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Abstract

Recent historic abundance is an elusive parameter of great importance for conserving

endangered species and understanding the pre-anthropogenic state of the biosphere.

The number of studies that have used population genetic theory to estimate recent

historic abundance from contemporary levels of genetic diversity has grown rapidly

over the last two decades. Such assessments often yield unexpectedly large estimates

of historic abundance. We review the underlying theory and common practices of

estimating recent historic abundance from contemporary genetic diversity, and criti-

cally evaluate the potential issues at various estimation steps. A general issue

of mismatched spatio-temporal scales between the estimation itself and the objective

of the estimation emerged from our assessment; genetic diversity–based estimates of

recent historic abundance represent long-term averages, whereas the objective typically

is an estimate of recent abundance for a specific population. Currently, the most prom-

ising approach to estimate the difference between recent historic and contemporary

abundance requires that genetic data be collected from samples of similar spatial and

temporal duration. Novel genome-enabled inference methods may be able to utilize

additional information of dense genome-wide distributions of markers, such as of

identity-by-descent tracts, to infer recent historic abundance from contemporary

samples only.
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Introduction

Abundance, the number of individuals in a population,

is a fundamental parameter in evolution, ecology and

conservation. Although there are a variety of methods

to estimate current abundance (e.g. Lebreton et al. 1992;

Schwarz & Seber 1999; Lukacs & Burnham 2005; Tho-

mas et al. 2010), options to estimate recent historic

abundance are far more restricted, limiting assessments

of long-term trends in abundance (e.g. Koschinski 2002;

Smith & Reeves 2003; O’Connell et al. 2007; Clucas

2011; Lund et al. 2011). When a population undergoes

demographic change, the reduction in genetic diversity

is typically subject to a time delay because the rates of

processes that alter genetic diversity (i.e. random

genetic drift, mutation and selection) change more

slowly than demography. This ‘time lag’ is apparent in

the current global human population, which harbours

much lower levels of genetic diversity than expected

from the current abundance, reflecting its recent

expansion from a much smaller ancestral population
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(e.g. Cann et al. 1987; Horai et al. 1992; Rogers & Jorde

1995; Park 2011). In other words, genetic diversity of

the modern human population is more representative

of the historical, rather than the current, level of abun-

dance.

The observation that current levels of genetic diver-

sity are, in part, a product of historic abundance has

been used in studies of natural populations to infer

recent historic abundance from the current level of

genetic diversity. ‘Genetic diversity–based’ estimation

of recent historic abundance has been particularly pop-

ular in studies of endangered species where the current

population status and future conservation goals often

are defined with reference to the historic abundance

prior to anthropogenic effects (e.g. Lotze et al. 2011).

Indeed, gaining insights into historic abundance is fun-

damental to elucidating the natural state and dynamics

of the biosphere and the ecological processes governing

changes therein (e.g. Estes et al. 1998; Berger et al. 2001;

Croll et al. 2005; Myers et al. 2007; Nicol et al. 2010).

Here, we review the population genetic theory under-

lying genetic diversity–based estimation of recent local

historic abundance and the assumptions upon which

this general approach relies. We conclude that only

under very restrictive conditions is it possible to esti-

mate the recent historic abundance for a local popula-

tion at a specific narrow period from contemporary

genetic diversity with current analytical approaches.

The main issue lies with the discrepancy between the

temporal (and consequently also the spatial) scale of the

estimation and its objective. For the majority of cases,

but not all (e.g. Gemmell et al. 2004), the objective is an

estimate of very recent historic abundance, typically no

more than 10–15 generations ago, for a specific popula-

tion. In contrast, typical estimation procedures yield an

estimate of abundance that represents a long-term mean

rather than the desired estimate of abundance for the

targeted population at a specific time point. This dis-

crepancy between the spatio-temporal scale of the objec-

tive and the employed estimation procedure is not

unique to genetic diversity–based estimates of recent

historic abundance, but occurs in many applications of

population genetic theory to questions in ecology and

conservation. In addition to this basic issue, assump-

tions made when deriving recent abundance from con-

temporary genetic diversity are unlikely to be met in

many cases.

Examples of genetic diversity–based estimations
of recent historic abundance

During the last two decades, a number of studies have

employed estimates of genetic diversity in contempo-

rary populations to infer recent historic abundance of

endangered species. Here, we review three high-profile

examples that applied this approach to whales (Roman

& Palumbi 2003), wolves (Leonard et al. 2005) and

extinct moas (Gemmell et al. 2004) to illustrate the gen-

eral approach and the inferences drawn from the

results.

The large whales have long served as an example of

anthropogenic endangerment due to ill-managed exploi-

tation. Abundance of most populations of large whales

across the globe was reduced significantly by whaling

during the 19th and 20th century. However, the degree

of the reduction in abundance caused by whaling

remains elusive, as pre-whaling abundances are essen-

tially unknown. In 2003, Roman and Palumbi used pre-

viously published mitochondrial control region DNA

sequences (published by Andersen et al. 2003; Baker

et al. 1993; Palsbøll et al. 1995; Bérubé et al. 1998) to

infer the historic abundance of humpback whales

(Megaptera novaeangliae), fin whales (Balaenoptera physa-

lus) and minke whales (Balaenoptera acutorostrata) in the

North Atlantic from current levels of genetic diversity

(Roman & Palumbi 2003). Their genetic diversity–based

estimates of recent historic abundance for all three spe-

cies were substantially higher than the estimates of cur-

rent abundance, in one case by as much as ~24 times

(humpback whale). Roman & Palumbi (2003) inferred

their genetic diversity–based abundance estimates to

represent recent historic (and not current) abundances

of these three species, that is, the abundance just prior

to the onset of whaling. The genetic diversity–based

estimate of pre-whaling abundance in the humpback

whale was also substantially higher than other pre-

whaling estimates based upon nongenetic data

(e.g. backcasting from models using estimated catches,

demographic parameters and current abundance esti-

mates). The upper bound from these nongenetic esti-

mates of pre-whaling abundance in the North Atlantic

was 25 800 humpback whales (Punt et al. 2006), which

was ~10 times lower than the genetic diversity–based

estimate at 240 000 humpback whales reached by

Roman & Palumbi (2003). Implications of the genetic

diversity–based estimates of pre-whaling abundance are

profound. If the recent historic abundances in the North

Atlantic of 240 000 humpback whales, 360 000 fin

whales and 265 000 minke whales (Roman & Palumbi

2003) are correct, they suggest that large whales in the

North Atlantic have recovered to a much lower degree

than currently assumed. High genetic diversity–based

estimates of abundance, inferred as representing recent

historic abundance, have also been reported for minke

whales in the Southern Ocean (Ruegg et al. 2010), east-

ern North Pacific Ocean grey whales, Eschrichtius robu-

stus (Alter et al. 2007), and indirectly in Southern Ocean

blue whales (Balaenoptera musculus intermedia) (Sremba

© 2012 Blackwell Publishing Ltd

GENETIC ESTIMATION OF HISTORIC ABUNDANCE 23



et al. 2012). A larger historic biomass of whales also

implies a much greater historic biomass of the prey

base, suggesting a significant baseline shift in ocean

productivity during the last century (Jackson 2001).

