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REVIEW ARTICLE

Revisiting methods for estimating parrot abundance and population size
Francisco V. Dénes a*, José L. Tellaa and Steven R. Beissingerb

aDepartment of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain; bDepartment of Environmental Science, Policy and
Management and Museum of Vertebrate Zoology, University of California, Berkeley, USA

ABSTRACT
Estimating abundance and population size is essential for many ecological and conservation studies of
parrots. Achieving these goals requires methods that yield reliable estimates, but parrot traits canmake
them difficult to detect, count, and capture. We review established and emergent sampling and
analytical methods used to estimate parrot abundance and population size, focusing on their assump-
tions, requirements, and limitations. Roost surveys are cost-effective if all roost locations in a region are
known and stable, which is uncommon. Capture–recapturemethods incorporate detection probability,
but capturing, marking and resighting parrots can be difficult. Distance sampling estimates detection
probability and surveys multiple species simultaneously, but is sensitive to the spatial distribution of
individuals and excludes birds in flight. Roadside transects can cover large areas and survey multiple
species, but habitats near roads may differ from the surrounding areas, biasing abundance estimates.
Occupancy surveys and hierarchical models usually require spatially and temporally replicated datasets.
Both allow estimation of detection probability; the former dispenses with count data, while the latter is
a versatile set of methods that can incorporate multiple processes influencing detection and abun-
dance. Finally, passive acoustic surveys can samplemultiple species simultaneously, but identification of
vocalisations can be difficult and time-consuming.
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Introduction

Estimating the size of wild populations is essential for
quantifying population dynamics and the impacts of dif-
ferent threats, identifying species that require protection,
and developing effective management plans and sustain-
able harvesting targets (IUCN 2016). Given limited fund-
ing and the urgency of many conservation undertakings,
estimating population size and abundance (i.e. local popu-
lation size) requires efficient and affordable survey
techniques.

Parrots have long been threatened due to extensive
habitat loss and fragmentation, persecution, and over-
exploitation for the pet trade (Beissinger and Bucher
1992; Tella and Hiraldo 2014; IUCN 2016; Olah et al.
2016). Researchers have used information on parrot
abundance to understand habitat use (e.g. Mac Nally
and Horrocks 2000; Marsden et al. 2000; Nunes and
Galetti 2007), impacts of natural disturbances
(Wunderle 1995), population dynamics (e.g. Beissinger
et al. 2008), proportions of breeding to non-breeding
populations (Tella et al. 2013), seed dispersal (Baños-
Villalba et al. 2017), and how parrots affect ecosystem
structure and function (Blanco et al. 2015). However,

reliable information on population sizes and trends is
lacking for nearly all the world’s ca.400 species of parrots
(IUCN 2016), and knowledge on how abundance varies
in space is even scarcer (Marsden and Royle 2015).
Although several methods for estimating abundance
and population size exist, their effectiveness differs
because parrot behaviour may often violate the basic
assumptions of statistical approaches traditionally used
(Casagrande and Beissinger 1997).

Twenty years ago Casagrande and Beissinger (1997)
evaluated four methods for estimating parrot population
size (roost counts, mark-resight surveys, and point and
line transects). Their study provided a methodological
evaluation that helped many researchers design and
carry out their studies of parrot populations (e.g.
Rivera-Milán et al. 2005; Berg and Angel 2006; Matuzak
and Brightsmith 2007), and instigated further investiga-
tions (e.g. Marsden 1999; Cougill and Marsden 2004;
Legault et al. 2013). Since 1997, technological advances
have allowed researchers to carry out new types of surveys
(e.g. Alquezar and Machado 2015; Figueira et al. 2015),
while novel statistical methods have dramatically
increased the toolbox for analysing survey data from
wild populations (Nichols et al. 2009).
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We revisit the basic problem facing most parrot
researchers – how to accurately estimate abundance
and population size – in the context of these new
advances. First, we consider how the behaviour and
ecology of parrots inform the choice of survey and
analytical methods, and how they induce variation
and error for different survey methods. Then, we
review how methods evaluated by Casagrande and
Beissinger (1997) have been applied and developed,
and highlight emergent survey and analytical
approaches to estimate parrot abundance and popula-
tion size, focusing on the assumptions, requirements,
and limitations of each method. Our aim is to inform
parrot researchers of these advances and their limita-
tions so that research and conservation budgets are
used effectively, and to ensure that vital conservation
efforts are based on the best available information.

