Terrestrial Carbon Cycle, Part 1

Dennis Baldocchi
Ecosystem Science Division/ESPM
University of California, Berkeley

Schulze, 2006 Biogeosciences

ESPM 111 Ecosystem Ecology
Terms and Units

- Gross Primary Productivity, GPP, gC m\(^{-2}\) y\(^{-1}\)
- Net Primary Productivity, NPP
- Autotrophic Respiration, \(R_a\)
- Heterotrophic Respiration, \(R_h\)
- Net Ecosystem Productivity, NEP
- Net Ecosystem Carbon Exchange, NEE
- Net Biome Productivity, NBP

ESPIM 111 Ecosystem Ecology

GPP

GPP = gross canopy photosynthesis, via carboxylation \((V_c)\) minus photorespiration, oxygenation \((0.5 V_o)\)

\[
GPP \approx LAI \cdot (V_c(C,Q,T,N) - 0.5 \cdot V_o(C,T))
\]

These assimilation fluxes are functions of CO\(_2\) (C), light (Q), temperature (T), nutrition (N)

We assume, first approximation, that the leaf-level carbon assimilation fluxes scale up to the canopy scale by multiplying average leaf level fluxes by leaf area index (LAI)

ESPIM 111 Ecosystem Ecology
Net Primary Productivity, NPP

NPP is GPP minus autotrophic Respiration, R_{auto}

$$NPP = GPP - R_{auto} \text{(mass, growth, } T)$$

Autotrophic respiration is respiration of the self-feeders, the plants (leaves, stems and roots);

R_{auto} is a function of growth rate, temperature, mass of the organism.

Net Ecosystem Production, NEP

NEP is NPP minus Heterotrophic Respiration, R_{hetero}

$$NEP = GPP - R_{auto} - R_{hetero} \text{ (} T, \theta, LAI, P_s \text{) } = -NEE$$

Heterotrophic respiration is respiration of fungi, aerobic bacteria, invertebrates and vertebrates in the soil;

It is a function of temperature, soil moisture, carbon content, its lability, and priming from recent photosynthesis
Net Biome Production, NBP

NBP is NEP minus Carbon Loss via Disturbance

\[NBP = NEP - F_c(\text{fire, herbivory, disturbance}...) \]

Current State of the Terrestrial C Cycle
Global Carbon Cycle: Gross Fluxes and Pools

- Atmosphere: \[843 \text{ PgC} @ 385 \text{ ppm}\]
- Vegetation: \[\sim 650 \text{ PgC}\]
- Soil: \[\sim 3194 \text{ PgC}\]
- Ocean: \[\sim 38,000 \text{ PgC}\]
- Fossil Fuel Combustion
- Deforestation

Atmospheric CO₂ at Mauna Loa Observatory

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory

ESPM 111 Ecosystem Ecology
Units and Perspective

• How big is 1 Pg (10^{15} g) or 1 GtC?
 – Billion (10^9) metric tons of C (mt = 1000 kg; or 10^6 g)
• Spread across the Land’s Surface
 – 1 \times 10^{15} gC/100 \times 10^{12} m^2\sim 10 g m^{-2}=10 \text{ cm}^3 m^{-2}
 – Equivalent to a 10 micron layer of water per meter-squared across the terrestrial globe
 – 1 g = 1 cm^3
 – 1 m^3 = 10^6 g = 1 Mt
 – 1 km^3 = 1 Gt

How much is C in the Air?:
Resolving Differences between ppm and Pg?

• Mass of Atmosphere
 – \text{F}=\text{M a} = \text{Mass x gravity = Pressure x Area}
 – Surface Area of the Globe = 4\pi R^2
 – M_{\text{atmos}} = 101,325 \text{ Pa} \times 4\pi (6378 \times 10^3 \text{ m})^2/9.8 \text{ m}^2 \text{ s}^{-1}=
 – 5.3 \times 10^{21} \text{ g air}
• Compute C in Atmosphere @ 393 ppm (393 \times 10^{-6})

\[M_c = M_{\text{atmos}} \frac{p_c m_c}{P m_a} = 860 \times 10^{15} \text{ gC} \]

P: atmospheric pressure
p_c: partial pressure CO2
m_c: molecular wt of C, 12 g/mole
m_a: molecular wt of air, 28.96 g/mole

\[M_c / (\frac{p_c}{P}) = 2.19 \text{ Pg/ppm} \]
Fossil Fuel Emissions and Cement Production

CO₂ emissions (PgC y⁻¹)

Growth rate: 3.4% per year

2008:
Emissions: 8.7 PgC
Growth rate: 2.0%
1990 levels: +41%
2000-2008 Growth rate: 3.4%

How Serious are Contemporary C Emissions?:
We Are Exceeding the More Extreme Scenarios,
So it is Less Likely Warming will be < +2 C

