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Summary

1. Inference and estimates of abundance are critical for quantifying population dynamics and impacts of envi-

ronmental change. Yet imperfect detection and other phenomena that cause zero inflation can induce estimation

error and obscure ecological patterns.

2. Recent statistical advances provide an increasingly diverse array of analytical approaches for estimating pop-

ulation size to address these phenomena.

3. We examine how detection error and zero inflation in count data inform the choice of analytical method for

estimating population size of unmarked individuals that are not uniquely identified. We review two established

(GLMs and distance sampling) and nine emerging methods that use N-mixture models (Royle–Nichols model,

and basic, zero inflated, temporary emigration, beta-binomial, generalized open-population, spatially explicit,

single visit and multispecies) to estimate abundance of unmarked populations, focusing on their requirements

and how eachmethod accounts for imperfect detection and zero inflation.

4. Eight of the emerging methods can account for both imperfect detection and additional variation in popula-

tion size in the forms of non-occupancy, temporary emigration, correlated detection and population dynamics.

5. Methods differ in sampling design requirements (e.g. count vs. detection/non-detection data, single vs. multi-

ple visits, covariate data), and their suitability for a particular studywill depend on the characteristics of the study

species, scale and objectives of the study, and financial and logistical considerations.

6. Most emerging methods were developed over the past decade, so their efficacy is still under study, and addi-

tional statistical advances are likely to occur.

Key-words: abundance estimation, count data, detection, distance sampling, hierarchical model,

multispecies abundancemodel,N-mixture model, population size

Introduction

Inference and estimates of abundance are critical for quantify-

ing population dynamics and the impacts of environmental

change. Conducting a census (i.e. counting all individuals) of

almost any wild animal species is usually not possible. As a

result, researchers have often used surrogate measurements

thought to be proportional to population size, such as relative

abundance (i.e. the count itself or density) or an index of abun-

dance (e.g. individuals detected per unit effort, Buckland,

Marsden & Green 2008). Traditional approaches to popula-

tion size estimation usually adopt sampling designs that

attempt to control for the factors influencing detection of indi-

viduals (e.g. observer, time of day, weather). These approaches

have limited ability to incorporate the survey-, site- and spe-

cies-level processes that differentially affect the detection of

species or individuals (Iknayan et al. 2014). As such, it is com-

mon for the resulting counts to include a disproportionate

number of absences (i.e. many zeroes), a circumstance called

‘zero inflation’ (Martin et al. 2005).

Imperfect detection and zero inflation in count data have

been increasingly discussed in the ecological literature over the

past decade (MacKenzie et al. 2002; Martin et al. 2005; Royle

& Dorazio 2008). When unaccounted for, both can introduce

considerable estimation error and obscure important ecologi-

cal patterns (Wenger & Freeman 2008). For example, models

that generate so-called detection-na€ıve estimates of abundance,

such as a Poisson regression or a generalized linear model

(GLM) with a Poisson error distribution, perform poorly in*Correspondence author. E-mail: fvdenes@gmail.com
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the presence of detection error (S�olymos, Lele & Bayne 2012).

Furthermore, some environmental factors that influence

population size (e.g. forest understorey density, and water

depth or clarity) may also affect detection (K�ery 2008; S�oly-

mos, Lele & Bayne 2012). Recognizing that perfect detection is

rare in ecological data has led to the development of statistical

methods to account for detection error in counts of unmarked

populations (i.e. when animals are not individually identified)

that formally accommodate the detection process (Buckland

et al. 2001; Royle &Dorazio 2008).

Here, we review how detection error and zero inflation in

count data of unmarked individuals inform the choice of ana-

lytical methods for estimating the size of unmarked popula-

tions. We begin by describing the sources of variation and

types of zeroes that frequently arise in count data. Then, we

review commonly used and recently developed methods to

model abundance of unmarked populations. We focus on how

each method accounts for imperfect detection and zero infla-

tion. Finally, we discuss the performance and sampling design

requirements of these methods in the context of surveying and

counting unmarked populations. Our goal was to make recent

statistical advances accessible for ecologists who wish to esti-

mate population size.

Causes of variation and types of zeroes in count
data

Variation in count data results from several distinct processes

and understanding them is important to estimate abundance

accurately (Martin et al. 2005). The number of individuals

counted in a survey depends on the underlying (true) abun-

dance of individuals and on their detectability. True abun-

dance may vary among sites or sampling periods as a result of

multiple ecological processes, including climatic variation, sea-

sonal or environmental gradients, metapopulation dynamics,

species interactions and density dependence. Identifying these

processes and understanding their relative importance is a

common goal of research programmes.

Uncertain detection probabilities – either caused by fail-

ure to detect an individual or by misidentification – have

implications for assessments at the individual, survey, spe-

cies and community levels. Differences in species traits, such

as conspicuousness, behaviour, life history and rarity, can

affect detection (Iknayan et al. 2014). In addition, individual

traits, such as sex, age, or distance to the observer, may be

important causes of non-detection. Detectability also varies

due to survey-specific factors, such as effort, observer,

weather, sampling method, or time of day or year. It can

vary among sites, due to factors that influence visual or

auditory detection regardless of observer, such as habitat

structure or noise (Alldredge, Simons & Pollock 2007b).

Importantly, the detection probability of a species at a site

can also depend on its abundance at the site (McCarthy

et al. 2013; Warren et al. 2013). In this context, a non-zero

count is the product of the underlying non-zero abundance

and the detection process. However, variability in count

data can also be due to misidentification (i.e. a false posi-

tive). Perhaps because it is generally presumed that field sur-

veys are performed by adequately trained and experienced

scientists and technicians, most abundance estimation meth-

ods assume that false positives are absent from data sets,

and there are considerably fewer studies employing analysis

methods that account for misidentification errors (but see

Royle & Link 2006; McClintock et al. 2010 and Miller

et al. 2013b for applications to occupancy). The demand for

methods that account for false positives is likely to expand

as large-scale population studies and monitoring pro-

grammes make increasing use of citizen science data sets,

where false-positive observations are probably more com-

mon (Miller et al. 2013b).

Counts of zero, on the other hand, can arise from several dif-

ferent mechanisms (Fig. 1). Zeroes due to ecological processes

are true zeroes, in the sense that species are absent from the site

(Fig. 1a). Inmany investigations this is interpreted to be a con-

sequence of unsuitable habitat or competitive exclusion (Mar-

tin et al. 2005). However, a second type of true zero is induced

by demographic stochasticity (Fig. 1a), when species fail to

saturate all suitable habitats due to random local extinctions

and dispersal limitation (Martin et al. 2005). Species rarity can

increase the frequency of this type of zero in count data

(Fig. 1b), due to a higher probability of local extinctions when

populations are small.

Additional true zeros can also occur when the occupancy

pattern and local abundance distribution of a species are the

outcome of distinct processes, such as habitat selection oper-

ating at different spatial and temporal scales (Wenger &

Freeman 2008). Consider, for example, animals that special-

ize in a spatially restricted resource, such as a hawk that

mainly consumes aquatic prey. Except during dispersal and

migration, this species is likely to be found only near rivers,

lakes, ponds and other water bodies, that is, its potential

occupancy is dependent on the presence of these habitats.

Regional surveys may include sampling units in or near such

habitats, but will also likely include dry sites where the spe-

cies will be absent. In the wet sites, the abundance of the spe-

cies might be strongly predicted by certain environmental

factors (e.g. proportion of natural vegetation area, degree of

fragmentation, land use). Such factors may favour the spe-

cies in a dry site, but it will be absent because there is no

body of water. Large numbers of these types of absences,

which are more common in sparsely than in widely distrib-

uted species (Fig. 1a, non-occupancy true zeroes), induce

error in analysis and confound interpretation because models

will attempt to estimate abundance of the species in a habitat

where the species does not occur. Sampling only sites that

have potential to be occupied avoids this non-occupancy

zero inflation, as does incorporating the factor determining

occurrence of the species in models. However, this solution

requires a priori knowledge of what habitats to survey, and

it cannot be applied to multispecies surveys that broadly

sample habitats (Wenger & Freeman 2008; Joseph et al.

2009).

