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We live in the planetary boundary layer, the layer of the atmosphere affected by the land
surface. It is a dynamic layer that can be visualized by the base of convective clouds on a
partly cloudy day. Above the boundary layer the sky is clear and blue, below it you see dirt,
aerosols, pollution from land activities. There can be greater build ups and withdrawals of
biogenic and biotrophic trace gases.
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The pblis dynamic it grows during the day with heat exchange. It has various zones. An
entrainment layer, the mixed layer and the surface layer. Fluxes tend to vary linearly with
height. Scalar profiles have a strong gradient near the surface, a mixed layeer due to big
convective activity, then gradients across the inverted entrainment layer
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Diurnal Growth of PBL
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PBL Growth with season
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Seasonal trend in pbl growth over Walker Branch Watershed in Oak Ridge, TN



Walker Branch Watershed
Data of Ken Davis
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Seasonality of the time rate of growth of pbl height over the Walker Branch Forest
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Paper on depth of pbl growth across the world. We found much deeper boundary layers in
the boreal forest of Canada, than over Siberia. Ours were as deep as the deserts of the
Middle East



Conceptual Diagram of PBL Interactions
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H and LE: Analytical/Quadratic version of Penman-Monteith Equation

Conceptually you can see the interactions with rate of growth of the pbl and the fluxes into
and volume from below and above



Time rate of change of virtual potential temperature
Is a function of heat flux at the bottom and top of the
Boundary layer
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Scale flux at top of pbl with surface flux

-(W0"), =B, (W),

Scale flux at top of pbl as a function of the jump
Temperature and the entrainment velocity
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Parameterizing the entrainment flux remains the more difficult and poorly known quantity
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Entrainment velocity
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Pbl growth rate minus subsidence velocity

In some places on earth we have large scale subsidence, like summer over California, so
this downward velocity must be added (substracted) from the time rate of change of pbl
growth, dh/dt



Mixed Layer Budget Eq.
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Simple box budget model



PBL Budgets w/o subsidence
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Equations for potential virtual temperature, potential temperature in the mixed layer and
specific humidity in the mixed layer



Growth of PBL

oh  (w'8"),

ot Yo, h

dh  (H+0072E/ pC,)
dt h(do,,eldz)

Equations for computing the time rate of change in height of the pbl, by converting virtual
potential temperature flux covariance into sensible and latent heat fluxes
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Gamma is the slope of the temperature inversion
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80

Fuentes looked at our data from Walker Branch and tested the gamma values with mixed

layer height
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09 May (DOY 129)
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Diedronks and Tennekes
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Growth of PBL
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Other models for pbl growth
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Role of Lifted Condensation Level
Occurs with Zi intersects with HLCL

RT, ( Ps )
H = lo ;
£ Mag & PrcL

Tre\ >
PLCLZPS( T ) 3 (7)

where Ty (K) is the saturation point temperature at
Hicr. and can be derived from the Clausius—Clapeyron
equation given by (Stull, 1988)
2840
TicL = +55, (8)
3.5In(Ty) — In (54— 7.108)

Juang et al 2007, GCB
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Clouds and Precipitation Occur when Zi matches H LCL

JUANG ET AL.: HYDROLOGIC AND ATMOSPHERIC CONTROLS
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!H and 6, (left) on day 152 of 2002 and (right) on day 213 of 2004.
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Note when the pbl and lifted condensation levels match, precipitation occurs. One should

also see a decrease in solar radiation with clouds
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The Physics and Ecology of Carbon Offsets:
Case Study of Energy Exchange over Contrasting Landscapes, a
grassland and oak woodland

Dennis Baldocchi

Ecosystem Sciences Division/ESPM

University of California, Berkeley

2008 NCEAS WorkGroup on ‘Linking carbon storage in terrestrial ecosystems with other climate forcing agents’

Case study of the roles of PBL growth on interpreting the effects of changing land use on

the climate.
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If Papal Indulgences can save us from burning in Hell:
Can Carbon Indulgences Save us from Global Warming?
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Working Hypotheses

H1: Forests have a negative feedback on Global Warming

— Forests are effective and long-term Carbon Sinks

— Landuse change (more forests) can help offset greenhouse gas
emissions and mitigate global warming

H2: Forests have a positive feedback on Global Warming

— Forests are optically dark and Absorb more Energy

— Forests have a relatively large Bowen ratio (H/LE) and convect more
sensible heat into the atmosphere