Leonard et al. (2005) reached similar conclusions from

their genetic diversity–based analysis of historic abun-

dance for the North American grey wolf, Canis lupus.

The grey wolf is a textbook example of a terrestrial

carnivore subjected to intense eradication programs

during the last century, resulting in a greatly reduced

abundance but to an unknown extent. Leonard et al.

(2005) sequenced the mitochondrial control region in

grey wolf samples from 90- to 150-year-old specimens

assumed to represent the pre-exploitation population in

the contiguous U.S. Abundance from these historic sam-

ples was estimated at 380 000 wolves, much higher than

the contemporary abundance in North America, which

has been estimated at 60 000 to 70 000 individuals. As

was the case for the large whales, Leonard et al. (2005)

suggested that the conservation goals for U.S. grey

wolves be adjusted upward to reflect their genetic

diversity–based estimates of recent historic abundance.

The ecological ramifications of the findings by Leonard

et al. (2005) are similar to those of Roman & Palumbi

(2003); more wolves imply more abundant prey and

suitable habitat in the recent historic past.

Our last example of genetic diversity–based estimates

of recent historic abundance is for the moa, Dinornis

spp., an extinct flightless ratite bird that was endemic

to New Zealand. Nongenetic analyses have suggested

that abundance prior to human settlement (1000 to

6000 years BP) was at 159 000 individuals (Gemmell

et al. 2004). Based upon previously published DNA

sequences (Huynen et al. 2003), Gemmell et al. (2004)

arrived at genetic diversity–based estimates of 300 000

to 1.4 million individuals between 1000 and 6000 years

BP and 3–12 million individuals >6000 years BP.

Gemmell et al. (2004) interpreted their findings to sug-

gest that the demise of Dinornis spp. pre-dates human

settlement and the Moa’s drastic pre-human settlement

decline probably was caused by diseases and epizootics

introduced to the islands by immigrating birds.

These three examples, which are typical for the

majority of genetic diversity–based estimates of abun-

dance, illustrate two common features: (i) genetic diver-

sity–based estimates of recent historic abundance are

generally much larger than estimates of both the cur-

rent abundance and the presumed historic abundance

and (ii) genetic diversity–based estimates are usually

interpreted as representing abundance at (or until) a

specific point in time and often for a specific popula-

tion, as well. Some genetic diversity–based estimates of

recent historic abundance have since been cited as the

de facto historic abundance in policy-oriented literature

discussing current conservation and management poli-

cies (e.g. Myers & Worm 2005; Bolster 2006; Pinnegar &

Engelhard 2008; Lotze & Worm 2009; Bonebrake et al.

2010; Pershing et al. 2010).

Estimating recent historic abundance from
contemporary levels of genetic diversity

The popularity of the genetic diversity–based approach

is due to the simple and straightforward relationship

between the number of mutations (denoted h) expected
for any two random gene copies as the product of the

per-generation mutation rate (l) and the effective popu-

lation size of the targeted genome (Ne) in a single ideal-

ized population. Population genetic theory predicts the

following expectation,

h ¼ xNel ð1Þ
where the value of x depends upon the ploidy and

mode of inheritance for the locus under investigation

(Ewens 1972; Watterson 1984; Hudson 1990). For a dip-

loid, autosomal and Mendelian-inherited locus x equals

4 and Ne, the effective population size of both sexes. In

the case of a haploid, uniparentally inherited locus

(such as the maternally transmitted vertebrate mito-

chondrial genome) x equals 2. In this latter case, Ne

denotes the effective population size of the relevant sex

(e.g. females in the case of the vertebrate mitochondrial

genome). Consequently, if the value of l is known, then

it is, in principle, possible to infer the effective popula-

tion size from an estimate of h when the assumptions

underlying the above relationship between h, Ne and l
are upheld. The final estimate of abundance (i.e. census

population size, Nc) is inferred from the estimate of Ne

by correction for the difference between Nc and

Ne. Putting it all together, we obtain the following

relationship,

HistoricNc ¼ Nc

Ne

� �
h
xl

� �
ð2Þ

The rationale for treating Nc as an estimate of recent

historic (and not current) abundance (even though Ne is

derived from the current observed genetic diversity) is

due to the observation that a recent reduction in abun-

dance has little, if any, effect on some measures of

genetic diversity such as nucleotide diversity (p, Tajima

1989), heterozygosity (Cornuet & Luikart 1996) and the

range of allele sizes [for simple tandem repeated (STR),

loci, Garza & Williamson 2001]. Figure 1 depicts the

rate of decline in h (estimated as p) following an instan-

taneous 95% reduction in the effective size of a popula-

tion when h = 6.0. At 200 and 2000 generations since

the reduction to 5% of the original population size, the

mean estimate of h is only reduced by 7% and 50%,
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respectively. The estimate of h is thus much higher than

the expected value of 0.3 for the current abundance.

Most genetic diversity–based estimations of recent his-

toric abundance are concerned with much more recent

timescales (i.e. <20 generations).

In Table 1, we have outlined the overall estimation

procedure and each step necessary to go from an esti-

mate of contemporary genetic diversity (i.e. h) to an

estimate of historic Nc using eqn 2. There are three

main components of eqn 2: h, l and finally the ratio of

Ne to Nc, each of which is estimated separately, using

either population genetic, phylogenetic, fossil or con-

temporary demographic data as well as combinations

thereof. In the following section, we briefly outline how

each of these estimations is conducted. We then provide

a more detailed discussion of some of the potential

issues in each of these estimations. Finally, we conclude

with a more general discussion of the applicability of

the final ‘historic’ abundance estimate as well as alter-

nate means to obtain more reliable estimates of recent

historic abundance from genetic data.

Inferring Ne from an estimate of h

An estimate of h can be obtained analytically in cases of

a single isolated, unstructured population assuming a

simple mutation model (Fig. 2, models A.1), such as the

infinite site mutation model (i.e. no nucleotide position

is subject to recurrent mutations, Kimura 1969). In this
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Fig. 1 Rate of decrease in genetic diversity (h) during the first

2000 generations after a 95% population bottleneck. Data were

simulated using coalescent-based simulation software ms

(Hudson 2002) emulating the estimates for the humpback

whale in Roman & Palumbi (2003) using the following parame-

ters: pre-bottleneck h at 6, which corresponds to a nucleotide

diversity at 0.02 for DNA sequences each of 300 nucleotides

and a sample of 200 gene copies. On the x-axis, x denotes the

number of generations backward in time when the population

was increased instantaneously by a factor of 20 (i.e. from the

current value of h at 0.3 to 6). A total of 10 000 replicates were

simulated for each value of x. The 95% confidence interval was

estimated as the 97.5 and 0.025 percentile estimates of p (which

is equal to h under an infinite site mutation model).