False zeros, on the other hand, result from the observation

process and can arise in two ways: (i) an individual may be
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present at the site but be undetected by the observer (Fig. 1b),

which is commonly called ‘detection error’ or ‘imperfect detec-

tion’ (MacKenzie et al. 2002; Royle & Dorazio 2008), and (ii)

an individual of a mobile species with a large home range may

regularly use a site but be absent from it at the time of survey,

because it is visiting part of its home range outside of the

sample unit. The latter may commonly occur if the sampling

area is small and/or the length of visit is short relative to the

movements of the species, and it is often termed ‘temporary

emigration’ or ‘temporary absence’ (Fig. 1c, Tyre et al. 2003;

Chandler, Royle & King 2011). Hibernation and aestivation

underground could also be considered as a type of temporary

emigration, because animals are present, but unavailable for

detection on the surface. Such causes of false absence are likely

to occur during animal surveys, because many species have

large home ranges or are undetected due to cryptic behaviour

and camouflage. As discussed above for non-zero observa-

tions, detection is also influenced by the type of habitat where

an observation is made, time of day when it takes place,

weather, distance to the observer and variation between

observers (Buckland et al. 2001; Alldredge, Simons & Pollock

2007b; Iknayan et al. 2014).

Modellingmethods for estimating abundance of
unmarked animal populations

In this section, we review established and emerging methods to

model abundance of unmarked populations, and focus on

how they handle imperfect detection and zero inflation (Fig. 2,

Table 1). We start with Poisson and negative binomial GLMs,

which are simple and widely used methods for modelling non-

normal data (including counts) that do not explicitly model

detection. Next, we describe distance sampling methods that

model detectability based on the distance between the observer

and the animal. We then discuss hierarchical (N-mixture)

models, which estimate detectability based on multiple visits,

followed by the single-visit N-mixture models that employ

covariate data to model detection instead of multiple visits.

Finally, we describemultispeciesN-mixture abundancemodels

that account for detectability and make inference about the

number of species not detected during surveys in the study

region. They can also be used to estimate community measures

such as species richness, diversity and similarity. We do not

include methods that generate indices related to population

size, such as time to detection models (Alldredge et al. 2007a;
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Fig. 1. Mechanisms that cause different types of zero observations in count surveys and how species rarity, detectability and sampling effort affect

them. (a) False zeroes are due to either imperfect detection or temporary absence. True zeroes can occur when the sample unit is unoccupied by the

species, due to demographic stochasticity or due to ecological mechanisms such as unsuitable habitat or interspecific competition. (b) For common

and detectable species (lower right), themajority of zeroes can be expected to result from ecological processes. As species detectability decreases, new

false zeroes arise due to detection error (lower left). Species rarity results in fewer detections (dark green bars), additional true zeroes arise from unoc-

cupied sample units (white bars) and increased demographic stochasticity (beige bars). (c) When the area sampled and/or the time of visit are small/

short relative to the species home range or movements, individuals may not be available for detection during the survey, resulting in additional false

zeroes and fewer non-zero observations.
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McCarthy et al. 2013), rather than direct estimates of abun-

dance.

ESTABLISHED METHODS

Poisson and negative binomial GLMs

Abundance of unmarked populations has often been estimated

from count data using Poisson GLMs (Nelder &Wedderburn

1972; Zuur et al. 2009). A GLM is a generalization of the lin-

ear regression that allows the response variable to have error

distributions other than Gaussian; in this case, it assumes the

error term follows a Poisson distribution. Variation is

described by environmental variables assigned as covariates

using a log-link function. The choice of distribution arises from

assumptions of how organisms are distributed in space in a

homogeneous landscape. Potential departures from random-

ness arise as a result of ecological heterogeneity and

are explained by covariates. The negative binomial (NB)

distribution allows the error distribution to vary independently

of the mean by including an overdispersion parameter (k) and

has been suggested as an alternative to account for extra Pois-

son variation (Zuur et al. 2009). It is also used when the

assumption of independence of observations is violated, such

as when individuals occur in aggregations. Negative binomial

(NB)models are not strictlyGLMs due to the lack of a canoni-

cal link function (e.g. log link for the Poisson GLM), but they

can be fit using a small extension of theGLMapproach by iter-

atively fitting the k parameter and then fitting the rest of the

model with a fixed k parameter (Bolker 2008). Due to this simi-

larity and for simplicity, we refer to both Poisson andNBmod-

els as GLMs, but readers should be careful when using this

terminology in other contexts.

GLMs are frequently used with count data because they are

easy to build, can be applied to the simplest count data sets

(e.g. n sampling sites each visited once during a sampling per-

iod), work in both frequentist and Bayesian frameworks

(Bayesian estimates under a vague [i.e. uninformative] prior

Multiple visit, Closed population

Single species
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Fig. 2. Summary of themainmodelling approaches for estimating abundance of unmarked animal populations described in the text. Red boxes rep-

resent importantmodel assumptions (in bold) and sampling design requirements (in italic), green boxes represent the types of input data used by each

model, lilac and orange ellipses represent established and emerging methods, respectively, and blue diamonds represent additional parameters esti-

mated.w indicates models that estimate potential occupancy probability,/ indicates models that estimate probability of temporary emigration from

the sample unit, and q indicatesmodels that account for correlation in detection of individuals. p is site-level detection probability, c andx are arrival

rate and survival probability parameters, respectively,r is the spatial correlation in counts, andΩ is the probability that a species is present in the su-

percommunity.
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will be numerically close to maximum likelihood estimates

[K�ery & Schaub 2012]) and are available in many statistical

platforms.

GLMs are appropriate tools for drawing inference on the

factors affecting the relative abundance of a species, pro-

vided such factors do not also strongly influence detectabil-

ity. However, when the objective of the study is to obtain

an estimate of the abundance, or to draw inference on

effects acting on abundance, GLMs cannot account for

departures from the error distribution resulting from exces-

sive true or false zeroes (Fig. 1). Consequently, if the data

analysed contain this additional variation (i.e. zero infla-

tion), use of the Poisson and negative binomial GLMs will

be inadequate (Welsh et al. 1996; Joseph et al. 2009). Data

transformations are ineffective in normalizing zero values

because the excessive zeros are simply replaced by an

equally frequent non-zero value (Martin et al. 2005). An

alternative approach used in many studies is to truncate

data sets, reducing or even eliminating the zero values

before the GLM analysis. This can compromise the estima-

tion of parameters, because some of the zeros removed will

likely be true zeros and their corresponding covariate values

will be ignored (Joseph et al. 2009).

Distance sampling

This is a group of methods in which distances from the survey

points or lines to the clusters (or groups) of detected individu-

als are recorded and used to estimate density or abundance

(Buckland et al. 2001; Buckland, Marsden & Green 2008). All

individuals at zero distance from the sampling point or transect

are assumed to be detected, and the probability of detecting an

individual (P) is modelled to decline with increasing distance

from the point or transect. The distribution of distances

recorded with every sighting is used to estimate a detection

function (i.e. the probability of detection in relation to distance

from the observer), which in turn allows estimation of density

and abundance (Buckland et al. 2001). Thus, distance sam-

pling methods do not accommodate false zeroes originating

from the detection process explicitly, but do so implicitly under

the hypothesis that detectability is primarily related to the dis-

tance between animals and the observer. Amajor advantage of

the distance sampling methods is that they do not require

repeated sampling of sites over time to estimate the individual-

level probability of detection,P, as opposed tomostN-mixture

models (see below).

There are six central assumptions of the basic forms of dis-

tance sampling: (i) objects on the line or point are detected with

certainty; (ii) objects do not move in response to the observer

during a survey or before detection (i.e. they are detected at

their initial locations); (iii) distance measurements are exact;

(iv) the position of detected individuals is independent of the

survey point or line; (v) cluster sizes are recordedwithout error;

and (vi) detections are independent events. Violations of these

assumptions may result in biased estimates (Buckland et al.

2001; Buckland, Marsden & Green 2008). Distance sampling

data are frequently analysed with the free program Distance,

which also provides guidelines for survey design (Thomas et al.

2010).