— Landuse change (more forests) can help promote global warming
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Energetics of Greenhouse Gas Forcing:
Doubling CO, provides a 4 Wm2 energy increase, Worldwide
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To consider changing the surface energy budget, we need to think about the magnitude of
the fluxes in context to greenhouse warming. A doubling of CO2 will increase the IR flux to
the surface by about 6 W m-2. But this is everywhere on earth.
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Global Albedo

Albedo: Conifer Forests < Deciduous Forests < Grass<Crops

Changing Land from Forests to Grass can Increase Reflectance by 10 - 20 W m-2

Albedo effects are on the order of 10s W m-2 squared, assuming about 161 W m-2 input
averaged over the planet and the year, by changing land use, snow fields etc. But land is
only 30% of the Earth’s surface
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K.G. McNAUGHTON AND P.G. JARVIS
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Feedbacks with Growing Boundary Layer

Jose Fuentes
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Jose Fuentes

Feedbacks with Collapsing Boundary Layer
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Energy Balance Feedbacks, on Change in Surface Temperature
Fast Physiological and Physical Feedbacks
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The knobs we turn to affect the surface and air temperature of the planet include factors
like the surface and aerodynamic resistance, albedo and pbl growth
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Slower Ecological and Hydrological Feedbacks
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Case Study:

Energetics of a Grassland
and Oak Savanna

Measurements and Model
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PAR Albedo

0.30

0.25

0.20

0.15 4
D

2006

® Grassland
© Savanna

200 250 300 350

Day

2. Grassland has much great albedo than savanna;
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Landscape Differences
On Short Time Scales, Grass ET > Forest ET

Monthly Averages
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Role of Land Use on ET:
On Annual Time Scale, Forest ET > Grass ET

California Savanna
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Potential Temerpature, Annual Grassland, C
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Daily Averages, 2001-2011
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Potential Temperature Difference, C

Volumetric Soil Moisture (rn3 m?)

Averaged by Day, 2001-2011
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Potential Air Temperature
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WHY?

le penseur de Rodin, aka the ‘thinker’
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Aerodynamic Resistance, s m™'

The Savanna is much more Rougher, Aerodynamically
The Savanna experiences a greater Surface Conductance
During the Winter, when deciduous and a Smaller conductance
During the Summer when it is Transpiring and the Grass is Dead
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Rn, MJ m?d"

More Net Radiation is absorbed by the Savanna during
The Hot, Dry summer, but this is when the Temperature
Differences are Smallest
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H, MJ m?® d™

The Savanna Injects more Sensible Heat into the Atmosphere

During the Winter and Summer;

This can partly Explain T differences in the Winter

o (@)

¢ gmsind
@ Sevama

® gssind

0 Ssvanra
4

46



But the surface of the Grass is Much Hotter than the Savanna;
Why does this Not Translate into Warmer Air Temperatures over
The Grass During the Summer?
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Summary from Data, so far, p1

The greatest differences in potential air temperature
occurred during the winter when net radiation fluxes
overlapped one another, more sensible heat
exchange was lost by the savanna, and more latent
heat was lost by the grass.

Differences in how energy was partition occurred
because the grass maintained a lower surface
resistance, while the woodland established a smaller
aerodynamic resistance, thereby enabling the
woodland to inject more sensible heat into the
atmosphere and warm the air more.
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Summary from Data, so far, p2

Smallest differences in potential air temperature during the
spring/summer transition despite the fact that the savanna
gained much more net radiation and lost much more sensible
heat, and, despite the fact that the surface temperature of
the grassland was warmer than that of the savanna.

Greater latent heat exchange by the savanna and more long-
wave energy lost by the grassland diminished the potential air
temperature differences between the two sites.

Yet, a complete explanation for these temperature differences
remains unresolved with our measurements, alone.

To complete our analysis we apply a coupled energy
balance/planetary boundary layer model to this problem
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Landscape Modification of Energy Exchange in Semi-Arid Regions:
Theoretical Analysis with a couple Surface Energy Balance-PBL Model
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Conceptual Diagram of PBL Interactions
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PBL Ht (m)
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air 'air
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Model computations of air temperature, referenced to temperatures above
conditions experienced by the savanna (R, =20 s m; R =200 s m; albedo =
0.15), for summer-like weather. The model was run for a range of values in the
aerodynamic and surface resistances. We assumed the albedo of the grass was 0.3.



