described by Bosso et al. (2016b). To test model pre-
diction, 25% of the samples were randomly set aside
(Supporting Information Fig. S1).

The Mantel test was used to assess the association
between genetic and geographic distance among individ-
uals, and to detect spatial autocorrelation (Mantel, 1967).
Genetic variation was calculated as the Bray–Curtis dis-
tances between loci. The geographic distances were the
Euclidean distances between the sampling localities.
Mantel tests were performed using the ecodist package
(Goslee and Urban, 2007) in R using 10 000 permuta-
tions. Environmental factors were extracted from
WorldClimv.2.0 layers (Fick and Hijmans, 2017). The
information for each sample was extracted in R (version
3.1.1) using the raster (Hijmans and van Etten, 2012)
and dismo (Hijmans et al., 2012) packages.

Detection of loci correlated with physical variables was
performed using Latent Factor Mixed Model (LFMM;
Frichot et al., 2013) and Bayenv2 (Coop et al., 2010).
LFMM is a Bayesian approach used to detect selection in
landscape genomics. The method investigates the influ-
ence of population structure on allele frequencies by
introducing unobserved variables as latent factors (Stucki
et al., 2014). LFMM provides a way to investigate signa-
tures of local adaptation by identification of high degrees
of correlation between polymorphism and environmental
variables. To detect signatures of selection, a positive
false discovery rate of 0.05 was also applied using the
qvalue package (Dabney et al., 2004) in R. BayEnv2 was
also used to detect selection using Bayes’ factors (BF;
BF ≥3 and within top 5%) and non-parametric Spe-
arman’s Rho distribution (top 5%). To estimate the
covariance matrix, three replicates were performed and
averaged using 100,000 Monte Carlo Markov Chain
(MCMC). To ensure independence between SNPs
(Bayenv2 Manual) when computing the covariance
matrix, loci identified using LFMM and loci found using
the program LDhat, which identifies patterns of linkage
disequilibrium using Hudson’s composite likelihood
method (McVean et al., 2004), were removed. For both
methods, LFMM and BayEnv2, three independent runs
were performed using 100 000 MCMC cycles and
resulting scores were averaged for each of the climate
variable. To perform environmental association analysis
(EAA), each variable was averaged, standardized and
mean-centred across the population as described in the

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 2625–2638

Population genomics of X. fastidiosa in California 2635



Bayenv2 manual. Potential SNP candidates were
mapped to the Temecula1 reference genome
(ASM724v1) using a Basic Local Alignment Search Tool
(BLAST) service obtained from the Universal Protein
Resource (UniProt ID: 183190; UniProt, 2017) and
Ensembl (Aken et al., 2016).

Biological testing of mutant strains of genes under
positive selection or with evidence of recombination

The Materials and Methods section associated with these
experiments is described in the Supporting Information.

Acknowledgements

We thank farmers and colleagues Mark Battany, Monica
Cooper, Matthew Daugherty, David Haviland, Rhonda Smith,
Lucia Varela, from University of California Cooperative
Extension for assistance in site selection and sample collec-
tion. Funding supporting this research was provided by the
California Department of Food and Agriculture PD/GWSS
program and Horizon 2020 XF-ACTORS consortium. Anne
Sicard is funded by the European Union’s Horizon 2020
Research and Innovation Programme under the Marie
Skłodowska-Curie grant agreement No 707013. Genome
sequencing was performed at the UC Berkeley Vincent
J. Coates Genomics Sequencing Laboratory, which is
supported by an NIH instrumentation grant (S10
OD018174).

References

Aken, B.L., Achuthan, P., Akanni, W., Amode, M.R.,
Bernsdorff, F., Bhai, J., et al. (2016) Ensembl 2017.
Nucleic Acids Res 45: D635–D642.

Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., del
Angel, G., Levy-Moonshine, A., et al. (2013) From FastQ
data to high-confidence variant calls: the genome analysis
toolkit best practices pipeline. Curr Protoc Bioinformatics
43: 11.10.1–11.10.33.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A.,
Dvorkin, M., Kulikov, A.S., et al. (2012) SPAdes: a new
genome assembly algorithm and its applications to single-
cell sequencing. J Comput Biol 19: 455–477.

