Trials and Tribulations of Measuring Greenhouse Gas (CO,, CH,,
H,O) Fluxes over a Drained Peatland

Dennis Baldocchi
Department of Environmental Science, Policy and Management
University of California, Berkeley

USGS Menlo Park, CA
May, 2011



Methane Flux Team

Joe Verfaillie, technician

Jaclyn Hatala, grad student

Matteo Detto, former postdoc

Oliver Sonnentag, former postdoc

Ben Runkle, former grad student
Whendee Silver, UCB Prof

Maggie Kelly, UCB Prof

Yit Teh, former postoc, UCB/St Andrews
Frank Anderson, DWR/USGS

Ted Hehn, former technician



Preamble

Methane is an important greenhouse gas, less studied than CO,

Sac/SJ Delta is an important ecosystem, lynchpin to California, and Potential
Methane Source

— Vulnerable, Subsiding and Unsustainable Ecosystem, Replete with Wetlands

— Ecosystem Restoration is needed, but could come at the Unanticipated and Unexpected cost of
Elevated Methane Emissions

— |l grew-up in the Delta and am interested in Studying its Biogeochemistry

New generation of chemical sensors, e.g Tunable diode laser spectrometers,
enable continuous measurements of methane and methane fluxes with eddy
covariance

Sac/S) Delta is a Perfect site for Eddy Covariance Flux Measurements

— fetch is extensive (kilometers), site is flat, winds are steady, strong winds and generally from the
west, site is close to Berkeley for ready access and frequent study and servicing

Complications:
— TDLs and large pumps require ample AC power (1000W), restricting site selection

— Methane production is microbial, so it is not ‘well-mixed’ and ‘uniform’ like CO2 exchange which is
dominated by wide-spread plants with similar physiology.

—  Flux Variability can exceed 3 orders of Magnitude within meters

— Advection may occur from upwind, wetland complex

— Boundary Layer Dynamics modulate Boundary Layer Depth and Elongation of Flux Footprint
— Cows grazing on a pasture produce a large amount of methane
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Routes for Methane Production/Transport in a Wetland
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Methane Flux Measurements

Closed Chambers

Eddy Covariance




Histogram of Published Methane Fluxes
50% of Fluxes < 32 nmol m= s, but fluxes up to 600 nmol m=2 s are possible

Literature, Fresh-water Marshes
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Potential for Quasi-Continuous, Year-Round Methane Fluxes,
via Eddy Covariance Fluxes
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Fig. 3. Annual cycle of measured half-hourly methane fluxes. Positive
sign indicates upward flux, 1.e. emission from the fen.
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Deltas Are Sinking, World-Wide

PROGRESS ARTICLE NATURE GEOSCIENCE por: 10:1038/NGE0629

Syvitski et al. Nature Geoscience, 2009



San Francisco Bay-Sacramento/San Joaquin Delta Region
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Delta Peatland is Indeed Subsiding!




Vulnerable Ecosystem via Severe Land Subsidence

Vertical Accretion
of Marsh Platform Water Table

Main Channel

1900°s: Elevation Loss

idation wind Erasion,
 Bdiming

2000 s: Increased Levee Maintenance
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Levas Stability Seepage
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Main Channel Sea Level Rise
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. Pumping Ceoats
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Figure 2. Conceptual diagram illustrating evolution of Delta islands due to levee construction and
island subsidence. Modified from Ingebritsen et al. (2000).




New Plans to Reverse Subsidence with Carbon Farming of
Restored Tule Wetlands and Rice on
Twitchell and Sherman Islands

What are the: Cost/Benefits?; Unintended Consequences?



Over-Arching Research Questions

e How Large are Methane Effluxes from Managed
Peatlands on daily, seasonal, annual and inter-
annual time scales?

e What is the Range of Methane Fluxes across Land
Use Classes (drained peatlands, restored
wetlands, crops, tidal marshlands) of the Delta?

e How Does Management for Carbon Sequestration
affect Methane and Water Loss?



Delta Field Sites

Legend

* Micrometeorological tower - Mixed Agriculture, Urban, and Native Classes
E Legal_Delta - Mixed Urban/ Native Classes
Land use and land cover - Non-Irrigated Agriculture
|:| Water - Fallow and Idle
- Urban - Irrigated Crops
B wixed Agricuiture/ Native Classes I ntive Vegetation
B vixed Agriculturef Urban Pasture

Source: Delta Vision (http://deltavision.ca.gov/)



Ideal Micrometeorological Site:
Flat, with Extensive Fetch and Brisk Steady Winds from a Predominant Direction




Eddy Covariance,
Flux Density: mol m2stlorJ m?2s?
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Eddy Covariance