Dead Dry Grass has Surface T >> Tair,
which has Feedback On reducing Rnet;
Must consider Ra, Rs, albedo together to diagnose effects

Tair Tt K Rret, W m2
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(a) Summer, Grass Albedo = 0.3 (b)

Model computations of air minus radiative surface temperatures, as a function of
aerodynamic and surface resistances. B) Model computations of net radiation, as a
function of aerodynamic and surface resistances. Computations assumed albedo
equaled 0.3 and summer time conditions of temperature and sunlight.



Deep Boundary Layers Form, Buffering change in T with H, dT/dH
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(Ra=20, s/m; Rsfc=200’ s/m; albedo = 0.15)
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Rn Budgets are about the Same in the Winter
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PBL is shallow in Winter, so differences in H can Translate into
Greater differences in air temperature
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Greatest temperature differences were
observed during winter period:

Rn savanna ™~ grass; H savanna >>grass; LE
grass > savanna; Rs savanna > grass; Ra grass
>> savanna; Tsfc grass ~ savanna

Smallest temperature differences were
observed during the spring/summer transition
when

Rn savanna >> grass; H savanna >>grass; LE
grass > savanna; Rs savanna << grass; Ra grass
>> savanna; Tsfc grass >> savanna
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Issues of Concern and Take-Home Message

Much vegetation operates less than ¥ of the year and is a solar collector with less
than 2% efficiency
— Solar panels work 365 days per year and have an efficiency of 20%+
Ecological Scaling Laws are associated with Planting Trees
— Self-Thinning Occurs with Time
— Mass scales with the -4/3 power of tree density
Available Land and Water
— Best Land is Vegetated and New Land needs to take up More Carbon than current land
— You need more than 500 mm of rain per year to grow Trees
The Ability of Forests to sequester Carbon declines with stand age
Energetic and Environmental Costs to soil, water, air by land use change
— Forests are Darker than Grasslands, so they Absorb More Energy

— Changes in Surface Roughness and Conductance and PBL Feedbacks on Energy
Exchange and Evaporative cooling may Dampen Albedo Effects

— Forest Albedo changes with stand age
— Forests Emit volatile organic carbon compounds, ozone precursors
— Forests reduce Watershed Runoff and Soil Erosion
Societal/Ethical Costs and Issues
— Land for Food vs for Carbon and Energy
— Energy is needed to produce, transport and transform biomass into energy
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Should we cut down dark forests to Mitigate Global Warming?:

UpScaling Albedo Differences Globally, part 1

Average Solar Radiation varies with Latitude: ~95 to 190 W m2
Land area: ~30% of Earth’s Surface

Tropical, Temperate and Boreal Forests: 40% of land

Forest albedo (10 to 15%) to Grassland Albedo (20%)

Area-weighted change in incoming Solar Radiation: 0.8 W m™
— Smaller than the 4 W m2 forcing by 2x CO,

— lgnores role of forests on planetary albedo, as conduits of water vapor that
form clouds and reflect light

We must Consider Magnitude of Energy Forcing x Spatial Scale
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We get different prognostic answers if we consider surface energy balance with or without
pbl feedbacks
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ET-PBL Oak-Grass Savanna Land Use
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ET-PBL Oak-Grass Savanna Land Use
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Theoretical Difference in Air Temperature: Grass vs Savanna

ET-PBL Model
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Air Temperature, K
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ET-PBL Model
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And Smaller Temperature Difference considering PBL, R, and albedo....!!

u* savanna = 2 u* grassland

298

—@— grass, albedo = 0.30; Rc = 2560 s/m; Ra = 40 s/m

296 - —@— savanna, albedo=0.15; Rc = 320 s/m; Ra=10 s/m

294

292

Tair (K)

290 4

288 -

286

4 6 8 10 12 14 16 18 20

Time (hours)

Summer Conditions

And temperatures are about equal when albedo of the grass is 0.25
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Rectifier Effect

Fe(0) (umol m?s™)
°
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ESPM 228 Adv Topics Micromet & Biomet

Linkages between the surface fluxes and growth of the boundary layer produces a rectifier
effect, that chops off a sine wave. Consideration of this effect is important when inverting
concentration time series from the boundary layer to infer large scale fluxes.
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ACO2 (ppm hour™)
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Impact of rain pulse on regional atmospheric CO,

2001
Rain Event (12.7 mm) Rain Event (61 mm)
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Coupled PBL-Sfc Energy CO, Model:
al a McNaughton-Spriggs
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