Parrot traits hinder estimation of abundance
and population size

Parrot populations are challenging to survey for several
reasons. Some challenges relate to traits that make
parrots difficult to detect, count, or capture, while
others are linked to the manner in which parrots use
and move in the environment. While none of the
challenges are unique to parrots, the combination of
traits and behaviours makes parrots difficult to detect
or unavailable to be counted.

The probability that a parrot is detected during a
survey can be considered as the product of four con-
ceptually different components (Nichols et al. 2009).
The first two components – the probability that its
home range or territory partly overlaps a sampling
unit (spatial sampling) and the probability that it is
present during the survey (presence) – are related to
spatial coverage. Parrots are highly mobile and gener-
ally do not have all-purpose territories (Forshaw 2010).
They often have large home ranges and perform long-
distance daily movements between nesting, roosting,
and foraging areas. Such movements affect the spatial
coverage of parrot surveys because usually the sam-
pling area is small relative to the movements of the
species. Individuals may regularly use a surveyed site
but be absent at the time of the survey, visiting part of
their home range outside of the sample unit. This
circumstance, often termed ‘temporary emigration’ or
‘temporary absence’, generates false absences in counts
(Chandler et al. 2011). Moreover, these movements are
highly variable throughout the year, as parrots often
track the seasonal availability of their food resources
(Renton et al. 2015) and, in some species, communal

roosts often change locations (Casagrande and
Beissinger 1997).

Seasonal changes in parrot behaviours also affect
population and abundance estimations. Some species
(e.g. the Red-spectacled Parrot Amazona pretrei and
Swift Parrot Lathamus discolor) perform long-distance,
seasonal movements (Forshaw 2010). If surveys are
performed at the onset or end of such displacements,
when part of the population has already left or arrived,
only a portion of the population will be present to
count. Whether or not these absences are considered
to be false depends on the survey objectives (e.g.
whether the goal is to sample the entire population,
or the portion that has not yet migrated or arrived).
Similarly, during the breeding season, individuals may
remain in the nest to incubate or guard, so will not
forage socially or join communal roosts, and will less
likely be encountered and counted (Luna et al. 2017).

The other two components affecting parrot detec-
tion are the probability that an individual present dur-
ing a survey gives a visual or auditory cue and is
therefore available for detection (availability), and the
conditional probability that available birds are detected
(perceptibility). The product of these terms is the over-
all detection probability (Nichols et al. 2009).The gre-
garious and loud behaviour of most parrot species
makes them more easily detected than other groups
of medium- and large-sized tropical forest birds, such
as raptors, toucans, trogons, or guans. However, as for
other bird species, the detection probability of parrots
is also influenced by habitat structure (e.g. open savan-
nahs vs. dense cloud forests), time of day (which influ-
ences visibility and parrot activity), group size, weather,
distance to the observer, and variation between obser-
vers (Buckland et al. 2001). These factors cause ‘detec-
tion error’ or ‘imperfect detection’ – decreasing the
probability of detecting individuals – and result in
low counts and false absences (Dénes et al. 2015).

Parrots often congregate in large flocks and roosts.
While this may increase detection probability for the
group (i.e. large flocks are noisier and easier to see
from afar), it makes accurate tally of the number of
individuals more difficult, increasing error in counts
and leading to underestimation of group size at larger
distances (Buckland et al. 2001).

Finally, capturing and marking parrots is difficult
(Beissinger and Bucher 1992). Most parrots nest in
elevated cavities in trees or cliffs that are difficult to
find, reach, and monitor. Capturing parrots outside of
their nests is challenging, since most species usually fly
high over the canopy and avoid traps, although trap-
ping can be successful at foraging sites (Pires et al.
2016). Parrots typically have strong bills and can
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remove plastic bands or crush aluminium bands on
their legs, leading to injuries. This necessitates using
combinations of coloured stainless steel bands or num-
bered polyvinylchloride (pvc) bands to individually
mark most parrots (Meyers 1995). Moreover, the
short, hourglass-shaped tarsi of most parrots reduce
the number of bands that can be placed on a leg and
hinders identification at distance. Senar et al. (2012)
developed a marking method consisting of a numbered
tag hung on a neck collar, and employed it to monitor
invasive Monk Parakeets (Myopsitta monachus) and
Ring-necked Parakeets (Psittacula krameri) in
Barcelona, Spain. They found a low percentage of tag
loss (4.5% and 5.8%, respectively), and neck collars had
no adverse effects on individuals of either species. The
method has also been tested on amazons and macaws
with promising results (Tella unpub. data).