Direct Measure of the Trace Gas Flux Density between the
atmosphere and biosphere, mole m2 s

In situ

Quasi-continuous

Integrative of a Broad Area, 100s m?
Introduces No artifacts, like chambers

ESPM 228 Adv Topics Micromet & Biomet



Eddy Covariance Tower
Sonic Anemometer, CO2/H20 IRGA,
inlet for CH4 Tunable diode laser spectrometer &
Meteorological Sensors
Drained Peatland Pasture, vegetated with Pepperweed, an invasive weed, 2007-present




Measuring Methane with Off-Axis Infrared Laser Spectrometer
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Complex Greenhouse Gas Site with Lots of Spatial Heterogeneity of Sources

Site Classes:

5% Ditches

22% Periodically Flooded
73% Drained

~ 100 Cows

Teh et al, Ecosystems, 2011



Even Over Perfect Flat Sites with Extensive Fetch
Advection can/does Occur with Methane:

Source Strength of Hot spots and Cold Spots can Differ by 1 to 2 orders of
Magnitude (10x to 100x)

10 nmol m2 s 100 - 1000 nmol m2s1

Such Advection is Less Pronounced for Water Vapor and CO, Fluxes Because
Flux Differences Emanating from the Different LandForms are Smaller



Results
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Spectral Performance of Gas Sensors
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Methane Sensor

Zero-Flux Detection Limit, Detecting Signal from Noise

F=w'Cc'~r,o,0.

Fwe ~ 0.5
G4~ 0.84 ppb @ 1 Hz sampling rate
G.," 0.11 ppm
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Flux Detection Limit, based on 95% CI that correlation between
W and C that is non-zero
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Detto et al, AgForestMet, submitted



3 Years of Methane Flux Data from Sherman Island
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Methane Concentrations Experience Nocturnal Maximum
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Emerging Mystery:

Strong, Unexpected Diurnal Pattern in Methane Efflux with a
Nocturnal Efflux Maximum...
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No Diurnal Trend of Methane Efflux over sub-Arctic Peatland

G02009

normalized (’.:H@l flux

JGR-Biogeoscience, 2010
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Why are Large Methane Concentrations and Fluxes
Observed at Night?

Microbial Mechanism: ??
— Temperature is cooler at night
— Not observed in Literature, Nor at the Rice site
Tides Modulate Wetlands and Water table: ??
— Not always at night
— Tidal Marsh too far upwind ??
— Peatland is drained & water table fluctuations are weak
Advection: ?7?
— Collapse of the Convective Boundary Layer can increase [CH,]
— Wetlands are upwind and Maybe huge Sources of Methane ??

— Elongation of Flux and Concentration Footprint can occur at Night under
Stable Stratification

Cows:??
— 100 cows over 38 ha
— Strong source of methane



What to Do?; What to Believe?

Measure Methane Flux over Rice, a known, uniform
methane source, downwind 10 km

Bound Problem and Check Advection with

— PBL Box Model and Flux Footprint Model

— Flux Divergence Studies

Commando Field Campaigns to Measure Methane
Effluxes from the Marshlands upwind of the Site

Measure Methane Fluxes of Tidal Marshland Upwind
on the Levee

— Site not secure, power limited, 2" methane sensor not
available

Use Web Cam and Watch and Count Cows



Eddy Flux System at Rice
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Companion Study over Rice on Twitchell Island, 2009
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CH, (ppb)

CH, Flux (nmol m*#s™)

Twitchell Island, Rice, 2009-2010, Westerly Winds
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Is the Tule Wetland, Upwind of Sherman Island, a Large CH4 source?

Kimball Island

Westjlsland

Europa Technologias




CH, (ppb)

Observed increase in [CH4] after Sunset is too Fast to be
Explained by the PBL Box, which infers a complex source due
to wetlands, wet fields and ditches
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Elevated [CH4] ( > 2500 ppb) corresponds with Low Boundary Layers ( < 200 m)
and High Effluxes (50 to 250 nmol m-2 s-1)
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Figure 5 Computation of CH, concentrations using a one-dimensional box model for a stable and steady nocturnal
boundary layer. The figure is plotted as a function of flux density (F,,,, nmol m= s'1) and height of the planetary
boundary layer. The color contours represent methane concentration. These computations were derived after a time
integral of 10 hours.



Commando Raids into the Tules with Methane Flux Chambers!



