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Introduction 
 
In assessing eddy covariance data, especially from shared network databases, one needs 
to be cognizant of all the pitfalls and errors that may be associated with these data. Errors 
and uncertainties can arise from poor quality assurance (QA) and quality control (QC).  
Another set of errors stem from improper sensor performance associated with calibration 
drifts, spikes, sensor noise, signal filtering and if the analog to digital conversion is too 
coarse or if the sensor goes off range.  Violation of the assumptions on which the eddy 
covariance method is based, like insufficient fetch, advection, storage, sampling too slow 
or too short can cause errors; these were treated in the previous chapter.  And if these 
questionable data are rejected and replaced with gap filling methods there is uncertainty 
in the gap filling technique.  These are among the topics discussed in this chapter. 
 
When discussing uncertainty, we have to consider the two major types we may 
encounter.  Eddy fluxes are affected by random and bias errors [Moncrieff et al., 1996].   
Random errors tend to get smaller and smaller as long term averages are constructed.  
The bias errors are the most difficult to assess, minimize and remove.  They can be fully 
or selectively systematic.  The latter corresponds with nighttime flux loss associated with 
nocturnal CO2 exchange, when there is a decoupling of flow within and above the 
canopy; we will discuss this topic more in later sections.  It is serious with CO2 exchange 
because it is of opposite sign and can be large.  If this nocturnal loss is underestimated, 
large biases in annual net carbon exchange can accumulate.  For example, a nocturnal 
bias error of 1 mol m-2 s-1 can add up to over 189 gC m-2 y-1 if it persists 12 hours a day 
for 365 days a year. For visual perspective of these annual carbon budget errors, consider 
a piece of computer printer paper, expanded in size to one meter, square.  It weighs 76 g.  
So in essence, the annual error in eddy flux measurements of carbon exchange is less than 
the mass associated with a single piece of paper laid on the ground.  Water vapor 
exchange is less sensitive to these systematic bias errors because evaporation is small at 
night.   
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Figure 1 Errors encounters in the field (adapted from Moncrieff et al.) 

 
 
Testing for Errors and Biases 
 
Micrometeorologists perform numerous tests to validate the application of their method 
when studying a new site.  Computing transfer function spectral filtering errors, testing 
for energy balance closure, testing for the absences of flux divergence, quantifying 
storage and examining how well turbulence measurements match standard theories are 
among the most basic tests that will be performed.  In the following sections we will 
evaluate these topics. 
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Energy balance closure 
 
Energy balance closure is a widely-used metric to assess the data quality of eddy 
covariance measurements [Leuning et al., 2012; Oncley et al., 2007; Twine et al., 2000; K 
Wilson et al., 2002].  There is some controversy over the ability to close the surface 
energy balance.  Several assessments of energy balance across many sites find that that 
energy balance closure is underestimated by 10 to 20%, suggesting that the eddy 
covariance method may be missing some flux of mass and energy [Li et al., 2005; Oncley 
et al., 2007; Twine et al., 2000; K Wilson et al., 2002].   
 
But other investigators at individual sites often attain a reasonable level of energy balance 
closure (within 10%) when net radiation, soil heat flux, bole/canopy heat storage and 
photosynthetic energy conversion are measured properly and appropriate spectral 
corrections are applied to the eddy flux measurements [L H Gu et al., 2007; Heusinkveld 
et al., 2004; Leuning et al., 2012; Meyers and Hollinger, 2004].   
 
 
 The following figure is an example measured over a jack pine stand in the boreal forest.  
About 93% of the variance in net radiation is accounted for by the flux measurements and 
there is a 7% difference in energy closure.   
 
 



ESPM 228, Advanced Topics in Biometeorology and Micrometeorology 

 4

 
Figure 2 A test of energy balance closure over a jack pine forest on flat terrain 

and with extensive fetch. (Baldocchi and Vogel, 1996) 
 
 
Another example comes from our study over grass. 
 