Table 1 An overview of the estimations and analyses required to derive recent historic abundance from contemporary levels of

genetic diversity (i.e. eqn 2 in the main text)

Parameter

in eqn 2

Temporal scale

of estimation Data Analysis Estimate of

µ
Interspecific Interspecific phylogenetic data e.g. MODELTEST (Posada & Crandall 1998) Mutation model

parameters

Interspecific Interspecific fossil dates and

phylogenetic data

e.g. BEAST (Drummond & Rambaut 2007) Annual mutation rate

Contemporary Survival and reproductive rates Generation time

h
Intraspecific Intraspecific population

genetic data

e.g. MODELTEST (Posada & Crandall 1998) Mutation model

parameters

Intraspecific Intraspecific population

genetic data

e.g. LAMARC (Kuhner et al. 2004), MIGRATE

(Beerli & Felsenstein 2001), IMa2

(Hey 2010b), BATWING (Wilson et al. 2003)

h (estimation requires

specification of

mutation model)

Ne/Nc

Contemporary Sex-specific reproductive and

mortality rates

e.g. MARK (White & Burnham 1999) Contemporary Ne

Contemporary Population abundance data e.g. MARK (White & Burnham 1999),

DISTANCE (Thomas et al. 2010)

Contemporary Nc
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case, the expectation of h is the nucleotide diversity (p),
which denotes the average number of substitutions per

base pair among pairs of gene copies in a population

sample (Nei & Tajima 1981). Another example is STR

loci evolving in a stepwise manner (Moran 1975). The

expectation of h in this case is equal to twice the popu-

lation variance in repeat size (Kimmel et al. 1996).

Analytical derivations are lacking for more complex

population (see Fig. 2, models A.2 and B) and mutation

models, in which case coalescent-based Markov

chain Monte Carlo (MCMC)-likelihood or approximate

Bayesian computation (ABC) approaches are employed

to estimate h (Beaumont et al. 2002; Kuhner 2009).

Estimating l, the generational mutation rate, which

is necessary to infer Ne from an estimate of h, is a

nontrivial matter in most species and even more so in

nonmodel species. Although it is possible to detect

novel mutations directly (e.g. in genetic data collected

from known parent and offspring pairs), sample sizes

of such known relations need to be large due to the

scarcity of novel mutations. Even for the most rapidly

evolving loci, such as STR loci, novel mutations are still

a rare event (10�4–10�5 per generation, Ellegren 2000).

For nucleotide sequences, the mutation rate is only ~0.5
–0.8 mutations per nucleotide site per million years

(Millar et al. 2008; Subramanian et al. 2009) at ‘fast’-

evolving loci, such as the vertebrate mitochondrial con-

trol region, and the average mutation rate across the

genome is considerably lower (e.g. ~0.0022 mutations

per site per million years in mammals, Kumar & Subra-

manian 2002). Hence, although in principle it is possible

to estimate the mutation rate directly from large sam-

ples in known pedigrees (e.g. Millar et al. 2008), phylo-

genetic approaches are more commonly used to

estimate mutation rates in nonmodel species (e.g.

Shields & Wilson 1987). Phylogenetic approaches cali-

brate the estimated number of mutations inferred from

the observed number of substitutions and implicit or

explicit assumptions regarding the mode of mutation

against the interspecific divergence times derived from

other data (e.g. from dated fossils). The mutation model

is usually estimated from the data as well, most com-

monly selecting among a large number of predefined,

nested mutation models using likelihood ratios, Akaike

Information Criterion (AIC) score or similar criteria (e.g.

MODELTEST by Posada & Crandall 1998). The final result is

an annual mutation rate, which then must be converted

into a generational mutation rate in order to solve eqn 1.

Generation time is a straightforward entity in species

with discrete generations, but can be problematic when

generations overlap. Calculating generation time ideally

requires age-specific survival and reproductive rates

(Deevey 1947; Caswell 2001) for which data often are

lacking in nonmodel species. Instead, a population

mean age is typically used (e.g. Roman & Palumbi

2003; Alter et al. 2007; Ruegg et al. 2010).

A.1

A.2

B.1

B.2

B.3

B.4

1 21 1 & 2 2

Fig. 2 Population models underlying the most common

approaches to infer local genetic diversity. Absence of a sym-

bol implies that the parameter is not specified in the model.

Equal-sized population circles (under the heading h) or migra-

tion rate arrows (under the heading m) denote the assumption

of identical population sizes and/or migration rates among

populations. Different symbol sizes denote that a rate may dif-

fer among and in populations. Although an exponential

growth rate (g) is depicted, the growth rates may be (for some

implementations) linear or instantaneous. Different curves for

g in the same model imply that g is estimated separately for

each population. T denotes population divergence time. Exam-

ples of approaches for the different population models are as

follows: Model A.1: Genetic diversity summary statistics, such

as p (Nei & Li 1979), number of segregating sites (Tajima 1989)

and the variance in number of repeats at STR loci (Di Rienzo

et al. 1994). Model A.2: Single population-likelihood methods,

such as those implemented in BEAST (Drummond & Rambaut

2007), MSVAR (Beaumont 1999), FLUCTUATE (Kuhner et al. 1998)

and τ (Rogers & Harpending 1992). Model B.1: Likelihood or

approximate Bayesian computation (ABC) methods with only

two populations with symmetric gene flow and population

sizes, such as MDIV (Nielsen & Wakeley 2001). Model B.2 Likeli-

hood or ABC methods with two or more populations, such as

MIGRATE-N (Beerli & Felsenstein 2001). Model B.3: Likelihood or

ABC methods with two or more populations, such as LAMARC

(Kuhner et al. 2004). Model B.4: Likelihood or ABC methods

with two or more populations, such as IMa2 (Hey 2010a,b) and

BATWING (in this implementation divergence times are fixed

priors and growth rates identical across populations, Wilson

et al. 2003).
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Deriving Nc from an estimate of Ne

The estimate of ‘abundance’ derived from eqn 1 is the

effective population size (i.e. Ne). The effective popula-

tion size in population genetics is defined as the size of

an ‘ideal’ population with the observed rate of genetic

drift (Wright 1931, 1969) and does thus not represent

census population size, the parameter of interest in

terms of historic and contemporary abundance. In ecol-

ogy, the effective population size is usually thought of

as the number of breeding individuals that successfully

transmit their genes to the next generation (Frankham

1995) and thus should equal the ‘genetic’ effective

population size. In practice, however, the exact relation-

ship is rarely known. Consequently, most studies apply

a generic ratio representing a range of estimates (often

between 1:4–1:10) obtained from a variety of species

(e.g. Frankham 1995; Roman & Palumbi 2003).

Several studies that have inferred recent historic abun-

dance from contemporary genetic diversity in vertebrates

were based solely or partly upon DNA sequences from

the mitochondrial genome (Hoelzel et al. 1993; Kokko

et al. 1999; Roman & Palumbi 2003; Gemmell et al. 2004;

Leonard et al. 2005; Alter et al. 2007). Because the mito-

chondrial genome in many species is haploid and mater-

nally inherited, a correction of Nc to Ne for sex ratio (and

ploidy) is required as well. The sex ratio and ploidy is

usually well described in contemporary populations.