Considerable effort in distance sampling methodology has

been focused on modelling covariate effects on P (Marques &

Buckland 2003; Marques et al. 2007) and on abundance

(Royle, Dawson & Bates 2004; Johnson, Laake & Ver Hoef

2010; Chelgren et al. 2011; Conn, Laake & Johnson 2012;

Oedekoven et al. 2013). Royle, Dawson & Bates (2004), for

example, proposed a modified distance sampling hierarchical

model that treated counts as a function of P and site-specific

abundance (Ni, at sampling unit i [points or line segments]).Ni

was modelled as a Poisson (or negative binomial) random

effect that could be related to covariates through a link func-

tion. Site-specific abundances were integrated from the likeli-

hood function, while parameters of the abundance distribution

(e.g. mean [k] for the Poisson and negative binomial distribu-

tions, and the overdispersion parameter [a] for the latter) were
estimated from the data (Royle, Dawson & Bates 2004). This

method is a hybrid between distance sampling and N-mixture

models and illustrates the opportunities for improving estab-

lished approaches by incorporating the emerging methods dis-

cussed below. Sillett et al. (2012) extended this approach to

include covariate effects on the detection function. These mod-

els are freely available in the Unmarked package (Fiske &

Chandler 2011) for the free statistical software R (R Develop-

ment Core Team 2014). Another distance sampling advance-

ment for estimating abundance of unmarked populations is

the density surface model (Hedley & Buckland 2004; Katsane-

vakis 2007; Niemi & Fern�andez 2010). It can be used to assess

the effects of environmental variables on the spatial distribution

of individuals and to generate spatial predictions of abundance

over larger or different areas from those originally surveyed.

This group of methods has been extensively reviewed elsewhere

(Miller et al. 2013a). A major advantage of density surface and

hierarchical distance sampling models (Royle, Dawson &Bates

2004) is that they allow inference from samples that are not ran-

domly placed in the study area, and thusmay not be representa-

tive of it, which is an important requirement for extrapolating

predictions obtainedwith conventional distance sampling.

EMERGING METHODS

Hierarchical (N-mixture) models for multiple visits

Hierarchical models handle variation in the observed data as a

result of explicit observation and state process components

(Royle &Dorazio 2008). Detection error is incorporated in the

observation component, while the state process component

incorporates the underlying ecological process (i.e. abundance

or occupancy). This class of models includes approaches that

generally require temporally replicated surveys (i.e. repeated

measures) conducted at multiple locations, but a variant of

these models can be applied to single-visit data sets as

described in the next section.

The repeated measures design was initially applied by

MacKenzie et al. (2002) and Tyre et al. (2003) to detection/

non-detection data in occupancy models to estimate the pro-
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portion of sites occupied (i.e. containing ≥ 1 individual) while

estimating p, the site-level detection probability (i.e. the proba-

bility of detecting at least one individual at site i). Note that p
differs from the individual-level detection probability (P) dis-

cussed above. If, however, individuals are detected indepen-

dently, under binomial sampling these two detection

probabilities can be related as pi = 1� (1� P)Ni (Royle &Nic-

hols 2003). Assuming abundance varies among sites, one can

expect local variation in p because sites with higher abundance

yield more ‘net’ detections and vice versa. This abundance-

induced heterogeneity in the probability of detecting a species

(i.e. greater at sites with more individuals present) led Royle &

Nichols (2003) to propose a model (hereafter, the RN model)

to estimate abundance from binary observations of detection/

non-detection (i.e. apparent presence/absence of the species at

a site).

In the RN model, the detection frequencies for each i site,

defined as the number of times the species was detected in the

repeated j samples, are assumed to follow a binomial distribu-

tion with number of trials equal to j and probability pi, which
in turn depends on the unknown Ni, a random variable with a

specified distribution (e.g. Poisson). Thus, the model assumes

that site-specific detection probabilities are functionally depen-

dent on local abundance. In other words, it obtains informa-

tion about the local abundance distribution directly from the

apparent heterogeneity in p among sites induced by variation

in abundance (Royle &Dorazio 2008). Structurally, the model

is analogous to classical generalized random effect models,

with Ni as the random effect. Measurable variables that are

thought to influence detection at the individual level (based on

pij = 1 – (1 – pij)
Ni) and abundance may be added to the model

as covariates using a link function (e.g. log for the Poisson in

the abundance portion). As such, the RN model can account

for the false zeroes fromdetection error and the true zeros from

processes that influence abundance. While it is not built with

an explicit occupancy probability (w), it can be derived as

w = Pr(N > 0) by defining unoccupied sites to have a zero

detection probability (as a result of zero abundance), and then

1-w becomes the point mass at zero abundance (Royle &

Nichols 2003).

Unmarked populations are a promising area of application

of the RNmodel. For example, many species occur in low den-

sities and are territorial, favouring occupancy sampling instead

of counts. However, the premise of functional dependence

between detection probability and local abundancemay not be

a reasonable assumption in some situations, such as extremely

rare or highly territorial species. In such cases, density might be

so low that local abundance (Ni), given presence, is essentially

constant (i.e. = 1) and thus heterogeneity in apparent detec-

tion probability among sites is null or negligible, undermining

the fundamental proposition of binomial detection in the RN

model.

Obviously, not all species are so rare that only occupancy

sampling is possible and many data sets are composed of

counts. The basic N-mixture model for count data combines a

binomial GLM (for the observed counts) and a standard

model (Poisson or negative binomial) for Ni. It assumes that

the population sampled is closed during the sampling period

with respect to mortality, recruitment and movement (Royle

2004b). It also assumes that detections at a site are independent

and that all individuals recorded at a given site, and time have

the same detection probability (Royle 2004b). Counts at site i

are regarded as a binomial process dependent upon P (i.e. the

observation process) and Ni, a Poisson (or negative binomial)

random variable (i.e. the underlying state process). Additional

explanatory variables can be included in both the abundance

and the detection models using standard generalized linear

modelling techniques. The method generates parameter esti-

mates of the abundance distribution across sites (e.g. k in the

case of a Poisson distribution, or k and a for negative bino-

mial) that allow evaluation of temporal changes or geographic

comparisons. Total abundance can be estimated posteriorly if

the sample units are of known area (Royle 2004b). These mod-

els yield estimates ofP, thus accounting for detection error and

the resulting false zeros (Royle 2004b). Estimates can be gener-

ated with either frequentist (maximum likelihood estimation)

or Bayesian approaches (K�ery 2008; K�ery & Schaub 2012).

This type of model can be fit using the Unmarked R package

(Fiske & Chandler 2011) for frequentist analysis, or by Bayes-

ian methods with WinBUGS (Lunn et al. 2000), OpenBUGS

(Lunn et al. 2009) or Jags (Plummer 2003).

The Poisson and negative binomial distributions are usually

adequate to model abundance at occupied sites in the N-mix-

ture, but they perform poorly when the data include a large

number of true zeros. This can occur when unoccupied sites

are sampled (Wenger & Freeman 2008; Joseph et al. 2009).

Extensions of the N-mixture models were proposed to accom-

modate excess true zeroes, in addition to the false zeros from

detection error, by employing zero-inflated mixture distribu-

tions such as the zero-inflated Poisson (ZIP) to model abun-

dance and potential occupancy simultaneously (Wenger &

Freeman 2008; Joseph et al. 2009). The ZIP distribution is a

mixture of a Poisson distribution, with a rate or average

parameter (k) and a Bernoulli distribution with a parameter

(w) for the probability that a species is potentially present (i.e.

‘potential occupancy’), but the site is unoccupied due to other

factors acting on abundance (i.e. demographic stochasticity

and ecological processes in Fig. 1).

These mixture models allow three sources for zeroes in data –
the false zeroes from detection error, and the true zeroes from

potential occupancy and abundance. As in the original N-mix-

ture, counts in site i are the result of a binomial process depen-

dent on P and Ni. The latter is, in turn, a product of the

potential occupancy process (dependent on w) in addition to

the abundance process (dependent on k). Covariates can be

used for the detection, presence or abundance termswith appro-

priate link functions, and the same covariate may be used for

more than one process (e.g. per cent forest cover for detection

and abundance). Like the basic N-mixture model, use of other

zero-inflated distributions, such as the zero-inflated negative

binomial (ZINB), for modelling the abundance-potential occu-

pancy portion is possible (Wenger & Freeman 2008; Joseph

et al. 2009). However, this can often result in unrealistic param-

eter estimates despite good model fit, so should be used with
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caution (Joseph et al. 2009). Zero-inflated N-mixture models

inherit the assumptions of the originalN-mixturemodel –popu-
lation closure, independence of observations and choice of error

distribution.