Peters et al 2012, Nature Geoscience
ESPM 111 Ecosystem Ecology
13C Isotope record:
Evidence of Fossil Fuel Combustion

Antarctic Ice Core
(Francey et al. 1999)

\[\delta^{13}C = \frac{R_{sample} - R_{standard}}{R_{standard}} \times 1000 \]

- Plant based Carbon has a 13C signature ~ -25 per mil
- Combustion of Fossil Fuels Dilutes the Atmospheric Background

Extension of the 13C Record

Atmospheric 13C

- Cape Grim, Australia 1981 to 1994
- Mauna Loa, Hawaii 1994-2010

ESPM 111 Ecosystem Ecology
Stable Isotopes

\[\delta^{13} = 1000 \left(\frac{R_{\text{sample}}}{R_{\text{std}}} - 1 \right) \]

\[\frac{^{13}C}{^{12}C} = R_{\text{sample}} = R_{\text{std}} \left(\frac{\delta^{13}}{1000} + 1 \right) \]

\[R_{\text{std}} = \text{Peedee Belemnite} = 0.0112372 \]
CO₂ Emissions from Land Use Change

CO₂ emissions (PgC yr⁻¹)

Fossil fuel

Land use change

ESPM 111 Ecosystem Ecology

Ecosystem Service:
Only ~45% of CO₂ emitted into the atmosphere remains there

Schulze 2006, Biogeosciences

ESPM 111 Ecosystem Ecology
Airborne Fraction
Fraction of total CO$_2$ emissions that remains in the atmosphere

Trend: $0.27 \pm 0.2 \% \ \text{y}^{-1}$
($p=0.9$)

40%
45%

Le Quéré et al. 2009, Nature-geoscience; Canadell et al. 2007, PNAS; Raupach et al. 2008, Biogeoosciences

CO$_2$ in the past

Figure 8: Plots of RCO$_2$ (the ratio of the mass of carbon dioxide in the atmosphere in the past to that for the pre-industrial present) and $\%$O$_2$ during the Phanerozoic eon. Values of RCO$_2$ from the GEOCARB III model10; values of $\%$O$_2$ from ref. 11 using the 14C data of refs. 12 and 13. Estimated errors are $\pm 0.5\%$ for RCO$_2$ and $\pm 1\%$ for $\%$O$_2$.

The amount of fuel we burn in 1 year took 175,000 years to sequester

Most Coal Deposited during Carboniferous, 300 Ma

Reservoirs containing the highest concentrations of N per mass are:

- petroleum (100-20,000 mg kg⁻¹),
- coals (2000-30,000 mg kg⁻¹),
- modern marine sediment (1772 mg kg⁻¹),
- shales (600 mg kg⁻¹),
- limestone (73 mg kg⁻¹)

[Wlotzka, 1972].
CO2 over the Timespan of Humans on Earth

Paleo-Carbon Cycle
Change in Atmospheric CO$_2$ Burden over Middle to Late Pleistocene

Inter-glacial to Glacial
CO$_2$ from 280 to 180 ppm over 100,000 years

Flux = 2.19 Pg/ppm * -100 ppm/100,000 = - 2.19 TgC/y

Glacial to Inter-Glacial
CO$_2$ from 180 to 280 ppm over 10,000 years

Flux = 2.19 Pg/ppm * +100 ppm/10,000 = + 21.9 TgC/y

TgC = 1012 gC

Lesson: Today’ Pg C Fluxes are Way out of Equilibrium with Historic Conditions

What is the Upper Bound of GPP?

Bottom-Up:
Counting Productivity on leaves, plant by plant, species by species

Top-Down:
Energy Transfer
Recent ‘Best Estimate’ on GPP with Multiple Constraints

Global GPP = 123 +/- 8 PgC

Upper-Bound on Global Gross Primary Productivity

- Global GPP is ~ 120 * 10^{15} \, gC \, y^{-1}
- Solar Constant, S^* (1366 W m^{-2})
- Average across disk of Earth S^*/4
- Transmission of sunlight through the atmosphere (1-0.17=0.83)
- Conversion of shortwave to visible sunlight (0.5)
- Conversion of visible light from energy to photon flux density in moles of quanta (4.6/10^6)
 - Mean photosynthetic photon flux density, Q_p
- Fraction of absorbed Q_p (1-0.1=0.9)
- Photosynthetic efficiency, a (0.02)
- Arable Land area (~110 * 10^{12} m^2)
- Length of daylight (12 hours * 60 minutes * 60 seconds = 43200 s/day)
- Length of growing season (180 days)
- Gram of carbon per mole (12)

GPP = 1366*0.83*0.5*4.6*0.9*0.02*110 \times 10^{12}^*43200^*180^*12/(4 \times 10^6) = 120 \times 10^{15} \, gC \, y^{-1}
GPP by Biome