The main issues

Estimating h: Temporal issues

Natural populations are subjected to changing ecologi-

cal and environmental conditions (e.g. Willerslev et al.

1999, 2003; Shapiro et al. 2004; Campos et al. 2010a,b;

Lorenzen et al. 2011). As a result, abundance, migration

rates and selective agents change over time and space

within and among natural populations. The highly vari-

able dynamics experienced by natural populations con-

trast with the constancy of the in silico populations

upon which genetic diversity–based estimators of recent

historic abundance are based (see Fig. 2). These highly

simplified assumptions are necessary to make the esti-

mation of h tractable and computable. Accordingly,

most in silico populations are not subject to changes in

rates in time or space but instead have constant growth

(g), migration (m) and mutation rates. The consequence

of this difference between the in vivo and in silico popu-

lations is that the single and final estimate of h (as well

as growth and migration rates, depending on the esti-

mation procedure) represents the most likely, weighted-

mean value of h (and, when applicable, growth and

migration rates) over the tempo-spatial range covered

by the estimation procedure. In other words, the esti-

mate of h is not necessarily an estimate of h that applies

to a specific point in time and place. We deliberately

use the rather vague, term ‘weighted mean’ because it

is not clear what kind of mean the final estimate of h
(and Ne) represents. In a single isolated population, cur-

rent Ne inferred from genetic diversity is the harmonic

Ne (and thus heavily influenced by past bottlenecks).

However, in the case of populations subject to both

fluctuating demographic and genetic rates, such as

migration and mutation rates, this may not necessarily

be the case, which is why we use a ‘weighted mean’

instead of the median.

The time frame of an estimate of h is the time that

has elapsed since the most recent common ancestor,

which is 2Ne and 4Ne generations for haploid and dip-

loid loci, respectively, where Ne differs depending on

the mode of inheritance. The time to the most recent

common ancestor is thus considerable in many cases.

One example is the aforementioned estimate of pre-

whaling abundance in North Atlantic whales by Roman

& Palumbi (2003). Their estimate of h (and l) suggested
an effective female population size in North Atlantic

humpback whales at ~34 000. Assuming a generation

time of 24 years (Barlow & Clapham 1997), the expected

time to the most recent common ancestor is 1.6 Myr.

Roman & Palumbi (2003) used the coalescent-based

MCMC-likelihood method implemented in MIGRATE

(Beerli & Felsenstein 2001) to estimate h, which assume

constant migration rates among populations and no

population growth (i.e. constant population sizes).

Values for mNe (i.e. the number if migrants per genera-

tion) and h estimated in this manner thus represent the

mean values for which the observed data are most

likely over a period of approximately 1.6 Myr.

An illustrative example is an assessment of bias for the

estimation of mNe and h due to recent population diver-

gence conducted by Beerli (2010). The MCMC coalescent-

based estimation procedure implemented in MIGRATE-

n ignores population divergence time, which essentially

equals a change of mNe from ∞ to a lower value at some

point in the past. Using simulated data with h at 0.0025

and varying population divergence times and migration

rates, Beerli’s assessment revealed that the effect of ignor-

ing population divergence time prior to Ne/2 generations

ago on h was negligible, whereas this was not the case for

more recent population divergence times. Using the esti-

mates in Roman & Palumbi (2003) as an illustrative

example, Beerli’s preliminary assessment translates into

an ‘effect’ time at 408 000 years. The very long time

frame involved in this and similar estimations implies

that, although it is, in principle, possible to model and

thus evaluate most biologically feasible deviations of

assumptions causing bias, our knowledge of the relevant
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population dynamics during such long time frames is

very limited and insufficient to do so.

Estimating h: Spatial issues

Migrants remove or add genetic diversity to or from

local populations, which must be accounted for when

the objective is an estimate of local (as opposed to glo-

bal) abundance from estimates of genetic diversity.

Hudson (1990) demonstrated using coalescent-based

simulations that the mean estimate of h in a sample of

gene copies collected in a single population is equal to

the sum of h for all populations combined. This result

applies for the case of high (4mNe = 1000) and low

(4mNe = 0.2) migration rate (see Fig. 3). In other words,

when the level of gene flow is high, all populations are

essentially part of the same global population and this

is reflected in the level of genetic diversity in each pop-

ulation. In contrast, when mNe is low, immigrant gene

copies are highly divergent from the resident gene cop-

ies in the receiving population due to the combined

action of mutation and genetic drift. As a result, each

immigration event will result in a substantial increase

in local genetic diversity (from which Ne is inferred)

that does not correspond to the relative demographic

increase in local abundance due to immigrant individu-

als. Consequently, when migration is likely to occur,

even at low values of mNe, an estimation of local Ne

from h must account for migration in order for the esti-

mate to reflect local rather than global abundance. The

coalescent-based MCMC approaches implemented in

MIGRATE-n (Beerli & Felsenstein 2001), BATWING (Wilson

et al. 2003), LAMARC (Kuhner et al. 2004) or IMA2 (Hey &

Nielsen 2004) all yield joint estimates of h and migra-

tion rates in a full matrix of populations, which may

also be modelled in an ABC framework.

Relevant, but nonsampled populations are known as

ghost populations (Beerli 2004; Slatkin 2005). The most

extreme example of ghost populations would be extinct

populations, which in most cases will be unknown and

unavailable for sampling. The example (from simulated

data) depicted in Fig. 4 illustrates that the effects on

local genetic diversity due to past migration to and

from extinct ghost populations may linger for thou-

sands of years. Even for the species that we probably

know best, Homo sapiens, new studies constantly change

our recent migration history, such as revising the initial

immigration of humans into East Asia from 25

000–38 000 BP to 50 000 BP (Rasmussen et al. 2011).

Our knowledge of the past in natural populations of

nonmodel species is far poorer. Ghost populations may

be an issue even for large, relatively easy-to-observe

species, such as baleen whales, which are and have

been subject of intense human attention. Several recent

observations in the baleen whales discussed below illus-

trate that the presence of such ghost populations is a

real phenomenon.

The recent historic abundance of eastern North Pacific

grey whales was inferred from contemporary estimates

of genetic diversity at three to five times the current

0

10

20

30

40

50

60

70

80

90

Level of migration

q
(In

 a
 s

in
gl

e 
lo

ca
l

po
pu

la
tio

n)

mN = 0.05 mN = 0.25 mN = 250

Fig. 3 The effect of migration rates on local levels of genetic

diversity (p). Simulations were conducted to emulate the find-

ings presented in Hudson (1990). Data were generated using
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abundance estimated to be ~20 000 individuals (Alter

et al. 2007). Even though the grey whale type specimen

is from the North Atlantic, where several grey whale

fossils have been located, grey whales were believed to

have gone extinct in the North Atlantic during the

1600s (Reeves & Mitchell 1988). Alter et al. (2007) dis-

missed any effects of gene flow into the North Pacific

from the North Atlantic because migration between the

North Atlantic and Pacific Ocean was deemed infeasible

during the last 114 000 years due to the density of sea

ice in the Arctic Ocean. However, during the summer

of 2010, a live grey whale was observed in the Mediter-

ranean Sea (Gazo & Chicote 2010). The population ori-

gin of the sighted grey whale is unresolved, but the

sighting suggests that migration between the North

Pacific and North Atlantic possibly supports recent

work by Funder et al. (2011) and Antoniades et al.