Traditional approaches for estimating parrot
abundance and population size

In this section, we review traditional methods to survey
and estimate parrot abundance and population size,
with a focus on their limitations, assumptions and
requirements. We note that methods can be used for
estimating abundance (i.e. local population size), den-
sity (abundance per area unit), relative abundance
indices, or the overall population size (the term ‘census’
is sometimes loosely applied in this case). The latter
often relies on extrapolation of local estimates over
large areas, and usually implies additional assumptions,
which we also discuss below.

Roost surveys

Roost surveys have been used to estimate abundance
when parrots are widely dispersed (e.g. Gnam and
Burchsted 1991; Casagrande and Beissinger 1997;
Pithon and Dytham 1999; Downs 2005; Matuzak and
Brightsmith 2007; Burnham et al. 2010), and are espe-
cially useful to estimate population size when the local
and even global populations seasonally concentrate
into a few communal roosts (Martinez and Prestes
2008; Tella et al. 2013; Pacífico et al. 2014; Luna et al.
2017). This method requires previous fieldwork to
locate the roosts, often facilitated by local knowledge
since roost sites are sometimes used for decades (e.g.
Martinez and Prestes 2008). Individuals are counted as
they enter or leave the roosts around sunset or sunrise,
usually by several observers stationed at one or more
vantage points. Flock size, time of arrival or departure,
and flight direction of birds as they enter or leave
roosts are often recorded to reduce double counting

of individuals by different observers (Gnam and
Burchsted 1991). For some species (e.g. genus
Amazona), the size of flocks arriving in roosts may
also allow identification of pairs and family groups to
make inferences about the proportion of breeders (Berg
and Angel 2006; Matuzak and Brightsmith 2007).

Roost sizes vary due to seasonal changes in parrot
behaviour, since numbers may diminish gradually as
the breeding season advances when breeders roost in
nests, and may sharply increase after young fledge.
Seasonal changes in the spatial distribution of food
resources can also alter roost sizes and locations.
Numbers tend to increase when food supply in the
surrounding area is high, but may decrease when
food supply is more dispersed (Matuzak and
Brightsmith 2007; Martinez and Prestes 2008). Cold
and rainy weather can also reduce roost sizes for
some species because a greater proportion of birds
may spend the night in their nest cavities to reduce
energy expenditure (Cougill and Marsden 2004). The
presence and proximity of neighbouring roosts may
also increase daily variation in the counts of the focal
roost.

An important factor influencing the ability to accu-
rately observe and count parrots entering or leaving
roosts is visibility. Studies have identified significant
differences in the time required for parrots to leave
roosts in the morning or arrive in the evening
(Cougill and Marsden 2004; Matuzak and Brightsmith
2007), which are important because a longer period
might mean that some individuals leave or arrive
when light levels are too low to allow detection. On
the other hand, if too many individuals leave or arrive
simultaneously, it may be difficult to accurately count
them. Differences in flight behaviour between morning
and evening can also affect accuracy of counts. Dawn
counts were more accurate for a roost of Red-lored
Amazons (A. autumnalis) because birds flew closer to
the ground than at dusk (Berg and Angel 2006).
Naturally, weather (e.g. fog or rain) can drastically
impair visibility. In addition, parrots often move
around and repeatedly enter and leave the roost, espe-
cially in the evenings (Gnam and Burchsted 1991).

Although dawn and dusk roost counts may be equiva-
lent for some species (e.g. Downs 2005; de Moura et al.
2010), evidence indicates that this should not be assumed
a priori, and that the period most favourable for survey-
ing varies among species, even within a genus (Amazona;
Cougill and Marsden 2004; Berg and Angel 2006;
Matuzak and Brightsmith 2007). Thus, prior to establish-
ing protocols, researchers should evaluate the best period
for surveys, considering flight patterns, the time it takes
for birds to leave from or arrive at roosts, and the size of
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flocks. A simple strategy to reduce double-counting and
the count error induced by movement within roosts is to
delineate a ‘buffer zone’ (e.g. a circle of radius ~50 m
around the roost centre). Only movements into and out
of this space are recorded, and birds leaving are sub-
tracted from the count of birds that entered (Cougill
and Marsden 2004).