 
Figure 3 Energy balance over a grassland 
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The interesting issue with our grassland site is that in later years we observed a gradual 
degradation of energy balance closure.  The solution to this mystery was that our 
instruments were fenced off from the grazing cows. Over time the amount of biomass 
over the soil heat flux plates increased and starting insulating the ground. Only after we 
started accounting for changes in heat storage between the surface and the heat flux plate 
were we able to restore our adequate closure of the energy balance. 
 
 
It can be argued that lack of energy balance closure does not necessarily indicate poor 
eddy flux measurements. With much debate and reflection on the topic, many of the key 
practitioners feel that the lack of energy balance closure is an example of ‘death by a 
thousand cuts’.  There are many unresolved issues relating to differences in footprints 
sensed by the energy sensors and the eddy flux instruments and sufficient statistical 
sampling of net radiation, soil heat flux and storage and direct errors in the measurement 
of these none eddy flux terms; net radiometers may see the tower and it has a small view 
footprint under the sensor, rather than weighting the upwind footprint; rarely are more 
than a handful of soil heat flux plates installed and they are subject to bias depending if 
they are buried deep or shallow, in the shade or an open spot.  Hence, this author does not 
recommend correcting eddy flux measurements of CO2 for the fractional imbalance of the 
energy balance closure as has been done in some instances [A.G. Barr et al., 2006]. 
 
 
 
An informal survey seems to show good closure over short crops, windy conditions, 
active transpiration and using open path sensors.  The NOAA team, including my group 
and Tilden Meyers, has observed good closure in such situations in independent studies, 
but using similar software, instruments.   Shashi Verma’s group also observes good 
closure over crops and grass, but it varies seasonally.   Arguments that it is due to errors 
in soil heat flux can be circumvented by examining daily sums. In cases, with bad 
closure, this novel attempt does not alleviate the problem. 
 
Wilson et al have conducted a ‘global’ analysis of energy balance closure using the 
FLUXNET data base across a range of climates, surface roughness and functional types 
(22 sites, 50 site years of data).  They concluded that the mean imbalance across sites was 
about 20%., irrespective of method used (open vs closed path gas analyzers) and canopy 
surface. Energy balance closure was improved during windy conditions.   
 
Despite the valiant attempts of Wilson et al to draw a solid conclusion, the jury is still 
out. There are still numerous issues to resolve including representativeness of net 
radiation balance with regards to the flux footprint, the role of cloud fields and low 
frequency contributions to fluxes (Finnigan and Leuning observe better closure with 
longer averaging times; we have observed better closure in climates with very clear skies, 
flat surfaces and short vegetation and strong winds).    
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The overview on energy balance closure by Leuning et al [Leuning et al., 2012] suggests 
it is best to test such closure for 24 hour average or sums because this tends to cancel out 
uncertainties in measuring some of the storage terms.  The following figure shows a 
marked improvement in energy balance closure with daily averages. 
 

 
 
 
In other words the cumulative uncertainty of a number of terms seems to be a better 
explanation than the null hypothesis that we are measuring latent and sensible heat flux 
wrong. 
 
And there are reasons to have confidence in eddy covariance measurements.  First, we 
have seen that the method does a competent job of sampling the cospectra that drives the 
flux.  Second, there is a body of data showing strong closure of the water balance, despite 
energy balance closure problems. Both Wilson et al [K B Wilson et al., 2001], Barr et al 
[A. G. Barr et al., 2000], and Scott  show comparable agreement between annual sums of 
ET with water balance measurements, either from a watershed water balance, or using a 
pizeiometer based lysimeter.  In other words, there is close agreement between annual 
sums of evaporation with eddy covariance and other hydrologic budgeting methods. 
 
Minimizing and Testing for Other Errors 
 
In evaluating a new site there are a number of recommended procedures to increase one’s 
confidence on the quality and accuracy of the flux measurements, because all sites have 
some level of heterogeneity. 
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It is advised to compare one’s flux system with another set of instrumentation, as is 
performed with the roving AmeriFlux system [Schmidt et al., 2012].  If one has a 
duplicate system one can test for the effects of spatial heterogeneity on the interpretation 
of fluxes [D D Baldocchi and Rao, 1995; Hollinger et al., 2004; Katul et al., 1999; 
Matthes et al., 2014].  Hollinger et al [Hollinger et al., 2004], for example, found close 
agreement between annual sums of two flux systems separated by 700 m seeing a similar 
forest. 
 