Recent developments in N-mixture models focus on han-

dling violations of assumptions or sampling requirements: (i)

Chandler, Royle & King (2011) developed a variation of the

N-mixture model to explicitly account for temporary emigra-

tion by adding a binomial zero-inflation level, whereby each

individual is considered to be within the survey plot with prob-

ability / (and 1-/ is the probability of temporary emigration).

Variation in / can be modelled as a function of site and sur-

vey-specific variables, although often this variation will more

likely be a result of disparity between the sizes of survey plots

relative to the species’ home range (Chandler, Royle & King

2011); (ii) Martin et al. (2011) developed a beta-binomial

N-mixture model to account for non-independent (correlated)

detection of individuals. This can occur when the behaviour of

an animal affects the probability of detection of other individu-

als by the observer (e.g. when singing behaviour in birds and

amphibians elicits a response from a neighbouring individual).

The binomial distribution in the observation model (with

parametersN and P) is replaced by the beta-binomial (withN,

P and the correlation parameter q); larger values of q indicate

stronger correlation (Martin et al. 2011).

Dail & Madsen (2011) proposed a generalized N-mixture

method that can be used to formally test the closure assump-

tion through estimation of parameters of population dynam-

ics. When applied to data from an open population (e.g.

annual counts), themodel estimates arrival rate of new individ-

uals (c, which includes both births and immigrants) and sur-

vival probability (x), which can in turn be used to estimate

abundance while accounting for imperfect P. No additional

information is required to estimate c and x: the generalized

model structure replaces the assumption that N is constant at

each site during the sampling period with estimation of these

parameters based on variation among sampling occasions at

each site. In addition, because the model does not assume a

closed population, it is not necessary for the repeated visits to

be performed within a single season. As a result, multiple-sea-

son data sets with a single visit per season can be analysed (e.g.

the North American Breeding Bird Study). Description of the

generalization procedure is extensive, so we refer readers to the

original article for details (Dail &Madsen 2011). The model is

freely available in the unmarkedR package (Fiske & Chandler

2011).

Yet another recent development of N-mixture models for

unmarked populations is the spatially explicit density model

(Chandler & Royle 2013), which is an adaptation of spatial

capture–recapture (SCR) models for estimating density of

marked individuals (Efford 2004; Borchers & Efford 2008).

SCR models estimate density or population size based on esti-

mation of the activity centres of individuals in the sampled area

from encounter histories using capture/recapture data. Activ-

ity centres, which cannot be directly observed, are the spatial

average of an individual’s locations during a time period. The

model uses the information from the spatial coordinates of

traps with captured individuals to determine the locations of

the activity centres, while capture probability (the equivalent

of detection probability for capture/recapture data) is regarded

as a function of the distance between survey (i.e. trap) locations

and activity centres, similar to the detection function in dis-

tance sampling (Buckland et al. 2001). The spatially explicit

density model has a structure similar to the SCRs, but uses the

spatial correlation (r) in temporally replicated counts to esti-

mate the number and location of the activity centres instead of

individual identification. Because spatial correlation between

counts is required, sample locations need to be in close proxim-

ity to one another relative to the size of a home range to allow

individuals to be detected at multiple locations over the

repeated visits. An interesting aspect of the method is that,

unlike most other approaches for estimating abundance or

density, spatial correlation is not viewed as an obstacle for

inference, but instead informs estimation of distribution and

population size (Chandler &Royle 2013).

Single-visit N-mixturemodels

By using variation in counts between visits to adjust for detec-

tion error, many of the multiple-visit methods described in the

previous section can produce more accurate estimates of abun-

dance than estimators that do not explicitly model detection

(e.g. GLMs). This, however, is not the only way to model

detectability withN-mixture models, as exemplified by the dis-

tance sampling and spatially explicit density models that use

spatial information to estimate the detection function (Chan-

dler &Royle 2013). Detection error can also bemodelled using

only a single visit to each site, for both presence/absence and

count data, if covariates that affect detection and abundance

are available (Lele, Moreno & Bayne 2012; S�olymos, Lele &

Bayne 2012), such as those discussed above in the section

‘Causes and types of zeros in count data’.

The binomial–ZIP mixture model for analysing single-visit

count data in the presence of zero inflation and detection

error replaces both the need for repeated visit data and the

assumption of population closure required by multiple-visit

approaches with the use of non-overlapping sets of covari-

ates that affect detection and/or abundance (S�olymos, Lele

& Bayne 2012). The detection and abundance covariate sets

need to differ by at least one continuous covariate (i.e. they

can share covariates provided that at least one continuous

covariate is unique to either set). As in the multiple-visit

zero-inflated N-mixture approach, the model is built with

detection, abundance and zero-inflation terms, and their

respective error distributions, link functions and covariates.

Because the abundance at each i location is unknown, the

likelihood function involves summation over all possible val-

ues of Ni. Direct maximization of the likelihood function in

this condition can lead to considerable confounding between

the zero-inflation parameter and the intercept parameter in

the detection model, so conditional likelihood is employed.

In this procedure, maximization is conditioned on a sufficient

statistic for the zero-inflation parameter, and a conditional

distribution of the data is used to estimate the detection and
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abundance parameters. To estimate the zero-inflation param-

eter, a new random variable is constructed with the non-zero

observations [Wi = I (Yi > 0), where I is an indicator func-

tion such that I (Yi > 0) = 1 if Yi > 0 and I (Yi > 0) = 0

otherwise], and the likelihood function for the detection,

abundance and zero-inflation parameters is written based on

the distribution of Wi. Then, with values of the abundance

and detection parameters fixed at their conditional likeli-

hood-based estimates, the function is maximized with respect

to the zero-inflation parameter to obtain its estimate. This

new likelihood function does not involve infinite summation

and hence is easy to maximize. Thus, conditional likelihood

separates the parameter space and reduces the extent of con-

founding (S�olymos, Lele & Bayne 2012).

Like the multiple-visit binomial–ZIP mixture model

described in the previous section, the single-visit N-mixture

model includes an ecological process level, an observation level

and an additional zero-inflation level. Thus, it can account for

detection error and other forms of zero inflation, such as those

derived from non-occupancy or temporary absence. The

method is implemented in the R package detect (S�olymos,Mo-

reno & Lele 2013). The pcount procedure in package unmarked

also permits modelling abundance with single-visit data, but

with direct maximization of the likelihood.

Multispecies N-mixture abundancemodels (MSAMs)

Although abundance is a valuable attribute for evaluation

and comparisons, parameters such as species richness, diver-

sity and similarity are also important to understand commu-

nity-level variability (Dorazio & Royle 2005; Dorazio et al.

2006; Yamaura et al. 2012; Iknayan et al. 2014). Yet, meth-

ods for estimating these community metrics, many of which

require measures of species abundance, have remained sepa-

rate until recently. Multispecies abundance models

(MSAMs) are an extension of multiple-visit single-species

abundance models that analyse the detection histories (i.e.

the repeated counts) of all species encountered. The detection

histories are used to inform the estimation of diversity, rich-

ness and derived metrics, including the number of species

that were present in the community, but were not detected at

any site – a measure that is useful for communities domi-

nated by rare species (Dorazio & Royle 2005; Iknayan et al.

2014). MSAMs are still in their infancy, so there are very

few applications to date (Yamaura et al. 2011, 2012; Chan-

dler et al. 2013). However, MSAMs draw much of their

structure from multispecies occupancy models (MSOMs),

which have a longer history of use (see Iknayan et al. 2014

for a review).

Initial MSAMs were developed by combining two different

modelling frameworks based on detection/non-detection data

(Yamaura et al. 2011): (i) the RN model for estimating abun-

dance (Royle & Nichols 2003) and (ii) an MSOM that allows

for estimation of species richness and community composition

at a given site by accounting for both undetected species and

variability in occupancy and detectability among species

(Dorazio & Royle 2005; Dorazio et al. 2006). The model

requires repeated visits at multiple sites to collect detection/

non-detection data for each species. These detection histories

are then linked to species abundance based on the RN model,

and variation in detectability and abundance across sites can

be modelled as a function of site-specific covariates for each

species. Further development of MSAMs allows use of counts

of individuals instead of detection/non-detection data (Yama-

ura et al. 2012), as in single-species N-mixture models for

count data.