Pilot Study on Sherman Lake

Average CH, fluxes for the flooded
site were 6381 nmol m2 s and peak
rates exceeded 13000 nmol m=2 st

At flooded site, the presence or
absence of vegetation in the
chamber footprint didn't seem to
have a significant effect of CH4
emissions

Average CH, fluxes for the drier site
were on the order of 10 nmol/m2/s
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Daytime Footprint, drained ditches and paddock
Night Footprint, wetter fields and ditches

|:| Perennial flooding
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Night-time Flux Footprint Does Not Extend to the Wetlands



Chamber Fluxes Across Landscape Features
Ditches, upland hummocks, wet areas




Chamber Fluxes by Land Form
Mean Methane Fluxes vary by 2 orders of Magnitude,
Extremes by 3 orders of Magnitude
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Sniff Methane from the Levee, Upwind from Cows, Downwind from the Wetland




CH, (ppb)

Fepa (nmol m?s™
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Are Pheasants and Cows Releasing Methane in the Near Field?




24 Hour Time Series of 10 Hz Data,
Vertical Velocity (w) and Methane (CH,) Concentration
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Cow efflux calculations!!

Cows and Methane emissions

10 to 30 mol/cow/day is reasonable bound for a
number of studies

100 cows over 0.38 km2 and 24*3600 s
Bounded flux density averaged over landscape

10 * 100/(380000*24 *60*60) = 30 nmol m=2 s’
30 * 100/(380000*24 *60*60) = 90 nmol m=2 s’

“Methane production (L/head/day)

0 | | 1 | |
0 5 10 15 20 25

DM intake (kg/day)

Figure 1 Relationship between dry matter (DM) intake
(kg/day) and methane production (L/head/day). Data from
Shibata et al. (1993).



Cow Cam

Oliver Sonnentag, analyst



The Wonders of MatLab and Inspecting Raw Data
Cows, Near-Field Diffusion and CH, Spikes
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Methane (ppb), 10 s average

[WCH,] (nmol m? s™)
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0000000

Oliver Sonnentag, analyst



cow index

0.7

Diurnal Variation in Cow-Cam Index

Sherman Island, Westerly Winds
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Night-time Maximum in CH4 Flux Persists with No Cows in Fetch

Peatland Pasture, No Cows, West Winds
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Annual Budgets of Methane Efflux
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Variable Small footprint | Large footprint | Large-small Small
footprint footprint: footprint:
flooded- Dry portion of
portion of the | the field
field
Day and Night, |[Day only, with | Night only, Night-Day, Day only,
with cows COWS with cows with cows without cows
gCm2y*  18.66+/-6.65 4.2 +/-1.93 13.1 +/-6.67 |8.77 2.68 +/-1.42
molm?y* 10,721 +/- 0.554 |0.353 +/- 1.08 +/- 0.556 |0.73 0.223 +/-
0.161 0.119




Interim Summary

e Elevated Methane Effluxes at night are Real,
but Distinct from the Drained Footprint of the
paddock observed during the Day

e Elevated Nocturnal Effluxes Represent a
combination of methane emitted by cows,
ditches and wet portions of the field
— But not the wetland complex upwind of the site

e Too far away..



Drained Peatland Pastures s are Huge Sources of CO2 as they continue to Subside

CO2 efflux at night from Peatland pasture
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Analysis with Cow Artifacts Removed

nocturnal ecosystem respiration

20-

net methane exchange
(nmol m 25 l)

50 100 150
week (from April 5th 2007)

Strong CO2 emissions, supporting mechanism for soil subsidence
Weak methane fluxes, methane produced at the water table is oxidized

as it diffuses through the soil



Twitchell Island Rice




co, flux (g-C mZdl

co, flux (g-C mZd?l

CO,: Pasture vs Rice

Sherman Island pasture daily (302 fluxes

Hatala, Baldocchi, Detto and Verfaillie, unpublished
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CO,: Annual budgets

Cunuﬂaﬂvesun10fﬂﬂzﬂux
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Hatala and Baldocchi 2009 2010
Pasture +308 g-C m™2 +50 g-Cm™

Rice paddy -412 g-C m™ -316 g-C m™




New Licor 7700 Open Path Methane Spectrometer:
Low Power, NO PUMPS




New Studies, Off the Grid!

Restored Wetland, Mayberry Ranch on Sherman Island



Conclusion

*Measuring Methane Fluxes Is Much Harder and More
Complex than measuring CO2 and Water Fluxes

*Be Patient, Persistent and Adaptable

eConduct Numerous Scoping Studies to Identify Artifacts,
especially if Site is Non-Ideal, which most Are.

*Planting Rice may be a Viable strategy for Stopping or
Reversing Subsidence; but it has the cost of water use and
methane production






Phenology of Invasive Pepperweed

Vegetation Flowering

Seeding
Senescent

Sonnentag et al, AgForestMet, submitted



HED fluxes

CDE fluxes

CH4 fluxes

Fluxes: daily averaged
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