 

 
 
We have conducted paired flux measurements over an irrigated potato field, immersed in 
a dry desert, and find good agreement between duplicate flux systems as long as one is 
farther than 300 m from the upwind edge [D D Baldocchi and Rao, 1995]. 
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Advection is difficult to measure and requires a horizontal set of instruments that are 
aligned along the wind [Aubinet et al., 2010; Aubinet et al., 2005a; Feigenwinter et al., 
2004; Yi et al., 2008]. And because every circumstance is unique, there is no universal 
way to measure advection that may be suitable for tall and short vegetation on slope, 
steep or undulating terrain. 
 
 
One way to test if advection is large is to conduct a flux divergence study [Detto et al., 
2010].  If advection is small in the surface and internal boundary layers we should 
measure no difference in flux with height.   An investigation of ‘flux divergence’, over a 
less than ideal forest site on undulating terrain,  is presented below. 
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Figure 4 Measurement of Flux divergence of heat over a deciduous forest.  

In this case we found that the flux divergence of sensible heat was small between 29 and 
36 m, giving us an increased degree of confidence on the accuracy of our measurements. 
 
 
In another study, we examined flux divergence over a pasture near an estuary. In this case 
the advection of moisture caused the flux divergence of wq to be non zero. But the flux 
divergence of wc and wT was generally nill during the day. 
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In patchy landscapes, the flux measurement system views different types of vegetation 
from different wind sectors.  In this situation, seasonal and annual fluxes need to be 
interpreted in terms of flux footprint models [Gockede et al., 2004; Rebmann et al., 2005; 
Soegaard et al., 2003]. 
 
 
Canopy Storage 
 
Yet, another source of error is when flows become decoupled and there is storage of 
material in the air space underneath the eddy flux system.  Fortunately, on a daily, 24 
hour integral basis, the storage term is small. 

 
Figure 5 
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On the other hand, the storage term is significant on an hour by hour basis during the 
night. 
 

 
 
Using flux data, not corrected for storage, to fit ecological and physiological models will 
produce model parameters that are in error. 
 
Gap Filling Methods 
 
From a practical standpoint it is impossible to expect any flux instrument system to 
function perfectly 24 hours a day, seven days a week, 365 days a year; from our own 
experience, we are able to retain about 80% of possible measurements over the course of 
a year.  In practice, scientists subject their data to a variety of quality control and 
assurance criteria [Foken and Wichura, 1996; Rebmann et al., 2005].  Doing so, however, 
introduces many gaps in the data record (30 to 40% on an annual basis; Falge et al., 
2001).   Consequently, data gaps are expected and are the rule, as data must be rejected 
during calibration periods, when instruments malfunction, as when they break or when 
rain, snow or other meteors cause sensors to spike or go off scale.  And finally, the 
measurements must meet the standards held for interpreting micrometeorological, such as 
adequate fetch etc [Foken and Wichura, 1996]. 

 
Several methods for gap filling are being employed by the research community.   

The main ones in use include replacement with: linear interpolation, mean diurnal 
pattern, look up tables, semi-parametric models, and artificial neural networks [E. Falge 
et al., 2001a; Moffat et al., 2007; Dario Papale, 2012]. 
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One set of gap filling methods include interpolating between missing data points, 
replacing missing data with estimates derived from non-linear regression models or look-
up tables that depend upon climatic drivers like light, temperature and humidity as 
independent variables [E. Falge et al., 2001b; Iwata et al., 2005; Lasslop et al., 2010; 
Moffat et al., 2007; Ruppert et al., 2006; Stauch and Jarvis, 2006].   A review on gap 
filling is provided by Papale [Dario Papale, 2012]. This approach needs continual 
updating and tuning as seasonal changes in leaf area, soil moisture, photosynthetic 
capacity will alter any derived relation.   