The potential for high seasonal variation in roost
size means that, if the objective of the study is to assess
long-term trends, surveys should take place at a similar
time of year across sites, with the caveat that breeding
seasons can vary between years and locations (Cougill
and Marsden 2004). High daily variation in roost size
also needs to be accounted for to interpret trends.
Cougill and Marsden (2004) tested different counting
regimes, and found that a random selection of dates
over the month (5–10 days) or counts over successive
days (5 days) performed better at estimating roost size
than returning to the roost periodically (every 4th day)
within the same period. When daily variations are
caused by movements of individuals among roosts,
this caveat can be avoided if all roost sites can be
located – and surveyed simultaneously.

When roost surveys are employed to estimate abun-
dance for a specific area, it is assumed that all roosts in the
area are found and sampled. This can be quite difficult,
especially when roosts are small, numerous, and change
location often (Casagrande and Beissinger 1997). Roost
monitoring should be done at a time of year when roosts
are stable and birds are sedentary (Cougill and Marsden
2004), which seems to vary among species. For example,
roosts of Amazona parrots (Gnam and Burchsted 1991;
Cougill and Marsden 2004; Berg and Angel 2006;
Matuzak and Brightsmith 2007; de Moura et al. 2010)
appear to be larger and more stable than those of
Carnaby’s Cockatoo (Calyptorhynchus latirostris;
Burnham et al. 2010) and Green-rumped Parrotlets
(Forpus passerinus; Casagrande and Beissinger 1997).
Determining the ‘catchment area’ (Cougill and Marsden
2004) of individuals using known roosts in a region with
telemetry may be an alternative to finding every roost for
estimating population size. Averaging of the catchment
area values would allow estimation of the expected num-
ber of roosts in the region (number of roosts = total area/
average roost area), and the population size could then be
estimated by multiplying the expected number of roosts
by the average roost size, with appropriate error terms
(Casagrande and Beissinger 1997). Moreover, if roosts are
surveyed multiple times in periods during which the
number of individuals is assumed to be closed,
N-mixture models and extensions (see below) may be
used to obtain population size estimates while accounting
for factors affecting detection and abundance.

Mark-resighting surveys

Mark-resight methods used for estimating wildlife
abundance (McClintock et al. 2014) have rarely been
applied to parrots, given the difficulties in capturing
and resighting them once marked with combinations
of coloured bands. Moreover, the assumption of con-
ventional mark-resighting methods that the marked
population is known may be violated due to partial
band loss and mortality/emigration of parrots banded
in previous years. Casagrande and Beissinger (1997)
used a variation of the method for a closed population
with an unknown number of marked individuals pro-
posed by Arnason et al. (1991) to estimate the abun-
dance of Green-rumped Parrotlets. Resighting data
were collected by walking random transects, with sur-
veys limited to 5 days to ensure population closure (i.e.
population sampled is closed with respect to mortality,
recruitment, immigration, and emigration). The main
shortcoming of this mark-resighting method was the
large effort necessary to attain precision, because of the
low number of observations obtained during the short
survey periods (Casagrande and Beissinger 1997).
Veran and Beissinger (2009) used a simpler approach
to estimate population size over the entire breeding
season, following Nichols et al. (1994), that corrected
the number of marked breeding and non-breeding
individuals counted by their resighting rates, which
can differ greatly (Sandercock et al. 2000).

Analytical methods can address some of these limita-
tions. McClintock and Hoeting (2010) developed a
Bayesian binomial logit-normal mixed-effects model that
uses data augmentation (sensu Royle et al. 2007) for esti-
mating abundance when sampling is without replacement
(i.e. individuals may only be sighted once per sampling
occasion) and the number of marked individuals is
unknown. Unlike the method of Arnason et al. (1991),
this model allows for individual heterogeneity in resighting
probabilities. The method is based on a robust sampling
design in which surveys are done over one or more pri-
mary intervals, within each of which the population is
assumed to be closed, and each primary interval is com-
posed of several sampling occasions. The approach per-
formed well in simulations and with real passerine
datasets. Sample sizes (25 and 23 marked individuals
sighted, respectively; McClintock and Hoeting 2010)
were similar to those in Casagrande and Beissinger
(1997), but the confidence intervals obtained were 4–10
times narrower.