Biek, R., and Real, L.A. (2010) The landscape genetics of
infectious disease emergence and spread. Mol Ecol 19:
3515–3531.

Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., and
Russo, D. (2016a) Shedding light on the effects of climate
change on the potential distribution of Xylella fastidiosa in
the Mediterranean basin. Biol Invasions 18: 1759–1768.

Bosso, L., Russo, D., Di Febbraro, M., Cristinzio, G., and
Zoina, A. (2016b) Potential distribution of Xylella fastidiosa
in Italy: a maximum entropy model. Phytopathol Mediterr
55: 62–72.

Bradburd, G.S., Ralph, P.L., and Coop, G.M. (2013) Dis-
entangling the effects of geographic and ecological

isolation on genetic differentiation. Evolution (N Y) 67:
3258–3273.

Branco, S., Bi, K., Liao, H., Gladieux, P., Badouin, H.,
Ellison, C.E., et al. (2017) Continental-level population dif-
ferentiation and environmental adaptation in the mush-
room Suillus brevipes. Mol Ecol 26: 2063–2076.

Bürger, R. (1999) Evolution of genetic variability and the
advantage of sex and recombination in changing environ-
ments. Genetics 153: 1055–1069.

Charlesworth, D. (2006) Balancing selection and its effects
on sequences in nearby genome regions. PLoS Genet
2: e64.

Chen, J., Xie, G., Han, S., Chertkov, O., Sims, D., and
Civerolo, E.L. (2010) Whole genome sequences of two
Xylella fastidiosa strains (M12 and M23) causing almond
leaf scorch disease in California. J Bacteriol 192: 4534.

Conesa, A., and Götz, S. (2008) Blast2GO: a comprehen-
sive suite for functional analysis in plant genomics. Int J
Plant Genomics 2008: 1–12.

Coop, G., Witonsky, D., Di Rienzo, A., and Pritchard, J.K.
(2010) Using environmental correlations to identify loci
underlying local adaptation. Genetics 185: 1411–1423.

Corander, J., Waldmann, P., Marttinen, P., and Sillanpää, M.
J. (2004) BAPS 2: enhanced possibilities for the analysis
of genetic population structure. Bioinformatics 20:
2363–2369.

Croll, D., and McDonald, B.A. (2017) The genetic basis of
local adaptation for pathogenic fungi in agricultural eco-
systems. Mol Ecol 26: 2027–2040.

Dabney, A., Storey, J.D., and Warnes, G. (2004) Q-value
estimation for false discovery rate control. Medicine
(Baltimore) 344: 539–548.

Darling, A.E., Mau, B., and Perna, N.T. (2010)
progressiveMauve: multiple genome alignment with gene
gain, loss and rearrangement. PLoS One 5: e11147.

Davis, M.J., French, W.J., and Schaad, N.W. (1981a) Axenic
culture of the bacteria associated with phony disease of
peach and plum leaf scald. Curr Microbiol 6: 309–314.

Davis, M.J., Whitcomb, R.F., and Gillaspie, A.G., Jr. (1981b)
Fastidious bacteria of plant vascular tissue and inverte-
brates (including so called rickettsia-like bacteria). In The
Prokaryotes, Balows, A., Trüper, H.G., Dworkin, M.,
Harder, W., and Schleifer, K.H. (eds). New York, NY:
Springer, pp. 2172–2188.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V.,
Maguire, J.R., Hartl, C., et al. (2011) A framework for vari-
ation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet 43: 491–498.

Didelot, X., and Wilson, D.J. (2015) ClonalFrameML: efficient
inference of recombination in whole bacterial genomes.
PLoS Comput Biol 11: e1004041.

Dudaniec, R.Y., and Tesson, S.V.M. (2016) Applying land-
scape genetics to the microbial world. Mol Ecol 25:
3266–3275.

Fick, S.E., and Hijmans, R.J. (2017) WorldClim 2: new 1-km
spatial resolution climate surfaces for global land areas.
Int J Climatol 37: 4302–4315.

Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S.,
Madoff, L.C., McCraw, S.L., and Gurr, S.J. (2012) Emerg-
ing fungal threats to animal, plant and ecosystem health.
Nature 484: 186–194.