 
The simplest method replaces missing data with information, for the corresponding hour, 
from the mean diurnal average (Falge et al. 2001).  Investigators bin data by hour for a 
one to two week period, then use the time dependent ensemble mean to replace missing 
data.  This approach has appeal, for the sampling errors about the hourly based ensemble 
means tend to be quite [D D Baldocchi et al., 1997; E. Falge et al., 2001b; Moncrieff et 
al., 1996]. Spectral analyzes of data show that the repeat cycle of fronts occurs on a 5 to 7 
days cycle, so although this technique may not accurately fill missing correctly for a 
particular circumstance, it will fill it with a correct mean.   
 
Newer and more sophisticated statistical approaches to gap-filling have been 
implemented in recent year.  These new methods include the multiple imputation method 
[Hui et al., 2004], neural networks [Dario Papale and Valentini, 2003], genetic 
algorithms [Ooba et al., 2006] and process-based models that are parameterized with 
existing data [Gove and Hollinger, 2006].   Inter-comparisons of gap filling methods 
indicate that the neural network method is among the best, but in general biases 
associated with different gap filling methods tend to be small [E. Falge et al., 2001b; D. 
Papale et al., 2006]. 
 
a. Neural Networks 

With the advent of long-term flux measurement networks, scientists are search for 
methods to fill gaps with empirical data.  With a desire not to bias the end results on the 
shape of the response functions, several European groups are adapting the use of neural 
networks ([Moffat et al., 2007; D. Papale et al., 2006].  Neural networks are defined as: “ 
a network of many simple processing elements each having a small amount of local 
memory. The units are connected in layers with communication channels and operate 
only on their local data and data they receive from channels.  Most neural networks have 
training rules and adjust the weight of their connections by data”. Neural networks are 
able to ‘learn’ by adjusting weighting factors according to input information.  Other 
strengths include their ability to be applied to complex problems that do not have pre-
determined algorithms defining their behavior, such as ecosystems. 
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Figure 6 after Papale and Valentini, 2003 
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Next the data are multiplied by a connection matrix 
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The matrix A contains connections with the input notes and a hidden node layer, X. The 
number of columns of the matrix are determined by the number of input nodes. 
Next one scales the vector X with a offset value. 
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The output matrix is: 
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O A HN 3  
 
And the definitive output value of the neural network is: 
 
OV O A  4  
 
Need to define V and O. 
 
 

 
Figure 7 After [Dario Papale and Valentini, 2003] 

 
 
In Fig 3 we see an example of the performance of the neural network model of Papale 
and Valentini against eddy flux measurements, a regression-based gap filling algorithm 
of Falge and the CANOAK model 
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Figure 8 application of neural network model to assess NEP of a temperate forest 

 
  
 
We are now adopting artificial neural networks routinelyto our meso-network of flux 
sites, using MATLAB packages.  This gives us the flexibility to use the most suitable set 
of variables to fill gaps.  For our rice, we use photosynthetically active radiation, air 
temperature, vapor pressure deficit, water table, friction velocity and day of year (to 
simulate phenology) to gap fill CO2 flux data.  The following figure shows excellent 
agreement between 7 seasons/years of data and a trained neural network model. 
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CO2 Flux Measurements at Night 
 
The thermal stratification during night is much different than during the day.  At night 
temperature profiles are inverted, causing stable thermal stratification.  Wind speed and 
turbulence is much reduced, causing large build-ups in concentration in the surface layer.  
Night time turbulence is also intermittent, due to the sporatic turbulence induced by 
gravity waves.  The net situation is that it is very difficult to measure fluxes accurately at 
night.  This issue has become one of much concern by the carbon flux community, as 
many sites report a significant underestimate of CO2 flux and a strong dependency with 
friction velocity.  In essence, even though investigators attempt to measure bias errors 
due to storage, some CO2 seems to be leaking out of the control volume by how and how 
often storage profiles are measured.  Small undulations in terrain can induce mean 
drainage flows that may pass undetected below the flux measurement system. 
 