The identification of individuals marked with com-
binations of colour bands is often difficult when they
are detected during sighting surveys (Casagrande and
Beissinger 1997). This major limitation of parrot mark-
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resight surveys may be overcome by using numbered
patagial tags (Smith and Rowley 1995) or neck collars
(Senar et al. 2012), which can be read using telescopes
from distances of up to 140 m (J. L. Tella pers. obs.). In
any case, the incomplete identification of marked indi-
viduals is potentially a major source of bias in mark-
resight abundance estimators, particularly when there
is individual heterogeneity in sighting probability, and
ignoring sightings of unidentified marked individuals
does not solve the problem (McClintock et al. 2014).
Fortunately, the new method presented by McClintock
et al. (2014), based on complete data likelihood and
data augmentation, accounts for uncertainty when
incomplete individual identifications occur and allows
for individual heterogeneity in detection, sampling
with or without replacement, and an unknown number
of marked individuals. This approach performs well
when the probability of identifying an observed
marked individual is <90%, individual sighting hetero-
geneity is non-negligible, and samples sizes are small
(McClintock et al. 2014).

Other developments of mark-resight surveys that
may show promise for parrot studies include spatially
explicit models for inference about density in partially
marked populations (Chandler and Royle 2013), and a
spatial mark–resight model augmented with telemetry
data (Sollmann et al. 2013).

Distance sampling (DS) using point counts and line
transects

A common approach to estimate parrot abundances
and densities is to conduct point count or line trans-
ect surveys using DS (e.g. Lambert 1993; Casagrande
and Beissinger 1997; Marsden 1999; Marsden et al.
2000, 2016; Rivera-Milán et al. 2005; Lee and
Marsden 2012; Rodríguez et al. 2012). Distance sam-
pling methods estimate abundance under the
hypothesis that detectability is related primarily to
the distance between animals and the observer
(Buckland et al. 2001). The distribution of distances
from the observer to detected individuals is used to
estimate a detection function, which is modelled to
decline with increasing distance from the point or
transect line (distance = 0). This function, together
with the average group size, allows estimation of
abundance and density (dividing abundance by the
sampled area) at the point or along the transect line.
Extensions of DS models also allow modelling of
covariate effects on detection (Marques and
Buckland 2003) and abundance (Johnson et al. 2010).

Distance sampling is one of the most used methods
to estimate wildlife abundance, and relies on six central

assumptions: (i) individuals on the line or point are
detected with certainty; (ii) individuals are detected at
their initial locations and do not move in response to
the observer before detection; (iii) measurements of
distances from the point or transect line to detected
individual(s) are exact; (iv) the position of detected
individuals is independent of the survey point or line;
(v) cluster sizes are recorded without error; and (vi)
detections are independent events. Violations of these
assumptions may result in biased estimates (Buckland
et al. 2001), and they may frequently be violated when
surveying parrots (Casagrande and Beissinger 1997).
Parrots are often detected while flying and vocalising
in flocks as they move between locations. Including
such individuals in survey counts violates multiple
premises discussed above and will overestimate density
generated from DS (Buckland et al. 2008). Thus, flying
birds should be excluded from density estimation, but
that often limits detections, especially when surveying
open habitats and making canopy counts. Many par-
rots inhabit forests where visibility is poor, hindering
their detection, and their cryptic coloration often inhi-
bits detection until they are disturbed by the observer
and move. Marsden (1999) suggested a large number of
points was required for uncommon species (e.g. 2000),
and even this might not be sufficient for rare species.
Finally, accurate enumeration of cluster size can be
difficult for large flocks of parrots, especially if they
are composed of mixed species (Chapman et al. 1989).

Taken together, these limitations suggest that
researchers should be prudent in their application of
distance sampling for estimating parrot population
size. Marsden et al. (2016) suggested using encounter
rates as a surrogate for density estimation derived from
point counts for parrots. N-mixture models discussed
below may offer another option.