For well-detected species, model parameters including co-

variate coefficients can be independently estimated, but this is

not the case for rare species due to insufficient data. The

MSAM has an additional hierarchical level that treats each

parameter as an independent, normally distributed random

effect across species, that is, the value of each parameter for

each species is assumed to be drawn from a normal distribution

with mean and standard deviation that represent the mean

response across species and the standard deviation among spe-

cies (Yamaura et al. 2011; Iknayan et al. 2014). The mean and

standard deviation community parameters are termed hyper-

parameters.

Data augmentation is used inMSAMs to estimate the num-

ber of species present in the community, but not detected at

any site. In addition to the ecological process (i.e. abundance)

and observation (i.e. detection) levels already present in single-

species hierarchical models, the multispecies approach has a

supercommunity (data-augmentation process) level, with

parameter Ω. The supercommunity comprises the observed

species (s) and an arbitrary but known number (m) of unob-

served species. The inclusion rate (Ω) is the probability a spe-

cies that belongs to the supercommunity is sampled (Royle &

Dorazio 2008; Iknayan et al. 2014). In the data-augmentation

approach, m all-zero detection histories are added to those of

the s observed species, and used as input data for the model.

An indicator variable that separates the data into species pres-

ent (detected or not), and those not present in the community

(and hence not detected) is also added to the model (Royle &

Dorazio 2008). This variable is indexed by Ω, which is the

parameter estimated. The number of species in the region (i.e.

gamma diversity) is obtained by multiplying the estimate of Ω
by the sum of s andm.

Both MSAM models (detection/non-detection and count-

based) accommodate, but do not require, the inclusion of site

and survey-specific covariates and also allow for estimation of

community-level metrics derived from richness, such as diver-

sity and similarity indices like species-accumulation curves

(Royle & Dorazio 2008; Iknayan et al. 2014). The supercom-

munity level of the model, by modelling the presence or

absence of each species, already handles the zero inflation

derived from non-occupancy. Moreover, use of ZIP or ZINB

distributions for the ecological process level should be possible

to account for additional zero inflation (e.g. temporary

absence), but to our knowledge have not yet been imple-

mented. Because data augmentation requires estimation of the

parameters by Markov chain Monte Carlo (MCMC), current

implementation of multispecies abundance models is mostly

restricted to Bayesian inference programs.
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Discussion

In this section we summarize and compare the performance of

the emerging methods for estimating abundance described

above, focusing on estimation bias and sample size require-

ments.We conclude by discussing study design and how differ-

ent analytical methods are best suited for particular situations.

METHOD PERFORMANCE

Detection-based estimation approaches generally performed

well when evaluated against simulated data sets (Table 2).

They typically estimated population size without strong bias,

except in scenarios when detection probability was low and

few sites were sampled a small number of times. An encourag-

ing result from the RNmodel, which likely applies to the other

methods, is that bias from small sample size can be countered

by increasing the number of visits to each site (from 3 to 5–10)
or whether the species has a high detection probability

(P ≥ 0�3, Royle &Nichols 2003). When sample size was small,

which sometimes skewed the mean of the abundance estima-

tor, themedian andmodewere close to their true values (Royle

2004b). Similarly, in the spatially explicit density model, low

spatial correlation in counts (r = 0�5) results in a biased mean

of population size estimates (5–10%), but their mode is unbi-

ased (Chandler & Royle 2013). Simulations with the general-

ized N-mixture model showed that population dynamics were

falsely detected at very low rates (< 1%) in closed population

scenarios ([c, x] = [0, 1]), suggesting the model performs ade-

quately as a test of the closed population assumption (Dail &

Madsen 2011).

Few field studies have applied multiple estimation methods

to compare their relative performance. Abundances were

higher when estimated with N-mixture models compared to

estimates derived from territorymapping of birds (K�ery, Royle

& Schmid 2005) and from distance sampling transects of desert

tortoises (Zylstra, Steidl & Swann 2010), but not compared to

direct observations of lizards (Dor�e et al. 2011). Precision (i.e.

confidence intervals) of estimates varied among methods; esti-

mates from N-mixture models had higher precision compared

Table 2. Summary of published simulation studies for emerging methods of estimating abundance, with simulation settings, effects and consider-

ations for sample size. R is number of sites, T is number of visits, k is the mean of the Poisson/NB distribution, P indicates detection probability,

1�/ is the probability of temporary emigration, q is correlation in detection of individuals, c is arrival rate of new individuals, x indicates survival

probability,r is the spatial correlation in counts andw is the potential occupancy probability

Method

Effects on abundance

estimation Sample size effects Simulation settings References

RNmodel Bias of ~10–15%when

P = 0�1;
Small atR ≤ 100; LargerT

and/orP counters smallR

Wide (R, T) range,

k = (4�61, 2�30, 1�61, 1�20,
0�92, 0�69, 0�51),P = (0�1,
0�2), NBmean/variance

ratios = (1�2, 2, 4)

Royle &Nichols

(2003)

BasicN-mixture Small positive bias whenR

(P) = 20 (0�25)
Adequate atR = 20 R = (20, 50),T = (3, 5, 10),

k = (2, 5),P = (0�25, 0�50)
Royle (2004b)

Temporary emigration

N-mixture

Unbiased in random

emigration and spatially

explicit emigration scenarios

Adequate atR = 100, lower

values not investigated

R = 100,T = 3, k = 3�14,
/ = 0�5, random emigration

scenario vs. spatially explicit

scenario (emigration

dependent on home range

size = [0, 10, 30])

Chandler, Royle&

King (2011)

Beta-binomialN-mixture Better performance than the

BasicN-mixture in the

scenariowith correlated

detection (bias of 2%vs.

123%, respectively)

Adequate atR = 200, lower

values not investigated

R = 200,T = 3, k = 4�6,
no correlation scenariowith

P = 0�5, correlation
scenario q = (0�15, 0�3) and
P = (0�7, 0�5), zero-inflated
scenariowithw = 0�25.

Martin et al. (2011)

GeneralizedN-mixture Less biased than the BasicN-

mixture in open population

scenarios ([c,x] 6¼ [0, 1])

Adequate atR = 20; better

results withR = 100

(R,T) = (100, 10), (R,

T) = (20, 5), k = (2, 5),

P = (0�25, 0�50), c = (0, 1,

2),x = (1, 0�8, 0�5)

Dail &Madsen

(2011)

Spatially explicit density

model

Mean of estimates is biased (5

–10%)whenr = 0�5, but
mode is unbiased.With

higherr, estimates are

unbiased. Bias is also

reducedwhen effective

encounter rate is increased.

15 9 15 sample point grid

adequate, lower values not

investigated

15 9 15 sample point grid,

r = (0�5, 0�75, 1), effective
encounter rate = (2�5, 5).
Population size of (27, 45,

75)

Chandler &Royle

(2013)

Single-visitN-mixture OverestimatedwithR = 100,

converged to true values as

R increased

Small atR < 100 R = (100, 300, 500, 700,

1000), k = (2�13, 5�25),
P = (0�25, 0�65),w = (0,

0�25)

S�olymos, Lele &

Bayne (2012)
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to other methods for lizards (Dor�e et al. 2011), but not for tor-

toises (Zylstra, Steidl & Swann 2010). Couturier et al. (2013)

extended the tortoise studies to compare abundance estimates

from capture–recapture, distance sampling and N-mixture

models, conducted simulations to assess bias between capture–
recapture and N-mixture models, and computed a power

analysis to evaluate the ability of the three methods to detect

changes in abundance. The capture–recapture method resulted

in abundance estimates 1�75 and 2�19 times greater than dis-

tance sampling and N-mixture models, respectively. Simula-

tions showed that the N-mixture models resulted in

estimations that were biased high when detection probabilities

were < 0�5, whereas capture–recapture estimations were unbi-

ased. That the N-mixture method showed less precision than

distance sampling and capture–recapture in a species with low

detectability is not surprising, given the additional information

provided by distance measurements and individual marking.