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 2625–2638

2636 M. Vanhove et al.



Frichot, E., Schoville, S.D., Bouchard, G., and François, O.
(2013) Testing for associations between loci and environ-
mental gradients using latent factor mixed models. Mol
Biol Evol 30: 1687–1699.

Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., and
Travers, S.E. (2006) Climate change effects on plant dis-
ease: genomes to ecosystems. Annu Rev Phytopathol 44:
489–509.

Geisseler, D. and Horwath, W.R. (2016) Alfalfa production in
California. Available at https://apps1.cdfa.ca.gov/
FertilizerResearch/docs/Alfalfa_Production_CA.pdf.

Giampetruzzi, A., Saponari, M., Loconsole, G., Boscia, D.,
Savino, V.N., Almeida, R., et al. (2017) Genome-wide anal-
ysis provides evidence on the genetic relatedness of the
emergent Xylella fastidiosa genotype in Italy to isolates
from Central America. Phytopathology 107: 816–827.

Giraud, T., Koskella, B., and Laine, A. (2017) Introduction:
microbial local adaptation: insights from natural
populations, genomics and experimental evolution. Mol
Ecol 26: 1703–1710.

Goslee, S.C., and Urban, D.L. (2007) The ecodist package
for dissimilarity-based analysis of ecological data. J Stat
Softw 22: 1–19.

Griswold, A. (2008) Genetic origins of microbial virulence.
Nat Educ 1: 81.

Günther, T., and Coop, G. (2013) Robust identification of
local adaptation from allele frequencies. Genetics 195:
205–220.

Hahn, M.W., Koll, U., Jezberová, J., and Camacho, A.
(2015) Global phylogeography of pelagic
Polynucleobacter bacteria: restricted geographic distribu-
tion of subgroups, isolation by distance and influence of
climate. Environ Microbiol 17: 829–840.

Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C., and
Martiny, J.B.H. (2012) Beyond biogeographic patterns:
processes shaping the microbial landscape. Nat Rev
Microbiol 10: 497–506.

Hewitt, W.B. (1958) The probable home of Pierce’s disease
virus. Plant Dis Report 42: 241–245.

Hijmans, R.J. and van Etten, J. (2012) Raster: geographic
analysis and modeling with raster data. R Packag version
1.9-92.

Hijmans, R.J., Phillips, S., Leathwick, J., and Elith, J. (2012)
dismo: Species distribution modeling. R Packag version
07-17.

Holderegger, R., and Wagner, H.H. (2008) Landscape
genetics. Bioscience 58: 199–207.

Hurst, L.D. (2002) The Ka/Ks ratio: diagnosing the form of
sequence evolution. Trends Genet 18: 486–487.

Keen, N.T. (1990) Gene-for-gene complementarity in plant-
pathogen interactions. Annu Rev Genet 24: 447–463.

Kraemer, S.A., and Boynton, P.J. (2017) Evidence for micro-
bial local adaptation in nature. Mol Ecol 26: 1860–1876.

Lapierre, P., and Gogarten, J.P. (2009) Estimating the size
of the bacterial pan-genome. Trends Genet 25: 107–110.

Li, H., and Durbin, R. (2009) Fast and accurate short read
alignment with burrows–wheeler transform. Bioinformatics
25: 1754–1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J.,
Homer, N., et al. (2009) The sequence alignment/map for-
mat and SAMtools. Bioinformatics 25: 2078–2079.

Liti, G., Carter, D.M., Moses, A.M., Warringer, J., Parts, L.,
James, S.A., et al. (2009) Population genomics of domes-
tic and wild yeasts. Nature 458: 337–341.

Manel, S., and Holderegger, R. (2013) Ten years of land-
scape genetics. Trends Ecol Evol 28: 614–621.

Manel, S., Schwartz, M.K., Luikart, G., and Taberlet, P.
(2003) Landscape genetics: combining landscape ecology
and population genetics. Trends Ecol Evol 18: 189–197.

Manel, S., Perrier, C., Pratlong, M., Abi-Rached, L.,
Paganini, J., Pontarotti, P., and Aurelle, D. (2016) Geno-
mic resources and their influence on the detection of the
signal of positive selection in genome scans. Mol Ecol 25:
170–184.

Mantel, N. (1967) The detection of disease clustering and a
generalized regression approach. Cancer Res 27:
209–220.

Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.
K., Fuhrman, J.A., Green, J.L., et al. (2006) Microbial bio-
geography: putting microorganisms on the map. Nat Rev
Microbiol 4: 102–112.

McDonald, J.H., and Kreitman, M. (1991) Adaptive protein
evolution at the Adh locus in drosophila. Nature 351:
652–654.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A.,
Cibulskis, K., Kernytsky, A., et al. (2010) The genome
analysis toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res 20:
1297–1303.

McVean, G.A.T., Myers, S.R., Hunt, S., Deloukas, P.,
Bentley, D.R., and Donnelly, P. (2004) The fine-scale
structure of recombination rate variation in the human
genome. Science (80- ) 304: 581–584.

Mira, A., Martín-Cuadrado, A.B., D’Auria, G., and Rodríguez-
Valera, F. (2010) The bacterial pan-genome: a new para-
digm in microbiology. Int Microbiol 13: 45–57.

Mita, S., Thuillet, A., Gay, L., Ahmadi, N., Manel, S.,
Ronfort, J., and Vigouroux, Y. (2013) Detecting selection
along environmental gradients: analysis of eight methods
and their effectiveness for outbreeding and selfing
populations. Mol Ecol 22: 1383–1399.

Moradigaravand, D., Boinett, C.J., Martin, V., Peacock, S.J.,
and Parkhill, J. (2016) Recent independent emergence of
multiple multidrug-resistant Serratia marcescens clones
within the United Kingdom and Ireland. Genome Res 26:
1101–1109.

Mostowy, R., Croucher, N.J., Andam, C.P., Corander, J.,
Hanage, W.P., and Marttinen, P. (2017) Efficient inference
of recent and ancestral recombination within bacterial
populations. Mol Biol Evol 34: 1167–1182.

Nunney, L., Yuan, X., Bromley, R., Hartung, J., Montero-
Astúa, M., Moreira, L., et al. (2010) Population genomic
analysis of a bacterial plant pathogen: novel insight into
the origin of Pierce’s disease of grapevine in the US.
PLoS One 5: e15488.

Nunney, L., Schuenzel, E.L., Scally, M., Bromley, R.E., and
Stouthamer, R. (2014) Large-scale intersubspecific recom-
bination in the plant-pathogenic bacterium Xylella fas-
tidiosa is associated with the host shift to mulberry. Appl
Environ Microbiol 80: 3025–3033.

Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K.,
Reuter, S., Holden, M.T.G., et al. (2015) Roary: rapid

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 2625–2638

Population genomics of X. fastidiosa in California 2637

https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Alfalfa_Production_CA.pdf
https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Alfalfa_Production_CA.pdf


large-scale prokaryote pan genome analysis. Bioinformat-
ics 31: 3691–3693.

Phillips, S.J., and Dud’ik, M. (2008) Modeling of species dis-
tributions with Maxent: new extensions and a comprehen-
sive evaluation. Ecography (Cop) 31: 161–175.

Pierce, N.B. (1892) The California Vine Disease: A Prelimi-
nary Report of Investigations. Washington, DC: US Gov-
ernment Printing Office.

Prosser, J.I., Bohannan, B.J.M., Curtis, T.P., Ellis, R.J.,
Firestone, M.K., Freckleton, R.P., et al. (2007) The role of
ecological theory in microbial ecology. Nat Rev Microbiol
5: 384–392.

Purcell, A.H. (1974) Spatial patterns of Pierce’s disease in
the Napa Valley. Am J Enol Vitic 25: 162–167.

Purcell, A.H. (1977) Cold therapy of Pierce’s disease of
grapevines [Viral diseases, insect vectors]. Plant Dis Rep
61: 514–518.

Purcell, A.H. (1980) Environmental therapy for Pierce’s dis-
ease of grapevines. Plant Dis 64: 388–390.

Purcell, A.H. (1997) Xylella fastidiosa, a regional problem or
global threat? J Plant Pathol 79: 99–105.

Rambaut, A. (2012) Figtree v1. 4. Molecular Evolution, Phy-
logenetics and Epidemiology. Edinburgh, UK: Institute of
Evolutionary Biology, University of Edinburgh.