Roadside transects

Roadside transects are useful for sampling very large
areas, which is advantageous because increasing spatial
representation helps accounting for the large home
ranges, mobility, and scarcity of many parrot species.
Two or more observers usually drive slowly (20–
40 km/h) through unpaved or secondary low-traffic
roads, during the hours of maximum parrot activity
(Tella et al. 2013). When parrots are detected, stops are
made if needed to identify the species and count indi-
viduals, resulting in data that can be interpreted as an
abundance index (i.e. number of recorded individuals
per km surveyed) that does not account for detectabil-
ity. This method has been applied in many surveys of
species that naturally occur in low densities, such as
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raptors (e.g. Sanchez-Zapata et al. 2003; Carrete et al.
2009), waterfowl (Pagano and Arnold 2009), wild tur-
keys (Butler et al. 2007), and also parrots (Tella et al.
2013, 2016a; Blanco et al. 2015). Habitat composition
and configuration near roads may differ from the sur-
rounding areas (Buckland et al. 2008), thus biasing the
estimates of abundance and compromising their extra-
polation to larger areas. On the other hand, road sur-
vey data are less problematic when used to estimate
differences in parrot abundance among land uses (Tella
et al. 2013), seasons (Tella et al. 2016b) or species
within single habitats (Tella et al. 2016a), especially
when abundances differ to the point that they over-
come sources of sampling error (i.e. differences in
detectability among species or land uses).

Rigorous survey design and analysis may increase
the reliability of abundance indices derived from road-
side transects. New statistical methods for temporally
replicated surveys can account for presence, availability
and detection processes over large areas, and the sin-
gle-visit method may also prove useful (see sections
below). On the other hand, DS may still be useful in
road surveys to account for detectability loss due to
distance, depending on the roads, habitats and parrot
species surveyed (Blanco et al. 2015; Baños-Villalba
et al. 2017). Roadside abundance indices and abun-
dance estimates derived from DS were obtained simul-
taneously for two parrot communities from very
different habitats (Andean dry forests; Blanco et al.
2015; and flooded Amazonian savannahs; Baños-
Villalba et al. 2017, with 6823 and 734 km surveyed,
respectively), resulting in highly correlated values for
both communities (Spearman correlations, rs > 0.9;
Tella et al. 2016a). More research is needed to ascertain
to what extent roadside abundance indices can be
considered as a surrogate of actual parrot densities.

Potential for applying recent statistical and
technological advances

In this section, we consider new options for estimating
parrot abundance and population size based on recent
statistical or technical advances. Most have yet to be
tested with parrots, or have received few applications to
date. We think they offer important opportunities if
applied thoughtfully.

Estimating abundance from occupancy surveys

MacKenzie et al. (2002) and Tyre et al. (2003) devel-
oped occupancy models with temporally replicated
surveys of detection and non-detection data to estimate
the portion of sites occupied (i.e. containing ≥1

individual), while estimating site-level detection prob-
ability (i.e. the probability of detecting at least one
individual at a site). Note that this probability of detec-
tion differs from the individual-level detection prob-
ability. If individuals are detected independently, under
binomial sampling these two probabilities can be
related (equation 1 in Royle and Nichols 2003). Royle
and Nichols (2003) proposed a method (hereafter, the
RN model) to estimate abundance from binary obser-
vations of detection and non-detection of the species at
a site, assuming that site-specific detection probabilities
are functionally dependent on local abundance. In
other words, it obtains information about local abun-
dance directly from the apparent heterogeneity in
detection probability among sites actually induced by
variation in abundance (Royle and Dorazio 2008)

In the RN model, the detection frequencies for each
site, defined as the number of times the species was
detected in the repeated samples, are assumed to follow
a binomial distribution with number of trials equal to
the number of temporal replicates, and the site-specific
detection probability, which depends on the unknown
underlying abundance, specified as a Poisson-distribu-
ted random variable. Measurable covariates that may
influence detection at the individual level and abun-
dance can be added to the model. We believe this
method may prove to be a useful addition for estimat-
ing parrot abundance, especially for surveys when dis-
tance measurements are imprecise and/or when there
is ambiguity in the number of birds detected.

Hierarchical (N-mixture) models for unmarked
populations

Hierarchical modelling is an extremely versatile
approach for analysing count data and estimating
abundance and detection probability of marked and
unmarked populations while incorporating different
processes influencing these quantities (Kéry and Royle
2016). In their simplest forms, hierarchical abundance
models handle variation in the observed count data as a
result of explicit observation and state process compo-
nents. The approaches for unmarked populations gen-
erally require temporally and spatially replicated
surveys combined with DS or ancillary covariate data.