(2011), suggesting much lower levels of sea ice in the

Arctic Ocean 4000–8000 years before present compared

to contemporary sea ice levels. A similar observation

was made in the common minke whale (B. bonaerensis).

Ruegg et al. (2010) estimated pre-whaling abundance of

the common minke whale in the Southern Hemisphere,

the only ocean in which this species had been observed,

thus greatly simplifying the estimation because popula-

tion structure could be reasonably ignored (Ruegg et al.

2010). In 2011, Glover et al. (2010) reported two tissue

samples collected from North Atlantic minke whales

with mitochondrial DNA sequences matching the

common minke whale, one of which appeared to be a

first-generation hybrid between the two minke whale

subspecies (Glover et al. 2010). Phylogeographic analyses

in humpback whales and fin whales also suggest occa-

sional trans-equatorial and trans-oceanic migrations

(Baker et al. 1993; Palsbøll et al. 1995; Bérubé et al. 1998).

The above examples illustrate clearly the incomplete-

ness in our basic knowledge in aspects that may be crit-

ical to inferring recent historic abundance from current

levels of genetic diversity, even in large seemingly read-

ily detected and intensively studied organisms.

Issues in estimating l

An estimate of l, the generational mutation rate, is

required to make inferences of abundance from esti-

mates of current genetic diversity (eqn 1). Studies pub-

lished to date have relied upon phylogenetic estimates

of l, that is, interspecific calibrations (e.g. Roman & Pa-

lumbi 2003; Gemmell et al. 2004; Leonard et al. 2005;

Alter et al. 2007; Ruegg et al. 2010). This approach is

common in taxonomic studies relying on known fossil

dates as interspecific time calibration points to get

annual mutation rates. In the case of taxonomy, the

objective (i.e. interspecific divergence times) and the

estimation method (i.e. phylogenetic calibration of

mutation rates using known interspecific time points)

are both on similar temporal scales (e.g. Hasegawa et al.

1985; Ball & Avise 1992; Brunner et al. 2001; Thorne &

Kishino 2002; Barker et al. 2004; Yang & Rannala 2006;

Meredith et al. 2011). When estimating recent historic

abundance, however, there is a substantial difference

between the temporal time frame of the estimation (i.e.

of l) and the objective (i.e. recent historic abundance).

The possible effect of this difference in time frames is

exacerbated by the fact that relatively rapidly evolving

loci are utilized in intraspecific studies.

A case in point is the mitochondrial control region,

arguably the most common and widespread DNA

sequence employed in intraspecific assessments of

genetic diversity in nonmodel vertebrates (Moritz 1994;

Galtier et al. 2009). The mitochondrial control region

exhibits highly heterogeneous mutation rates among

sites, with so-called hyper-variable regions dominating

in the 5′ end (Aquadro & Greenberg 1983; Hoelzel 1993;

Ho et al. 2011). A general discrepancy has emerged

when comparing the mutation rates obtained in the tra-

ditional manner (i.e. the phylogenetic approach) to the

rates estimated from sequences collected in pedigrees of

closely related individuals (Howell et al. 2003a,b, 2005;

Irwin et al. 2009; Loogvali et al. 2009; Phillips et al. 2009;

Goto et al. 2011; Klutsch et al. 2011) as well as tempo-

rally spaced samples, in so-called ancient DNA analyses

(Ho et al. 2007, 2008). In general, the mutation rates

derived from pedigrees or ancient DNA studies have

been ~10 times higher than the phylogenetic-derived

rates (e.g. Millar et al. 2008). Possible explanations for

this discrepancy are several and the subject of consider-

able current debate (Ho & Larson 2006; Emerson 2007;

Navascues & Emerson 2009; Ho & Lanfear 2010;

Ho et al. 2011). While the phylogenetic-derived muta-

tion rate may be underestimated due to recurrent muta-

tions (Santos et al. 2005; Phillips et al. 2009), the

pedigree-derived mutation rate may be overestimated

due to transient mutations that are lost almost immedi-

ately (Irwin et al. 2009; Klutsch et al. 2011). Ho and col-

leagues have published a series of studies addressing

this particular aspect (Ho et al. 2005, 2007, 2011; Ho &

Larson 2006; Ho & Lanfear 2010), arguing that mutation

rates are subject to temporal rate variation due to tem-

poral variation in selection intensity (e.g. Loogvali et al.

2009). Other authors have utilized other slower-

evolving regions in the mitochondrial genome as a

means to conduct an ad hoc correction for recurrent sub-

stitutions in the mitochondrial control region (Alter &

Palumbi 2009; Phillips et al. 2009).

Irrespective of the underlying cause, it is becoming

increasingly clear that phylogenetic methods tend to

underestimate l by as much as one order of magni-

© 2012 Blackwell Publishing Ltd

GENETIC ESTIMATION OF HISTORIC ABUNDANCE 29



tude, which consequently implies a corresponding

overestimation of recent historic abundance, all other

factors being equal (Ho et al. 2008, 2011). The above-

mentioned ad hoc corrections yielded new, increased

estimates of l resulting in a corresponding lower esti-

mate of recent historic abundance. For instance, Alter

& Palumbi (2009) estimated l for the mitochondrial

control region at 2.6 times higher than previous

estimates, implying a revised genetic diversity–based

estimate of recent historic abundance of humpback

whales in the North Atlantic from 240 000 to 90 000–

100 000 individuals.

The use of temporally spaced samples (i.e. ancient

and modern DNA samples) enables the estimation of

the mutation rate over a more appropriate time frame

(Drummond et al. 2002), but assumptions of current

approaches (Fig. 2A.2) are very basic (e.g. ignoring gene

flow), which may lead to incorrect inferences (Navas-

cues & Emerson 2009).

Natural selection, which potentially affects the

observed substitution rate as well as Ne, alters the rate

of genetic drift relative to neutral expectations. If the

degree of selection is similar across all lineages used in

the estimation of l, then a phylogenetic estimation of l
should, in principle, be unbiased. However, if the tim-

ing and strength of selection is unequal among the lin-

eages (e.g. species or populations) employed in the

estimation of l and h, then the resulting estimate of h
may be biased (Galtier & Boursot 2000; Torroni et al.

2001) unless the rate estimate is corrected for fluctua-

tions in the timing and strength of selection (Tamura &

Kumar 2002; Soares et al. 2009). Although genetic diver-

sity–based estimates of recent historic abundance to

date have assumed all loci to be selectively neutral, it is

likely that many loci employed are subject to selection

—both the presumed neutral mitochondrial control

region (Casane et al. 1997; Howell et al. 2004, 2007;

Haney et al. 2010) and nuclear loci, which often are in-

trons (e.g. Palumbi & Baker 1994; Bouck & Vision 2007;

Jackson et al. 2009; Li et al. 2010; Gante et al. 2011;

Kemppainen et al. 2011).