None of the methods were precise enough to detect small

(< 1%/year) population changes (Couturier et al. 2013). Mar-

tin et al. (2011) applied binomial and beta-binomialN-mixture

models (both with a Poisson abundance distribution) in a

Bayesian approach to aerial survey data of manatees, in which

correlated surfacing behaviour caused non-independent detec-

tion of individuals and assessed their fit using posterior predic-

tive distributions (Gelman, Meng & Stern 1996). They found

that the former model did not fit the data, whereas there was

no evidence of lack of fit for the latter model.

CONSIDERATIONS FOR STUDY DESIGN AND CHOICE OF

ANALYTIC FRAMEWORK

The modelling approaches reviewed here can be used to inves-

tigate many kinds of ecological questions – not only hypothe-

ses related to population size and the factors that affect it, but

also questions about detection and community characteristics

(see Table 3 for examples). Banks-Leite et al. (2014) argued

that, because covariates of detection probability can be con-

trolled through sampling design, unadjusted estimates of abun-

dance generated with Poisson and negative binomial GLMs

can be used for estimating population trends and to identify

environmental factors that influence population size, despite

the fact that these methods do not explicitly model detection.

While careful sampling design can reduce the effects of covari-

ates thought to influence detection probability (e.g. time of

day, season, weather, habitat, trap type, observer, etc.), in the

absence of modelling detection probabilities it may be difficult

to distinguish between model outcomes that reliably reflect

ecological processes and those that are related to detectability

effects. We focus the remainder of the Discussion on methods

that explicitly incorporate detection probability (Fig. 2,

Tables 1 and 2).

Estimation methods can be divided into those that require

one visit and those that requiremultiple visits (Fig. 2, Table 1).

In the latter, sampling logistics often impede resurveys on the

same day. Other factors, such as species’ behavioural traits,

may also require that observers return to sites on different days

to ensure independence of surveys. Visiting a site on several

dates within a sampling season increases travel costs and per-

sonnel time. For a given budget, this will likely reduce the num-

ber of sites that can be surveyed, potentially decreasing the

generality of the study (Lele, Moreno & Bayne 2012). This

issue becomes especially important when sampling species that

occur in low densities, because surveying a large number of

sites is crucial to obtain enough non-zero observations for reli-

able population inferences. Trade-offs between the number

of visits and number of sites surveyed must be considered

Table 3. Common questions asked in ecological studies, and the established and emerging methods for estimating abundance of unmarked animal

populations that can be used to address them.GLM includes both Poisson andNBGLMs. DS is distance sampling. For theN-mixturemethods, ZI

is the zero-inflatedmodel, Temp is the temporary emigrationmodel, Beta-bin is the beta-binomial model, Gen is generalizedmodel, Space is the spa-

tially explicit densitymodel, 1 visit is the single-visit model andMultispec is themultispecies approach

Objective Questions often asked in ecological studies GLM DS

Type ofN-mixturemodel

Basic ZI Temp Beta-bin Gen Space 1 visit Multispec

Detection How is detection of individuals affected by

covariates?

x x x x x x x x x

Is detection of individuals non-independent

due to correlated behaviour?

x

Population How is relative abundance affected by

covariates?

x

How is abundance or density affected by

covariates?

x x x x x x x x x

What is the population trend? x x x x x x x x x x

What is the estimated abundance of

individuals?

x x x x x x x x x

What is the probability of non-occupancy/

temporary emigration?

x x x

What are the arrival and survival rates x

Community What is the species richness and diversity? x

Howdo covariates affect species richness/

diversity?

x
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carefully with regard to the objectives of the study.Monitoring

populations in small to moderately sized areas may be a more

likely scenario for use of multiple-visit methods than regional-

scale studies. For the latter, single-visit methods may be a cost-

effective option. Below, we first discuss the single-visit methods

and return to themultiple-visit approaches later.

Single-visit methods (Fig. 2, Table 1) replace repeated vis-

its with auxiliary data to estimate detection probability. The

most widely used single-visit method is distance sampling,

which assumes that the distance to observer measurements

are made with minimal error and that detection at the survey

point or line is perfect (Buckland et al. 2001). In practice,

distances to observer can be difficult to accurately measure if

surveys rely on aural detections (Alldredge, Simons &

Pollock 2007b), or if surveys include a considerable propor-

tion of fast-moving individuals (e.g. birds in flight). To illus-

trate the latter, we describe encounter data for 10 common

raptor species detected during roadside strip-transects in

open habitats in west-central Brazil (D�enes, F.V. unpub-

lished data). Eight of the 10 species had more than 20% of

individuals detected in flight, suggesting that a large propor-

tion of the distance to observer measurements might not be

reliable for density estimation with distance sampling. Thus,

it may be useful to conduct an assessment of the mode of

detection (e.g. the ratio of flying vs. stationary, or aural vs.

visual detections) when designing a study before deciding to

adopt distance sampling; data sets in which detections are

frequently of non-stationary, or calling individuals are prob-

ably better suited for other methods.

Point or transect counts are commonly performed along

roads, rivers or paths, especially counts focusing on larger,

highly mobile species (e.g. raptors, parrots and some water-

fowl), due to ease of access and time and resource limitations

(Buckland, Marsden & Green 2008). Many factors along

such features can lead to atypical density, including an

increased frequency of perch sites (e.g. power and telephone

posts and lines, fences, road-signs), more food for scavenging

species (i.e. road-kills) and increased edge habitats (Buckland,

Marsden & Green 2008). Although this can present a prob-

lem for any analytical method when extrapolating over a lar-

ger region, distance sampling is particularly vulnerable

because it relies so heavily on the spatial distribution of indi-

viduals in the vicinity of the sample point or line. Alternative

strategies have been suggested to handle this problem, such

as placing transects perpendicular to roads or paths (Buck-

land, Marsden & Green 2008), using multiple independent

observers to estimate detection probability (Marques et al.

2010), recording locations of detected individuals at snapshot

moments (Buckland 2006) or recording distances to detected

cues (e.g. songbursts) rather than individuals (Buckland

2006), but they are not always feasible or logistically viable.

In such situations, it might be better to replace conventional

distance sampling with an alternate detection-based method

to model count data (Fig. 2, Table 1). An interesting option

still in the realm of distance sampling is to employ either the

hierarchical distance sampling model of Royle, Dawson &

Bates (2004) or a density surface model approach (Hedley &

Buckland 2004; Miller et al. 2013a), both of which allow

extrapolation of detection-adjusted abundance predictions

generated from samples lacking random placement that may

not be representative of the study area.

TheN-mixture method for single-visit count data (S�olymos,

Lele&Bayne 2012) requires non-overlapping sets of covariates

for detection and abundance. Most research and monitoring

studies designed to compare abundance between different con-

ditions or sampling periods are likely to collect detection and

abundance covariates. For example, detection covariates often

include time of day, weather, habitat and observer, which are

frequently available for most data sets. If, however, the proper

covariates are not collected and modelled, abundance esti-

mates will be inaccurate regardless of the number of sampling

visits (S�olymos, Lele & Bayne 2012). Hence, the need to collect

covariates to use the single-visit approach can hardly be con-

sidered an objection to its use. When limited budget or sam-

pling logistics preclude the use of the multiple-visit N-mixture

or distance sampling methodologies, the single-visit method

accommodating detection error and zero inflation provides an

interesting alternative.

Focusing on the number of occupied sample units using

multiple visits instead of on the number of animals in each unit

has been suggested to reduce the efforts and costs associated

with monitoring (MacKenzie et al. 2002; Royle & Nichols

2003). TheRNmodel follows this general approach to produce

an estimate of population size (Fig. 2, Table 1), and it is espe-

cially useful for situations where little information is available

beyond detection/non-detection data (Royle & Nichols 2003).

For example, detection of multiple individuals seldom occurs

whenmonitoring of rare or very elusive species (with the caveat

that cases of extreme rarity can be a problem even for the RN

method). When it is not possible to ensure that individuals are

not counted more that once during a visit, reduction of the

count data to detection/non-detection for use in the RNmodel

may be a useful approach.

When reliable multiple-visit count data are available, several

N-mixture methods (Fig. 2, Table 1) allow researchers to

model not only abundance and detection but also additional

phenomena, such as temporary emigration, non-independent

detection of individuals, population closure (a basic premise of

the multiple-visit approach itself) and population dynamics

parameters (i.e. arrival rate of new individuals [births and

immigrants] and survival probability; Table 2). The versatility

of this framework should encourage researchers to collect mul-

tiple-visit count data whenever their research system and bud-

get allow.