The basic N-mixture model for count data combines
a binomial GLM (for the observed counts) and a stan-
dard count model (Poisson or negative binomial
GLM). It assumes that the population sampled is closed
during the sampling period (Royle 2004), that detec-
tions at a site are independent, and that all individuals
recorded at a given site and time have the same detec-
tion probability. Counts at each sampled unit are
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regarded as a binomial process dependent upon the
detection probability and the underlying abundance,
modelled as a Poisson (or negative binomial) random
variable. Covariates can be included in both the abun-
dance and the detection models using standard GLM
techniques. The method generates parameter estimates
of the abundance distribution across sites that allow
evaluation of temporal changes or geographic compar-
isons. Total abundance can be estimated posteriorly if
the sample units are of known area (Royle 2004).

Extensions of the basic N-mixture formulation allow
incorporation of additional processes often associated
with parrots, such as temporary emigration, correlated
detection of individuals and uncertainty in species
identification, and also population dynamics and
multi-species modelling. See Dénes et al. (2015) for a
recent overview and Kéry and Royle (2016) for an
extensive treatise. Below, we describe a variant of the
N-mixture approach for single-visit datasets, followed
by the integration of the basic N-mixture model (and
some of the extensions mentioned above) with DS.

Single-visit N-mixture models

Increasing spatial representation of surveys can help
account for parrots’ large home ranges and mobility.
With limited budgets, this often means reducing
temporal replication, a requirement of multiple-visit
N-mixture models. Detection error in counts can be
modelled from only a single visit to each sampled
site if covariates that affect detection and abundance
are available (Sólymos et al. 2012). The binomial–
zero-inflated Poisson mixture model for analysing
single-visit count data replaces both the need for
repeated visit data and the assumption of population
closure required by multiple-visit approaches with
the use of non-overlapping sets of covariates that
affect detection and/or abundance. When appropriate
covariates are available, conditional likelihood can be
used to estimate the regression parameters of a bino-
mial–zero-inflated Poisson mixture model and cor-
rect for detection error (Sólymos et al. 2012). Zero-
inflated negative binomial mixtures can also be used
instead of their Poisson counterpart, which can help
to model aggregations of individuals (Dénes et al.
2017). Most parrot studies designed to compare
abundance between different conditions or sampling
periods are likely to collect detection and abundance
covariates. For example, detection covariates often
include time of day, weather, habitat and observer,
which are frequently available for most datasets. This
approach has been employed to model raptor abun-
dance over large scales (>300 000 km2) based on

single-visit surveys (Dénes et al. 2017), and may
also prove useful for parrot research.

Hierarchical distance sampling (HDS) and multi-
species models

Royle et al. (2004) proposed an HDS model that treats
counts as a function of detection probability and site-
specific abundance. In this approach, counts are a func-
tion of the detection probability – estimated using the DS
framework – and of the underlying abundance, modelled
as a Poisson (or negative binomial) GLM random effect.
Sillett et al. (2012) extended this approach to include site-
specific covariate effects on the detection function, and
Chandler et al. (2011) included accounting for processes
such as temporary emigration that induce additional
variation in counts. This is accomplished by employing
zero-inflated mixture distributions (e.g. zero-inflated
Poisson) to model abundance and temporary immigra-
tion simultaneously (see also Wenger and Freeman 2008;
Joseph et al. 2009 for implementations with temporally
replicated surveys). Hierarchical distance sampling can
also be integrated with density surface models (reviewed
in Miller et al. 2013), which can be used to assess the
effects of environmental variables on the spatial distribu-
tion of individuals, and to generate spatial predictions of
abundance over larger or different areas from those ori-
ginally surveyed.

Sollmann et al. (2016) employed HDS in a commu-
nity modelling framework (Dorazio et al. 2006), which
is an approach for jointly analysing multi-species data-
sets and sharing information across species while
maintaining the ability to model species-specific para-
meters (i.e. detection probability, abundance, and cov-
ariate effects). Information is shared across species by
assuming a common underlying distribution for spe-
cies-specific parameters. These distributions, in turn,
are governed by hyperparameters, which reflect com-
munity-level patterns and processes. The main benefit
of using a community model over a single-species
model lies in the ability to obtain estimates of occur-
rence, abundance and other parameters of species
observed so rarely that they cannot be modelled indi-
vidually. Many parrot species are known to occur in
low densities, which results in low sample sizes pre-
cluding modelling of abundance and detection prob-
ability. Data on multiple species are often collected
during parrot surveys (e.g. Marsden 1999; Marsden
et al. 2000; Lee and Marsden 2012). Multi-species
approaches, which can also be applied for temporally
replicated surveys and tailored for tropical settings
marked by low abundance patterns (Gomez et al.
2017), may prove extremely useful.
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Passive (autonomous) acoustic surveys