Issues in estimating demographic parameters

Estimates of both generation time and the ratio of effec-

tive to census population size are needed to estimate

recent historic abundance from contemporary genetic

diversity. Generation time is needed to translate annual

mutation rates into generational mutation rates,

whereas the ratio of effective to census population size

is needed to convert estimates of Ne (derived from the

estimates of h and l) into estimates of abundance. Gen-

eration time is not a fixed entity but can change over

time and space due to the variation in demographic

and environmental processes, such as population den-

sity and habitat changes. These fluctuations, in turn,

alter the age at first reproduction, overall reproductive

output and mortality rates (Deevey 1947; Caswell 2001).

Hence, a full-fledged estimation of generation time

would require a complete Leslie matrix or life table

with detailed demographic data on reproductive and

mortality rates, which are unavailable in many non-

model species. In addition, demographic rates vary over

time and across the species’ range. For example, both

age distribution and age-specific fecundity rates are

unknown in most species of baleen whales. Some

species appear to have very long life spans of more

than one hundred years (Garde et al. 2007; Arrigoni

et al. 2011; George et al. 2011). Even in some of the best

studied species, such as humpback whales, with shorter

life spans (such as 30–50 years), estimates of mean age

at maturity differ by a factor of two (12 and 24 years,

respectively) depending on the methods used to deter-

mine age (Chittleborough 1965; Barlow & Clapham

1997). The difference between these two ‘generation

times’ results in a doubling of l, which in turn reduces

the resulting abundance estimate by 50%.

In order to convert an estimate of Ne to abundance

(i.e. census population size or Nc), the ratio of the two

population size measures must be known. Census pop-

ulation size is a relatively straightforward entity (but

difficult to obtain in many cases), whereas the same is

not the case for the effective population size which (in

this context) is a population genetic entity. Hence, in

order to infer Nc from an estimate of Ne, a rigorous esti-

mate of the ratio of current effective population size is

warranted. Indeed, in the absence of temporally-spaced

genetic samples, estimating Ne requires values for

reproductive variance among individuals, as age of

reproduction, and age-specific reproductive and sur-

vival rates (Waples 2002).

Is it feasible to infer recent historic abundance
from current levels of genetic diversity?

All estimation relies upon a model, in other words, a set

of explicit (or implicit), often highly simplified assump-

tions. Such simplification consists of reducing the num-

ber of nuisance parameters (i.e. parameters that are not of

interest per se but which must be accounted for), such as

g, l and mNe. These simplifications are necessary to ren-

der a problem analytically (or computationally) tractable

and to achieve a reasonably precise estimate. Ideally, a

model is simplified by reducing the number of parame-

ters to only those that are essential (Haldane 1964).

Which parameters to retain depend upon the objective of

the estimation and targeted level of precision (i.e. each

nuisance parameter fixed at a single value results in an
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increased precision). Population genetic inference meth-

ods commonly used in ecology and conservation are

often effective (compared to many other methods used in

evolution, ecology and conservation) because they are

based on highly simplified assumptions, but such simpli-

fications can also become an Achilles Heel.

The population genetic inference methods that cur-

rently are employed to estimate recent historic abun-

dance from current levels of genetic diversity were not

developed with this specific objective in mind. Most of

the parameter values necessary to infer recent historic

abundance from current genetic diversity using eqns 1

and 2 are usually poorly known and fixed at a single

value during the estimation (e.g. the mutation, migra-

tion and growth rates and generation time). The conse-

quence is inference methods that yield estimates which

can best be described as long-term and spatially broad

weighted means. The very long time span often covered

in the estimation of h (and l) greatly increases the spa-

tial scale of the estimation due to the effect of past and

present gene flow upon local levels of genetic diversity,

necessitating assumptions (and fixed nuisance parame-

ter values) for a multitude of cellular and population

processes far back in time (see Fig. 5).

These observations beg the key question: Does a

genetic diversity–based estimate of N represent the

abundance during recent historic time? Although

there is no single universal answer to this question,

we believe the answer in the majority of cases is

probably ‘no’. Exceptions are those few (if any) cases

where the targeted population, those populations to

which it is connected by migration, and the employed

genetic markers behave as assumed by the estimation

procedure and do so across the entire spatial and

temporal scale covered by the estimation. This is

rarely, if ever, the case for natural populations. Thus,

an assessment of the extent of bias due to biologically

plausible deviations from underlying assumptions

should be undertaken. Indeed, some deviations (or

combinations thereof) may have little effect on the

final estimate of recent historic abundance, whereas

other deviations may substantially bias the final esti-

mate.

The reduction of nuisance parameters also implies

that the uncertainty in the final abundance estimate

likely is underestimated. Thus, most genetic diversity–

based estimates of recent historic abundance appear

overly precise.

Fig. 5 Illustration of the different tempo-

ral and spatial scales involved in a typi-

cal estimation of recent historic

abundance of a local population. The

depicted genealogy is estimated from the

mitochondrial DNA sequence data used

by Roman & Palumbi (2003) to estimate

the recent historic abundance in North

Atlantic humpback whales. The data

were originally published by Baker et al.

(1993) and Palsbøll et al. (1995). The

mtDNA lineages depicted in grey were

obtained from whales sampled in a dif-

ferent ocean basin than that which the

specific clade was assigned to. These

branches were inferred as the results of

rare interoceanic gene flow (Baker et al.

1993; Palsbøll et al. 1995). The genealogy

is the majority-rule consensus tree esti-

mated from 1000 bootstrapped samples

and an unrooted neighbour-joining tree

with a transition/transversion ratio of 20,

as implemented in the PHYLIP 3.69 com-

puter package (Felsenstein 1993). The

abbreviation yr denotes years and Myr,

million years.
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In conclusion, only under the most restrictive of circum-

stances—namely when populations under study behave

as assumed by models employed in the estimation—is a

genetically derived estimate of recent historic abundance

likely to be correct. While increasing the amount of data

(loci and/or samples) will produce a more precise ‘abun-

dance’ estimate, such an estimate is, in most cases, unli-

kely to represent local abundance at a specific recent time

period as all the above-mentioned simplifying assump-

tions apply across all loci and samples.

Look before leaping to conclusions

The highly simplistic assumptions underlying most

population genetic inference methods that are applied

to infer recent historic local abundance are unlikely to

apply to most natural populations, and hence, one may

conclude that estimating recent historic abundance from

contemporary genetic diversity is ill-advised. However,

before dismissing such results altogether, it is worth-

while to conduct an assessment of biologically relevant

deviations from the underlying assumptions and their

effect upon the final estimate of recent historic abun-

dance. If the effect of such deviations is small, then the

final abundance estimate derived from an assessment of

contemporary genetic diversity may be sound and rea-

sonably accurate. Assessing the effects of different

parameter values is relatively straightforward for some

parameters (e.g. generation time and l) when there is a

relatively simple relationship with Nc. Figure 6 is an

example of such an assessment, which illustrates the

large impact of changes in l relative to generation time.