Recently, the use of single-species models that adjust for

imperfect detection in situations where communities are domi-

nated by rare species, such as tropical rain forests, has been

questioned due to their requirement for high detection or

recapture probabilities, which are unlikely to be obtained for

rare species (Banks-Leite et al. 2014). The multispeciesN-mix-

ture framework uses data from the entire sample (common

and rare species) to inform a community-level distribution of

detection and occupancy or abundance probabilities (via

hyper-parameters) from which estimates for each species,
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including rare ones, are obtained. This ‘information sharing’

allows data to be used more efficiently compared with single-

species models, and individual estimates are improved (Doraz-

io & Royle 2005; Iknayan et al. 2014). A great advantage of

multispecies abundance N-mixture models, which to our

knowledge currently exists only in the multiple-visit frame-

work, is the ability to combine abundance and richness esti-

mates while explicitly incorporating observation error (i.e.

imperfect detection) in count data (Fig. 2, Table 1). However,

this type of hierarchical model is relatively new, so its limita-

tions and performance remain to be more widely evaluated. In

addition, implementation of the models is still complex and

beyond the programing expertise of many potential users,

although example code and software are freely available on the

Internet (Iknayan et al. 2014).

Conclusions

Population studies with the goals of informing conservation

actions and management decisions often need to rigorously

estimate abundance and how it is influenced by multiple fac-

tors. We believe this involves recognizing that, regardless of

observer expertise, count data are subject to detection error

and multiple forms of zero inflation (Fig. 1). Thus, adopting

a sampling scheme and analytical method that account for

these phenomena is necessary to address most questions that

involve making inference or obtaining estimates about popu-

lation size (Table 3). Of the 11 kinds of analytical methods

used to estimate population size that we have reviewed

(Table 1), 8 can account for both imperfect detection and

additional variation in population size in the forms of non-

occupancy, temporary emigration, correlated detection and

population dynamics. All eight have been developed within

the past decade, and their efficacy is still under study

(Table 2). We expect developments to continue in this

important area of statistical ecology.

Methods for estimating population size vary in their degree

of suitability for a research project, depending on the taxa sam-

pled, whether surveys are composed of a single or multiple spe-

cies, the availability and feasibility of collecting ancillary data,

and the scale and objectives of the study. Estimation methods

can also impose differing financial and logistical costs, depend-

ing upon the requirement for repeated visits (Fig. 2, Table 1).

Researchers should be aware of these differences when design-

ing studies, so that limited funds and effort are spent efficiently.

Acknowledgements

FVDwas supported by S~ao Paulo Research Foundation (FAPESP) grants 2010/

08528-6 and 2012/13195-1 and by The Peregrine Fund. SRB was supported by

NSF grants CNH 1115069 and DEB-1051342. Reviews by Marc K�ery, Andy

Royle, Jos�e L. Tella, theBeissinger Lab, the Sec�~ao deAves doMuseude Zoologia

da Universidade de S~ao Paulo and two anonymous reviewers greatly improved

thismanuscript.

Data accessibility

Nodatawas used in this review.

References

Alldredge, M.W., Simons, T.R. & Pollock, K.H. (2007b) Factors affecting aural

detections of songbirds.Ecological Applications, 17, 948–955.
Alldredge, M.W., Pollock, K.H., Simons, T.R., Collazo, J.A. & Shriner, S.A.

(2007a) Time-of-detectionmethod for estimating abundance from point-count

surveys.TheAuk, 124, 653–664.
Banks-Leite, C., Pardini, R., Boscolo, D., Cassano, C.R., P€uttker, T., Barros,

C.S. & Barlow, J. (2014) Assessing the utility of statistical adjustments for

imperfect detection in tropical conservation science. Journal of Applied Ecol-

ogy, 51, 849–859.
Bolker, B.M. (2008)EcologicalModels andData in R. PrincetonUniversity Press,

Princeton andOxford.

Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood

methods for capture-recapture studies.Biometrics, 64, 377–385.
Buckland, S.T. (2006) Point-transect surveys for songbirds: robust methodolo-

gies.TheAuk, 123, 345–357.
Buckland, S.T., Marsden, S.J. & Green, R.E. (2008) Estimating bird abundance:

makingmethodswork.BirdConservation International, 18, 91–108.
Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. &

Thomas, L. (2001) Introduction to Distance Sampling: Estimating Abundance

of Biological Populations. OxfordUniversity Press, Oxford.

Chandler, R.B. & Royle, J.A. (2013) Spatially explicit models for inference about

density in unmarked or partially marked populations. The Annals of Applied

Statistics, 7, 936–954.
Chandler, R.B., Royle, J.A. &King, D.I. (2011) Inference about density and tem-

porary emigration in unmarked populations.Ecology, 92, 1429–1435.
Chandler, R.B., King, D.I., Raudales, R., Trubey, R., Chandler, C. & Ch�avez,

V.J.A. (2013) A small-scale land-sparing approach to conserving biological

diversity in tropical agricultural landscapes. Conservation Biology, 27,

785–795.
Chelgren, N.D., Samora, B., Adams, M.J. & McCreary, B. (2011) Using spatio-

temporal models and distance sampling to map the space use and abundance

of newly metamorphosed western toads (Anaxyrus oreas). Herpetological

Conservation and Biology, 6, 175–190.
Conn, P.B., Laake, J.L. & Johnson, D.S. (2012) A hierarchical modeling frame-

work formultiple observer transect surveys.PLoSONE, 7, e42294.

Couturier, T., Cheylan, M., Bertolero, A., Astruc, G. & Besnard, A. (2013) Esti-

mating abundance and population trends when detection is low and highly

variable: a comparison of three methods for the Hermann’s tortoise.The Jour-

nal ofWildlifeManagement, 77, 454–462.
Dail, D. & Madsen, L. (2011) Models for estimating abundance from repeated

counts of an openmetapopulation.Biometrics, 67, 577–587.
Dorazio, R.M. & Royle, J.A. (2005) Estimating size and composition of biologi-

cal communities by modeling the occurrence of species. Journal of the Ameri-

can Statistical Association, 100, 389–398.
Dorazio, R.M., Royle, J.A., S€oderstr€om, B. & Glimsk€ar, A. (2006) Estimating

species richness and accumulation by modeling species occurrence and detect-

ability.Ecology, 87, 842–854.
Dor�e, F., Grillet, P., Thirion, J., Besnard, A. & Cheylan, M. (2011) Implementa-

tion of a long-termmonitoring programof the ocellated lizard (Timon lepidus)

population onOleron Island.Amphibia-Reptilia, 32, 159–166.
Efford, M. (2004) Density estimation in live-trapping studies. Oikos, 106,

598–610.
Fiske, I. & Chandler, R. (2011) Unmarked: an R package for fitting hierarchical

models of wildlife occurrence and abundance. Journal of Statistical Software,

43, 1–23.
Gelman, A., Meng, X.L. & Stern, H.S. (1996) Posterior predictive assessment of

model fitness via realized discrepancies (with discussion). Statistica Sinica, 6,

733–807.
Hedley, S.L. & Buckland, S.T. (2004) Spatial models for line transect sam-

pling. Journal of Agricultural, Biological, and Environmental Statistics, 9,

181–199.
Iknayan, K.J., Tingley, M.W., Furnas, B.J. & Beissinger, S.R. (2014) Detecting

diversity: emerging methods to estimate species diversity. Trends in Ecology &

Evolution, 29, 97–106.
Johnson, D.S., Laake, J.L. & VerHoef, J.M. (2010) Amodel-based approach for

making ecological inference from distance sampling data. Biometrics, 66,

310–318.
Joseph, L.L.N., Elkin, C., Martin, T.G. & Possinghami, H.P. (2009) Modeling

abundance using N-mixture models: the importance of considering ecological

mechanisms.Ecological Applications, 19, 631–642.
Katsanevakis, S. (2007) Density surface modelling with line transect sampling as

a tool for abundance estimation of marine benthic species: the Pinna nobilis

example in amarine lake.Marine Biology, 152, 77–85.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 543–556

Abundance models for unmarked animal populations 555



K�ery,M. (2008) Estimating abundance frombird counts: binomial mixture mod-

els uncover complex covariate relationships.TheAuk, 125, 336–345.
K�ery, M., Royle, J. & Schmid, H. (2005) Modeling avian abundance from repli-

cated counts using binomial mixture models. Ecological Applications, 15,

1450–1461.
K�ery,M. & Schaub,M. (2012)Bayesian Population Analysis UsingWinBUGS: A

Hierarchical Perspective. Academic Press,Waltham,Massachusetts.