As an alternative to survey methods based on visual
observations and physical capture, passive acoustics is
an emerging field in biodiversity monitoring (Marques
et al. 2013). Passive acoustic methods may be advanta-
geous because

unlike (most) visual surveys, passive acoustic surveys
can operate under any light conditions (e.g. both day
and night, or in fog), being less affected by weather
conditions; and passive acoustics is highly amenable to
automated data collection and processing, so large
amounts of data can readily be analysed. (Marques
et al. 2013, p. 3)

Passive recording units allow surveys to sample
repeatedly and simultaneously a large number of
sites, something that in most cases is logistically
impracticable with human observers. Lastly, acous-
tic recorders provide a voucher record of detections,
like a specimen, that can be reviewed and re-
reviewed to minimise false-positive and -negative
detections. Analytical methods used with recorder
data include N-mixture, DS, mark-recapture, and
spatially explicit models, or combinations thereof
(Marques et al.2013).

Passive acoustic recorders have been used in stu-
dies of occupancy or abundance of different groups
of highly vocal species, including cetaceans, anurans
and birds (Dawson and Efford 2009; Marques et al.
2013; Furnas and Callas 2015; Sedláček et al. 2015;
Stevenson et al. 2015), but its use for surveying
parrot populations is still incipient. Alquezar and
Machado (2015) compared the data obtained with
autonomous acoustic recordings and avian point
counts in open woodland savannah in Brazil, includ-
ing seven parrot species ranging in size from parrot-
lets to macaws. For all seven species both methods
had similar detection efficacy, indicating that passive
recorders can be effective in sampling parrot assem-
blages in open vegetation areas. Passive acoustic
recorders were also used to survey parrots in
Amazonian forests (Figueira et al. 2015), and the
data obtained were analysed using multi-state occu-
pancy models (Nichols et al. 2007) to investigate
habitat use by nine parrot species. These two studies
illustrate that passive acoustic recorders have great
potential for surveying parrots. However, neither
study attempted to generate abundance or density
estimates, which constitutes a major analytical chal-
lenge in this emerging field, especially for highly
mobile species (Stevenson et al. 2015). Generalised
random encounter models (Lucas et al. 2015) are a

promising approach to overcoming this problem.
Random encounter models use encounter rates and
independent data on average group size and day
range (i.e. movement speed) to obtain density esti-
mates without relying on fitting a statistical (e.g. DS
or N-mixture) model to estimate detection probabil-
ity. Instead, they explicitly model the detection pro-
cess, with animals being detected only if they
approach the sensor from a suitable direction
(Lucas et al. 2015), and other processes that affect
detection probability also modelled. Key advantages
of the approach are that it is robust to multiple
detections of the same individual and is not sensitive
to the spacing of sensors relative to the size of
animal home ranges, and therefore can be applied
more flexibly across a wide range of species, includ-
ing parrots. Description of the method, its assump-
tions and limitations is extensive, so we refer readers
to the original articles for details (Rowcliffe et al.
2008; Lucas et al. 2015).

Conclusions

Twenty years after the work by Casagrande and
Beissinger (1997), estimating parrot abundance and
population size remains a challenge. We provide here
an extensive toolbox, including survey methods and ana-
lytical approaches (Table 1), some of which have yet to be
applied to parrots. All of the estimation methods pre-
sented have both explicit and implicit assumptions.
When applying these methods, researchers should
gauge the extent that assumptions are met and discuss
the consequences of their possible failure.

The suitability of methods for estimating abundance
or population size for a given research project depends
on the scale and objectives of the study, the species
sampled, whether surveys can be temporally replicated,
and the availability and feasibility of collecting ancillary
data (Table 1). Moreover, sampling design guidance
(i.e. number and size of sample units, number and
duration of visits) for most analytical methods
described here is very sensitive to context (Dénes
et al. 2015). Rather than readily replicating from stu-
dies in different contexts, we encourage researchers to
evaluate a range of designs using simulations tailored
to anticipated sampling conditions and/or pilot studies
of their own systems, as well as to explore new survey
methods (e.g. passive acoustics), while continuing to
test and improve established approaches (e.g. roost
counts). Finally, methods can also impose differing
financial and logistical costs, depending on survey
design requirements (Table 1). Researchers should be
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aware of these differences when designing studies, so
that limited funds and effort are spent efficiently.
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