The most severe and controversial gap-filling correction being made is the so-called ‘u* 
correction’ to night-time respiration measurements.  It is standard practice by the flux 
community to reject nocturnal CO2 flux measurements under low friction velocity 
conditions and replace them with values associated with more windier conditions [A. G. 
Barr et al., 2013; L Gu et al., 2005].   
 
For background, the atmosphere’s thermal stratification becomes stable at night and the 
flow near and below the vegetation can become decoupled with that above.  In this 
situation, CO2 may drain out of the control volume under investigation and not be 
measured by the eddy covariance system [Aubinet et al., 2005b; Sun et al., 2007].  
Numerous teams has shown that the bias error increases as turbulent mixing, measured by 
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friction velocity (u*), decreases below a threshold [Aubinet et al., 2000; Barford et al., 
2001; Carrara et al., 2003; Goulden et al., 1996; L Gu et al., 2005; Saleska et al., 2003; 
Wohlfahrt et al., 2005].   The threshold, above which nocturnal CO2 fluxes are insensitive 
to mixing, ranges between 0.1 and 0.5 m s-1, depending on topography and canopy height 
[Aubinet et al., 2000; Loescher et al., 2006a].  Subsequently, correction factors are 
developed that re-scale nighttime respiration fluxes to the windy, well-mixed condition 
and are normalized by temperature, soil moisture and growth stage. 
 
Shown below are two examples from our studies, relating nocturnal CO2 exchange and 
friction velocity.  One can see that the results are noisy and it is hard to determine a 
distinct and certain threshold; r2 values are typically less than 0.40.  Plus, there are issues 
relating to how strict or lax in picking this value.  Picking a high threshold value has 
uncertainty due to the small body of data subject to high winds.  There is also the 
problem of antecedent conditions.  If a calm period is followed by sporadic turbulence, an 
extraordinarily large flux may be measured, but in practice it would be venting carbon 
accumulating over successive sampling periods. 
 
 

 
Figure 9 Impact of friction velocity on CO2 flux densities at night.  Under low 

wind speeds, CO2 seems to drain out of the control volume and not pass the imaginary 
line demarking the canopy atmosphere interface. This non-linear relation between CO2 
flux and friction velocity is a common observation across the FLUXNET network, 
indicating an atmospheric rather than instrumental effect. 
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 One alternative to the u* correction involves extrapolating of the daytime CO2 
flux-light response curve to zero [Eva Falge et al., 2002; Gilmanov et al., 2003; 
Hollinger et al., 1998; Lee et al., 1999; Suyker and Verma, 2001; Xu and Baldocchi, 
2004].  At the daily time scale, there is a strong correlation between the two methods, but 
respiration rates, based on the extrapolation of light response curve, tend to underestimate 
(by 78 to 94%) respiration values corrected for u*.   
 
A second alternative assumes that the rate of nocturnal respiration equals the maximum 
sum of the turbulent and storage fluxes observed over the night [Van Gorsel et al., 2007].  
This maximum respiratory efflux is noted to occur early in the evening before advection 
is established, so potential biases can be avoided.  It is noteworthy, that this latest 
approach produces respiration rates that match independent estimates based on upscaling 
soil and leaf respiration measurements well. 
 
A group from Oregon placed a second flux system near the floor of a forest and used 
those data to help guide and replace measurements that were rejected during calm 
conditions [Thomas et al., 2013]. 
 
 
A key question associated with data evaluated in this review is: how accurate are the 
annual sums?   Annual errors in FN typically range between 30 and 100 gC m-2 y-1, with 
larger and smaller values having been reported [Anthoni et al., 2004; Goulden et al., 
1996; Hagen et al., 2006; Hollinger and Richardson, 2005; Loescher et al., 2006b; 
Moncrieff et al., 1996; Oren et al., 2006; Rannik et al., 2006].    Correcting FN for 
insufficient nighttime mixing typically adds an additional respiratory flux on the order of 
30 to 50 gC m-2 y-1, and thereby reduces FN. The magnitude of this correction depends on 
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the choice of the cut-off value for u*, how tall the vegetation is and local topography 
[Anthoni et al., 2004; Aubinet et al., 2000; A G Barr et al., 2002; Loescher et al., 2006b; 
D. Papale et al., 2006; Saleska et al., 2003; Xu and Baldocchi, 2004].    
 