Lele, S.R., Moreno, M. & Bayne, E. (2012) Dealing with detection error in site

occupancy surveys: what canwe dowith a single survey? Journal of Plant Ecol-

ogy, 5, 22–31.
Lunn,D., Thomas, A., Best, N. & Spiegelhalter, D. (2000)WinBUGS-a Bayesian

modelling framework: concepts, structure, and extensibility. Statistics and

Computing, 10, 325–337.
Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. (2009) The BUGS project:

evolution, critique and future directions.Statistics inMedicine, 28, 3049–3067.
MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., AndrewRoyle, J. &

Langtimm,C.A. (2002) Estimating site occupancy rates when detection proba-

bilities are less than one.Ecology, 83, 2248–2255.
Marques, F.F.C. & Buckland, S.T. (2003) Incorporating covariates into standard

line transect analyses.Biometrics, 59, 924–935.
Marques, T.A., Thomas, L., Fancy, S.G.&Buckland, S.T. (2007) Improving esti-

mates of bird density using multiple-covariate distance sampling. The Auk,

124, 1229–1243.
Marques, T.A., Buckland, S.T., Borchers, D.L., Tosh, D. & McDonald, R.A.

(2010) Point transect sampling along linear features. Biometrics, 66,

1247–1255.
Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-

Choy, S.J., Tyre, A.J. & Possingham, H.P. (2005) Zero tolerance ecology:

improving ecological inference by modelling the source of zero observations.

Ecology Letters, 8, 1235–1246.
Martin, J., Royle, J.A., Mackenzie, D.I., Edwards, H.H., K�ery, M. & Gardner,

B. (2011) Accounting for non-independent detection when estimating abun-

dance of organisms with a Bayesian approach.Methods in Ecology and Evolu-

tion, 2, 595–601.
McCarthy,M.A.,Moore, J.L.,Morris,W.K., Parris,K.M.,Garrard,G.E., Vesk,

P.A. et al. (2013) The influence of abundance on detectability. Oikos, 122,

717–726.
McClintock, B.T., Bailey, L.L., Pollock, K.H. & Simons, T.R. (2010) Experimen-

tal investigation of observation error in anuran call surveys. Journal ofWildlife

Management, 74, 1882–1893.
Miller, D.L., Burt, M.L., Rexstad, E.A. &Thomas, L. (2013a) Spatial models for

distance sampling data: recent developments and future directions.Methods in

Ecology and Evolution, 4, 1001–1010.
Miller, D.A.W., Nichols, J.D., Gude, J.A., Rich, L.N., Podruzny, K.M., Hines,

J.E. & Mitchell, M.S. (2013b) Determining occurrence dynamics when false

positives occur: estimating the range dynamics of wolves from public survey

data.PLoSONE, 8, e65808.

Nelder, J.A. &Wedderburn, R.W.M. (1972) Generalized LinearModels. Journal

of the Royal Statistical Society, Series A, 135, 370–384.
Niemi, A. & Fern�andez, C. (2010) Bayesian spatial point process modeling of line

transect data. Journal of Agricultural, Biological, and Environmental Statistics,

15, 327–345.
Oedekoven, C.S., Buckland, S.T., Mackenzie, M.L., Evans, K.O. & Burger,

L.W. (2013) Improving distance sampling: accounting for covariates and

non-independency between sampled sites. Journal of Applied Ecology, 50,

786–793.
Plummer, M. (2003) JAGS: a program for analysis of bayesian graphical models

using gibbs sampling.Proceedings of the 3rd InternationalWorkshop in Distrib-

uted Statistical Computing (DSC 2003),March 20-22 (eds K. Hornik, F. Lei-

sch&A. Zeileis), pp. 1–10, TechnischeUniversit€at, Vienna, Austria.

RDevelopmentCore Team (2014)R:ALanguage and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna. URL http://

www.R-project.org [accessed 15May 2014].

Royle, J.A. (2004a) Generalized estimators of avian abundance from count sur-

vey data.Animal Biodiversity andConservation, 27, 375–386.
Royle, J.A. (2004b) N-mixture models for estimating population size from spa-

tially replicated counts.Biometrics, 60, 108–115.
Royle, J.A., Dawson, D.K. & Bates, S. (2004)Modeling abundance effects in dis-

tance sampling.Ecology, 85, 1591–1597.
Royle, J.A.&Dorazio, R. (2008)HierarchicalModeling and Inference in Ecology.

Academic Press, London,UK.

Royle, J.A. & Link, W.A. (2006) Generalized site occupancy models allowing for

false positive and false negative errors.Ecology, 87, 835–841.
Royle, J.A. & Nichols, J.D. (2003) Estimating abundance from repeated pres-

ence–absence data or point counts.Ecology, 84, 777–790.
Sillett, T.S., Chandler, R.B., Royle, J.A., K�ery,M.&Morrison, S.A. (2012) Hier-

archical distance-samplingmodels to estimate population size and habitat-spe-

cific abundance of an island endemic.Ecological Applications, 22, 1997–2006.
S�olymos, P., Lele, S.&Bayne, E. (2012)Conditional likelihood approach for ana-

lyzing single visit abundance survey data in the presence of zero inflation and

detection error.Environmetrics, 23, 197–205.
S�olymos, P., Moreno, M. & Lele, S.R. (2013) “Detect”: analyzing wildlife data

with detection error. R package version 0.3-2. URL http://cran.r-project.org/

package=detect [accessed 13March 2014].

Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley,

S.L., Bishop, J.R.B., Marques, T.A. & Burnham, K.P. (2010) Distance soft-

ware: design and analysis of distance sampling surveys for estimating popula-

tion size. Journal of Applied Ecology, 47, 5–14.
Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K. & Possingham,

H.P. (2003) Improving precision and reducing bias in biological surveys: esti-

mating false-negative error rates.Ecological Applications, 13, 1790–1801.
Warren, C.C., Veech, J.A., Weckerly, F.W., O’Donnell, L. & Ott, J.R. (2013)

Detection heterogeneity and abundance estimation in populations of Golden-

cheekedWarblers (Setophaga chrysoparia).TheAuk, 130, 677–688.
Welsh, A.H., Cunningham, R.B., Donnelly, C.F. & Lindenmayer, D.B. (1996)

Modelling the abundance of rare species: statistical models for counts with

extra zeros.EcologicalModelling, 88, 297–308.
Wenger, S.J. & Freeman, M.M.C. (2008) Estimating species occurrence, abun-

dance, and detection probability using zero-inflated distributions. Ecology, 89,

2953–2959.
Yamaura, Y., Andrew Royle, J., Kuboi, K., Tada, T., Ikeno, S. & Makino, S.

(2011) Modelling community dynamics based on species-level abundance

models from detection/nondetection data. Journal of Applied Ecology, 48,

67–75.
Yamaura, Y., Royle, J.A., Shimada,N., Asanuma, S., Sato, T., Taki, H.&Maki-

no, S. (2012) Biodiversity ofman-made open habitats in an underused country:

a class of multispecies abundance models for count data. Biodiversity and

Conservation, 21, 1365–1380.
Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009)Mixed

EffectsModels and Extensions in Ecology with R. Springer, NewYork.

Zylstra, E.R., Steidl, R.J. & Swann, D.E. (2010) Evaluating survey methods for

monitoring a rare vertebrate, the Sonoran Desert Tortoise. Journal of Wildlife

Management, 74, 1311–1318.

Received 4November 2014; accepted 17December 2014

Handling Editor:Nick Isaac

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 543–556

556 F. V. D�enes, L. F. Silveira & S. R. Beissinger

http://www.R-project.org
http://www.R-project.org
http://cran.r-project.org/package=detect
http://cran.r-project.org/package=detect