<table>
<thead>
<tr>
<th>Biome</th>
<th>GPP (PgC y⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical Forest</td>
<td>40.8</td>
</tr>
<tr>
<td>Temperate Forest</td>
<td>9.9</td>
</tr>
<tr>
<td>Boreal Forest</td>
<td>8.3</td>
</tr>
<tr>
<td>Tropical Savanna/grassland</td>
<td>31.3</td>
</tr>
<tr>
<td>Temperate Grassland/Shrubland</td>
<td>8.5</td>
</tr>
<tr>
<td>Desert</td>
<td>6.4</td>
</tr>
<tr>
<td>Tundra</td>
<td>1.6</td>
</tr>
<tr>
<td>Crops</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Beer et al., 2010 Science

NPP ~ 0.5 GPP

[Map Image]

http://secure.ntsg.umt.edu/projects/files/images/mod17/Figure6.jpg

ESPME 11 Ecosystem Ecology
NPP = 56.4 PgC/y +/- 14

ESPM 111 Ecosystem Ecology

Concepts, Fluxes, Pools and Time Constants

\[\frac{dC}{dt} = \frac{(F_{in} - F_{out})}{V} \]

Flux, \(F \): moles/y
Volume, \(V \): m³
Mole Density, \(C \): mole/m³

\[\frac{F}{V} = \frac{C}{\tau} \]

Flux per Volume \(\sim \) Mole Density/turnover time

\[NEP = GPP - \frac{C_{veg}}{\tau_{veg}} - \frac{C_{soil}}{\tau_{soil}} \]

ESPM 111 Ecosystem Ecology
C Turnover Time: Mass/Flux

- Atmosphere
 - M/NBP
 - 843 Pg C/4 Pg C/y = 210 yr

- Vegetation
 - M/NPP
 - 600 Pg C/60 Pg C/y = 10 yr

- Soil
 - M/Rh
 - 1500 Pg C/60 Pg C/y = 25 yr

Carbon Content and Turnover Time are f(T)

Sanderman et al, 2003 Glob Biogeochem Cycles
Vegetation and Soil C by Biome

<table>
<thead>
<tr>
<th>Biome</th>
<th>Area 10^6 km²</th>
<th>Soil C (Pg)</th>
<th>Plant C (Pg)</th>
<th>NPP (Pg y⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical Forest</td>
<td>17.5</td>
<td>692</td>
<td>340</td>
<td>21.9</td>
</tr>
<tr>
<td>Temperate forest</td>
<td>10.4</td>
<td>262</td>
<td>139</td>
<td>8.1</td>
</tr>
<tr>
<td>Boreal forest</td>
<td>13.7</td>
<td>150</td>
<td>57</td>
<td>2.6</td>
</tr>
<tr>
<td>Arctic Tundra</td>
<td>5.6</td>
<td>144</td>
<td>2</td>
<td>.5</td>
</tr>
<tr>
<td>Mediterranean Shrubland</td>
<td>2.8</td>
<td>124</td>
<td>17</td>
<td>1.4</td>
</tr>
<tr>
<td>Crops</td>
<td>13.5</td>
<td>248</td>
<td>4</td>
<td>4.1</td>
</tr>
<tr>
<td>Tropical Savanna and Grassland</td>
<td>27.6</td>
<td>345</td>
<td>79</td>
<td>14.9</td>
</tr>
<tr>
<td>Temperature Grassland</td>
<td>15</td>
<td>172</td>
<td>6</td>
<td>5.6</td>
</tr>
<tr>
<td>Desert</td>
<td>27.7</td>
<td>208</td>
<td>10</td>
<td>3.5</td>
</tr>
<tr>
<td>Total</td>
<td>149.3</td>
<td>2344</td>
<td>652</td>
<td>62.6</td>
</tr>
</tbody>
</table>

+++ Frozen soil ~400 Pg; Wetland ~450 Pg

Saugier et al/Sabine et al

ESPM 111 Ecosystem Ecology

Global Vegetation Carbon Content

ESPM 111 Ecosystem Ecology
Gross Carbon Fluxes

- Gross Terrestrial Photosynthesis
 - 120×10^{15} gC/y
- Net Terrestrial Photosynthesis
 - 60×10^{15} gC/y
- Autotrophic Respiration
 - 60×10^{15} gC/y
- Heterotrophic Respiration
 - 60×10^{15} gC/y
- Oceanic Photosynthesis
 - 90×10^{15} gC/y
- Oceanic Respiration
 - 88×10^{15} gC/y
- Ocean Net Primary Production
 - 48×10^{15} gC/y
US Directly accounts for about ¼ of Global C emissions, More if we consider C emissions for Imports from China