Given the extensive body of population genetic simula-

tion software available (e.g. Hudson 2002; Peng & Kim-

mel 2005; Excoffier & Foll 2011), it has become

relatively straightforward to simulate most population

histories and models under a variety of mutation mod-

els, thereby generating in silico genetic data from which

to estimate the ‘historic’ abundance (reviewed in Hoban

et al. 2012). Such simulations may not only serve to

assess the effect of deviations from the assumptions

underlying the estimation, but serve equally to plan a

study by specifying the amount of data required to

achieve a reasonably correct and precise estimate of his-

toric abundance at the targeted tempo-spatial scale.

An estimate of recent historic abundance inferred

from contemporary levels of genetic diversity may also

provide the means for predicting a range of statistical

characteristics for other genetic data, such as comple-

mentary STR data (e.g. genetic bottleneck tests or sky-

line plots). Additional tests will strengthen the

conclusion or reveal inconsistencies. In undertaking

additional testing, it is crucial to ensure that different

tests or estimates are truly independent. This is often

not the case for genetic analyses, which in many cases

are based upon related data or related aspects of those

data, and hence, care should be undertaken in the anal-

ysis and interpretation of such additional estimations

(e.g. Alter et al. 2012).

Returning to our three introductory examples—large

whales in the North Atlantic (2003), grey wolves in

North America (Leonard et al. 2005) and New Zealand
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Fig. 6 Relative effect of changes in

parameter values of generation time and

l. The graph was modelled after Roman

& Palumbi (2003, Fig. 2 on page 509)

who estimated the pre-whaling abun-

dance of humpback whales in the North

Atlantic from the contemporary level of

genetic diversity at the mitochondrial

control region. We extended the muta-

tion rate to 20% per million years (the

original figure goes up to 7%), because

pedigree estimates of mutation rates in

the mitochondrial control region suggest

that these may be one order of magni-

tude higher than phylogenetic estimates

of mutation rates used in Roman & Pa-

lumbi (2003). Estimates of historic abun-

dance from other data sources suggest a

pre-whaling abundance at 25 000 indi-

viduals (Punt et al. 2006), which would

be consistent with a value of l greater

than the values used by Roman & Pa-

lumbi (2003) but less than that estimated

from human pedigrees.
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moas (Gemmell et al. 2004), we ask whether the esti-

mates presented are representative of recent historic

abundance and if so are they likely to be accurate? Our

review of present knowledge and the analytical

approaches used indicates numerous potential issues

for all three cases. A full-fledged, well-supported

assessment of the precision and the degree and direc-

tion of bias in the estimates of historic abundance for

each of these cases is beyond the scope of this review,

but some general comments are possible. All three stud-

ies were based upon a single locus (mitochondrial

DNA) with the added uncertainties single locus esti-

mates entail. The three studies differ in temporal and

spatial scales aiming at estimating abundance at a spe-

cific place and time. The study in moas, by Gemmell

et al. (2004), aimed at a broad temporal and spatial scale

and is thus likely less susceptible to some of the tempo-

ral and spatial issues we have outlined above as the

objective was a global long-term estimate. Leonard

et al.’s (2005) study of grey wolves in North America

was also inferred as representing the historic abundance

at a ‘global scale’, and hence, spatial issues are likely

less of a concern, although immigration to and from

Asia (across the Bering Sea) and Greenland/Scandina-

via via the Arctic might occur. However, the estimate

was viewed as representing abundance prior to the

anthropogenic extermination of grey wolves. For rea-

sons explained above, this is unlikely to be the case.

The third study, the abundance of whales in the North

Atlantic Ocean at the onset of whaling (Roman &

Palumbi 2003), presented the genetic diversity–based

estimate of recent historic abundance as representing

the local abundance for a specific population (the North

Atlantic) and narrow time period (i.e. just prior to the

onset of whaling). In this latter case, all the temporal

and spatial issues we have outlined in this review

apply to this study, in addition to the issues raised

about estimates of demographic and mutation rates.

Nevertheless, each of the three studies represents one

hypothesis for past abundance, and large discrepancies

among different estimates (from genetic as well as non-

genetic data) highlight the incompleteness of our cur-

rent understanding of past abundances. Rigour would

be added to the conclusions if estimates derived from

different sources and methods converged. Any single

estimate of past abundance based only on current

genetic diversity should be viewed as tentative.

How then may we estimate recent historic
abundance from genetic data?

Significant technical advances in the field of genomics

now permit the production of massive amounts of

genetic data from natural populations at an ever

decreasing effort and cost. Accordingly, limitations in

estimating recent historic abundance lie mainly in the

analytical approach, in particularly the abovementioned

discrepancy between the tempo-spatial scale of the

objective and the estimation.

One possible solution is to resolve the discrepancy in

the spatial and temporal scales between the objective

and the estimation. This may be carried out either (i) by

expanding the scope of the objective or inference or (ii)

by narrowing the tempo-spatial scale of the estimation

to match that of the objective. Expanding the scope of

the estimation of abundance to the long-term global

average (rather than local) abundance may be sufficient

for some objectives (e.g. Gemmell et al. 2004; Leonard

et al. 2005; Ruegg et al. 2010), but not others (Roman &

Palumbi 2003). When the objective is a long-term and

global estimate of abundance, we believe that current

genetic approaches can yield reasonably accurate esti-

mates provided that estimates of l and the necessary

demographic parameters are sound.

The temporal scale of the inference may be narrowed

by estimating the relative change in h for each interco-

alescent interval in a population sample of orthologous

gene copies which generates so-called Bayesian skyline/

ride plots (Drummond et al. 2005; Drummond & Ram-

baut 2007; de Bruyn et al. 2011; Wu & Drummond 2011).

This approach may be conducted with contemporary

samples only, but benefits greatly by the inclusion of

‘ancient’ DNA (aDNA) obtained from carbon-dated sam-

ples (e.g. Shapiro et al. 2004; Campos et al. 2010a,b;

Lorenzen et al. 2011). The aDNA samples add intraspe-

cific calibration dates (to complement interspecific fossil

calibration dates), enabling an estimate of the mutation

rate based upon both inter- and intraspecific time cali-

bration points (Ho et al. 2008). A key obstacle in terms of

inferring recent historic abundance from Bayesian sky-

line plots is the low information content of the most

recent coalescent intervals (Ho & Shapiro 2011). Accord-

ingly, Bayesian skyline plots but will often fail to detect

very recent (i.e. 5–15 generations ago) demographic

changes (but see Hoffman et al. 2011) and the precision

of the estimate of h (and consequently Ne) is low (e.g.