Rhodes, J., Beale, M.A., and Fisher, M.C. (2014) Illuminating
choices for library prep: a comparison of library preparation
methods for whole genome sequencing of Cryptococcus
neoformans using Illumina HiSeq. PLoS One 9: e113501.

Richard, D., Ravigné, V., Rieux, A., Facon, B., Boyer, C.,
Boyer, K., et al. (2017) Adaptation of genetically mono-
morphic bacteria: evolution of copper resistance through
multiple horizontal gene transfers of complex and versatile
mobile genetic elements. Mol Ecol 26: 2131–2149.

Seemann, T. (2014) Prokka: rapid prokaryotic genome anno-
tation. Bioinformatics 30: 2068–2069.

Sicard, A., Zeilinger, A.R., Vanhove, M., Schartel, T.E.,
Beal, D.J., Daugherty, M.P., and Almeida, R.P.P. (2018)
Xylella fastidiosa: insights into an emerging plant patho-
gen. Annu Rev Phytopathol 56: 181–202.

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and
mixed models. Bioinformatics 22: 2688–2690.

Stoletzki, N., and Eyre-Walker, A. (2011) Estimation of the
neutrality index. Mol Biol Evol 28: 63–70.

Stucki, S., Orozco-terWengel, P., Forester, B.R., Duruz, S.,
Colli, L., Masembe, C., et al. (2014) High performance

computation of landscape genomic models integrating
local indices of spatial association. Mol Ecol Resour 17:
1072–1089.

Stukenbrock, E.H., and McDonald, B.A. (2008) The origins
of plant pathogens in agro-ecosystems. Annu Rev
Phytopathol 46: 75–100.

Taboada, B., Ciria, R., Martinez-Guerrero, C.E., and
Merino, E. (2011) ProOpDB: pro karyotic Op eron D ata B
ase. Nucleic Acids Res 40: D627–D631.

Tajima, F. (1989) Statistical method for testing the neutral
mutation hypothesis by DNA polymorphism. Genetics
123: 585–595.

Taylor, J.W., Turner, E., Townsend, J.P., Dettman, J.R., and
Jacobson, D. (2006) Eukaryotic microbes, species recog-
nition and the geographic limits of species: examples from
the kingdom fungi. Philos Trans R Soc Lond B Biol Sci
361: 1947–1963.

Tumber, K., Alston, J., and Fuller, K. (2014) Pierce’s disease
costs California $104 million per year. Calif Agric 68:
20–29.

UniProt, C. (2017) The universal protein resource (UniProt).
Nucleic Acids Res 36: D190–D195.

Vanhove, M., Retchless, A.C., Sicard, A., Rieux, A., Coletta-
Filho, H.D., De La Fuente, L., et al. (2019) Genomic diver-
sity and recombination among Xylella fastidiosa subspe-
cies. Appl Environ Microbiol 85: e02972-18.

Vilella, A.J., Blanco-Garcia, A., Hutter, S., and Rozas, J.
(2005) VariScan: analysis of evolutionary patterns from
large-scale DNA sequence polymorphism data. Bioinfor-
matics 21: 2791–2793.

Vitti, J.J., Grossman, S.R., and Sabeti, P.C. (2013) Detecting
natural selection in genomic data. Annu Rev Genet 47:
97–120.

Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum
likelihood. Mol Biol Evol 24: 1586–1591.

Yang, Z., and Bielawski, J.P. (2000) Statistical methods for
detecting molecular adaptation. Trends Ecol Evol 15:
496–503.

Supporting Information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Appendix S1: Supporting Information

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 2625–2638

2638 M. Vanhove et al.


	 Population structure and adaptation of a bacterial pathogen in California grapevines
	Introduction
	Results
	Population subdivision, variant detection and spatial structure
	Pan-genome analysis
	Selection
	Selection, recombination and virulence
	Association analysis of climatic variables

	Discussion
	Experimental procedures
	Environmental sampling
	Whole-genome sequencing, SNP calling and ploidy analysis
	De novo assembly and pan-genome analyses
	Phylogeny, population assignment and molecular dating
	Population genetics and detection of regions under positive selection
	Ecological niche modelling, biogeography and environmental association analysis
	Biological testing of mutant strains of genes under positive selection or with evidence of recombination

	Acknowledgements
	References