 
Flux Partitioning 
 
It has already been established that the eddy covariance method measures the net flux 
density, which in the case of net ecosystem CO2 exchange is the balance between 
ecosystem photosynthesis (denoted as GPP) and ecosystem respiration. 
 

ecoNEE GPP R   

 
 
To better understand the controls on these fluxes it is instructive to partition the net flux 
into its gross components like: 
 

ecoGPP NEE R   

 
But this requires that we assess Reco independently.  Fortunately, we can use a mix of 
day-night sampling and models to conduct this partitioning, as is shown for the alfalfa 
field below. 
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The basic idea is measure respiration at night, use those data to develop a model that can 
be applied during the day to subtract from NEE and compute GPP [Eva Falge et al., 
2002]. 
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There are a variety of temperature dependent respiration models that can be used 
[Reichstein et al., 2005]. 
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 [Lloyd and Taylor, 1994] 
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The key point is to adjust model parameters across the season to account for changes in 
photosynthetic capacity, leaf area, soil moisture and phenology. 
 
Because this is uncertainty in the quality of nocturnal CO2 flux measurements, others 
have used a method that estimates ecosystem respiration by extrapolating the daytime 
CO2 Flux-light response curve to zero light levels [Eva Falge et al., 2002; Suyker and 
Verma, 2001; Xu and Baldocchi, 2004].  In the following figure we see an example for an 
alfalfa field in California.  In this case the zero intercept is well founded. 
 
 

  
 
 
Tests of this method with more extensive datasets have shown good agreement on the 
seasonal and yearly bases as shown below. 
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[Suyker and Verma, 2001] 
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[Eva Falge et al., 2002] 
 
 
Spurious Correlations among GPP and Reco? 
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It is well known in statistics that correlations between two variables with shared 
information from a third variable can be spurious [Pearson, 1896].  Hence it is warranted 
that we inspect whether or not estimates of GPP and Reco suffer from spurious 
correlation. 
 

 
 

 
 
In a recent paper we derived the equation defining spurious correlation among G and R 
and evaluated it using day-night sampling with data from the FLUXNET database [D 
Baldocchi et al., 2015]. 
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We then expanded this analysis to the FLUXNET database that spans a spectrum of 
climate and plant functional types.  We found, on average, that the correlation between 
gross photosynthesis and ecosystem respiration, using day-night sampling, was close to 
minus one (-0.828 +/- 0.130).   For perspective, a large fraction of this correlation was 
real, as the degree of spurious correlation (Eq. 22) was -0.526. We conclude that the 
potential for spurious correlation between canopy photosynthesis and ecosystem 
respiration across the FLUXNET database was moderate.  Looking across the database, 
we found that the least negative spurious-correlations coefficients (> -0.3) were 
associated with seasonal deciduous forests.  The most negative spurious correlations 
coefficients (< -0.7) were associated with evergreen forests found in boreal climates.  
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If we apply the analysis to annual sums of G and R we find a lower degree of spurious 
correlation, rsc = -0.157.  
 
 

FLUXNET, published circa 2013
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Summary Comments 
 
If you are starting a new study there are many things one should do and check. 
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1. find relatively flat site with uniform vegetation. Try to have fetch to height 
ratio greater than 100:1 

1. Check for advection (flux divergence) by measuring flux profiles using 
two flux systems 

2. Check for energy balance closure 
3. Check power spectra and co-spectra. Are you measuring the full spectrum 

of flux contributing eddies. 
4. See if there is instrument interference of winds or lags due to wind 

separation between wind and scalar sensors. 
5. Look for systematic bias flows. Plot mean drag coefficient vs wind 

direction for a large body of data.  Plots like this will also identify sensor 
drift. 