Hoffman et al. 2011 who estimated the 95% credible

interval of pre-exploitation abundance at 0.8–2.3 million

individuals). Hence, Bayesian skyline plots are better

suited to detect older and prolonged changes in Ne (Fon-

taine et al. 2010; Herman & Searle 2011; Hope et al. 2011;

Jezkova et al. 2011; Liu et al. 2011; Morgan et al. 2011;

Mourier et al. 2012). This also appears to be the case with

an equivalent approach developed for STR loci, MSVAR

(Beaumont 1999; Bourke et al. 2010; Girod et al. 2011).

However, Bayesian skyline plots (and estimations

using MSVAR) are based upon a single population model

and thus ignore population structure (and changes in
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migration rates), which may bias results substantially

(Chikhi et al. 2010). Translating changes in genetic

diversity estimated from Bayesian skyline plots into

census abundance requires the use of the same conver-

sion factors, such as the generation time and the ratio

of effective to census population size. Thus, while

Bayesian skyline (using aDNA) may deal better with

issues surrounding mutation rates, they are subject to

many of the same issues affecting more standard

genetic diversity–based estimators of abundance. In

addition, taking advantage of aDNA samples requires

historic samples from the relevant areas and the techni-

cal skills and a laboratory set-up to work with

degraded DNA (Cooper & Poinar 2000).

Another manner by which to narrow the temporal

and spatial scale is to employ samples from around the

(historic) time point when an estimate of abundance is

required. In such case, an estimate of Ne may be

inferred from the degree of linkage disequilibrium (LD)

in a random population sample (Hare et al. 2011;

Waples et al. 2011). Individuals in small populations

share more recent ancestors and therefore display

increased levels of linkage across the genome, which

may be employed to estimate the Ne of the parental

generation (reviewed in Hare et al. 2011). In an ideal

population, that is, with discrete generations, it is rela-

tively straightforward to determine the point in time

that such an estimate of Ne applies. The point in time is

less certain for species with overlapping generations

and poorly known demographic structure (e.g. Hare

et al. 2011), but the window is restricted to a small

number of generations. Most current implementations

to estimate Ne from LD are based upon a single ideal

population model and thus ignore migration, although

some methods do attempt to adjust for movements

among populations (Vitalis & Couvet 2001). Waples &

England (2011) assessed the impact of violation of

assumptions fluctuations on the final estimate Ne due to

migration and structured samples, when estimators

ignore these processes. Not surprisingly, both processes

may have substantial effects upon the final estimate of

Ne. For instance, generational migration rates above

5–10% (which translates into very low annual migration

rates in long-lived species) strongly influence the esti-

mate of Ne (Waples & England 2011). The authors sug-

gest that immigrants may be identified and removed by

other means, such as assignment methods (Paetkau

et al. 1995; Piry et al. 2004), although the rigour of indi-

vidual multilocus assignments decreases with reduced

divergence (Waples & Gaggiotti 2006; Hall et al. 2009),

and consequently, this kind of adjustment may not be

infeasible at such high rates of migration (i.e. above 5–

10% per generation). The advantage of Ne estimates

from LD is the very narrow time scale of the estimation

(i.e. the last few generations depending upon the

approach and data used), which greatly reduces the

uncertainty and possible influence from other processes

(e.g. migration and mutation, and variations in those

and demographic parameters) that may bias the final

abundance estimate. However, in most cases, the ‘his-

toric’ abundance of interest will be farther back in time

than one or two generations, which then implies the

need for acquiring ‘historic’ samples along with all the

technical difficulties associated with collecting genetic

data from such samples. Last, but not least, the estima-

tion of Ne from LD requires substantial sample sizes in

most cases but especially for large undepleted popula-

tions (Waples & Do 2008), which may altogether pre-

vent estimating Ne in this manner from a few rare

historical samples.

Novel opportunities in the age of genomics and
ABC?

Perhaps the most exciting prospects for estimating

recent historic abundance arise from novel opportunities

offered by massive parallel sequencing technologies as

well as new analytical approaches enabling the assess-

ment of more and complex models. These new technolo-

gies provide the opportunity to increase the number of

loci by several orders of magnitude. As we have pointed

out above, adding more data will increase the precision

of the final abundance estimate, but for many inference

methods the estimate will represent a long-term mean of

abundance and not the local abundance at a specific

recent time period. However, the greatly increased gen-

ome-wide density of data adds new possibilities in

terms of estimating the degree of linkage among mark-

ers along chromosomes provided that a (partial) genome

backbone is available. Such data enable the estimation of

the lengths and distribution of linkage tracts in each

sample. The smaller the population, the longer the link-

age tracts [also known as identity-by-descent (IBD)

tracts], because most individuals share a very recent

common ancestor, resulting in low recombination rates.

The distribution of the lengths of IBD tracts in an indi-

vidual’s genome reflects past and present population

processes, such as selection, migration and effective

population size. Recently, Pool & Nielsen (2009) showed

how changes in migration rates affect the distribution of

lengths of ‘migrant’ tracts. The same should be the case

for changes in population size, which will be reflected in

the genome-wide distribution of IBD tract lengths

(Chapman & Thompson 2003). The degree of LD will be

highest for small Ne’s, which implies longer IBD tracts

and greater precision at low Ne’s, whereas the opposite

will be the case for large Nes (Chapman & Thompson

2003). Accordingly, the utility of the genome IBD tract-
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lengths approach will depend, in part, upon the size of

the historic population with low precision at large his-

toric population sizes (Pool et al. 2010).

Although these new technological advances offer

great potential, the speed and computational resources

required to make inferences under sufficiently realistic

population and mutation models is an associated and

purely practical issue. Even the current (comparatively

low coverage) multilocus DNA sequence data set (e.g.

Alter et al. 2007; Ruegg et al. 2010) poses a computa-

tional challenge for likelihood-based estimation meth-

ods. The adoption of massive parallel sequencing

technologies (Davey et al. 2011) will lead to much more

data per specimen. Increasing the amount of data usu-

ally increases the precision and rigour of the estimation.

However, likelihood MCMC approaches commonly

employed to estimate h from population genetic data

can quickly become computationally infeasible as the

amount of data increases (Wegmann et al. 2009).

Sequential Markov coalescent–based (McVean & Cardin

2005; Excoffier & Foll 2011) or ABC (Beaumont et al.

2002; Hamilton et al. 2005; Wegmann et al. 2010)

approaches appear to constitute a promising alternative

to the likelihood approaches (Lopes & Boessenkool

2010). The computational efficiency afforded by these

non-likelihood approaches will make it feasible to uti-

lize more of the information contained in the large

amounts of data generated by these parallel sequencing

methodologies, such as IBD tracts and the allele fre-

quency spectrum which may be used to estimate demo-

graphic changes (Nielsen 2000; Polanski & Kimmel

2003; Caicedo et al. 2007; Gusev et al. 2009; Gutenkunst

et al. 2009; Crisci et al. 2012). However, even though

non-likelihood-based approaches provide additional

flexibility (and thus are able to accommodate more

complex models), such estimations need careful consid-

eration and a realistic number of nuisance parameters

(Bertorelle et al. 2010).
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