6. Plot data and see if it falls within expected ranges. Look for unexplained 
outliers. 

7. Watch calibrations and calibrate often. 
8. Know your site and system well. 

 
 
In this lecture we have discussed numerous procedures for producing turbulent 

flux estimates. 
 
Below is a table surveying the key steps. 
 
Summary of Data Processing 
 

 Process 
Realtime 
Sampling 

Sample instruments at 10 to 20 Hz, 
depending on height of sensors and wind 
speed. fsample = 2 times fcutoff (f=nz/U) 

 Store realtime data on hard disk 
 Process realtime means, variances and 

covariances using digital recursive filters. 
Compute 30 or 60 minute averages of 
statistical quantities. Use to diagnose 
instrument and system performance 

 Document data and procedures. 
  
Post Processing, 
hourly data 

Compute means, covariances and variances 
using Reynolds averaging 

 Merge turbulence and meteorological data 
 Apply calibration coefficients and gas law 

corrections to compute unit correct flux 
densities and statistics 

 Apply transfer functions and frequency 
corrections 

  Compute Storage and Advective fluxes 
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 Compute power spectra and co-spectra; 
examine instrument response and 
interference effects 

  
Post Processing, 
daily data 

Apply QA/QC and eliminate bad data 

 Use gap filling methods and fill gaps 
 Correct nighttime data if needed using such 

corrections as with well-mixed friction 
velocity, or check against independent 
measurements, such as soil respiration 
chambers 

 Compute daily integrals 
  
  
Yearly data Compute annual means by integrating data 

set. 
  

 
 
 
 
 

State of Art Discussion Topics 
 
Discuss how eddy covariance measurements are used to evaluate models?  How reliable 
is each measurement?  What are proper averaging schemes?  If we average, do we filter 
or miss episodes or interesting processes?  How do we avoid testing ‘apples’ vs 
‘oranges’? 
 
Night corrections of CO2 flux. Where is the material going? Do we correct with 
temperature corrected chamber measurements 
 
Energy balance closure. Why? Is is a function of footprints and reprsentativeness, net 
radiometers? Do we artificially close the energy balance and correct data? Do we apply 
these corrected estimates to the Webb Pearman Leuning corrections for CO2 exchange. 
 
How good are spectral models for applying transfer functions. Can we use the current 
theory at night? What about inside a canopy?  
 
How well does one need to measure the CO2 storage term?  How many levels are 
needed? Where should they be placed? How often should one sample? 
 
What does zero drift do to coordinate rotation and the estimate of eddy fluxes? 
 
 



ESPM 228, Advanced Topics in Biometeorology and Micrometeorology 

 26

 
EndNote References 
 
Anthoni, P. M., A. Freibauer, O. Kolle, and E.-D. Schulze (2004), Winter wheat carbon 
exchange in Thuringia, Germany, Agricultural and Forest Meteorology, 121(1-2), 55-67. 
Aubinet, M., C. Feigenwinter, B. Heinesch, C. Bernhofer, E. Canepa, A. Lindroth, L. 
Montagnani, C. Rebmann, P. Sedlak, and E. Van Gorsel (2010), Direct advection 
measurements do not help to solve the night-time CO2 closure problem: Evidence from 
three different forests, Agricultural and Forest Meteorology, 150(5), 655-664. 
Aubinet, M., et al. (2005a), Comparing CO2 Storage and Advection Conditions at Night 
at Different Carboeuroflux Sites, Boundary-Layer Meteorology, 116(1), 63-93. 
Aubinet, M., et al. (2005b), Comparing CO2 storage and advection conditions at night at 
different carboeuroflux sites, Boundary-Layer Meteorology, 116(1), 63-94. 
Aubinet, M., et al. (2000), Estimates of the annual net carbon and water exchange of 
Europeran forests: the EUROFLUX methodology, Advances in Ecological Research, 30, 
113-175. 
Baldocchi, D., C. Sturtevant, and F. Contributors (2015), Does day and night sampling 
reduce spurious correlation between canopy photosynthesis and ecosystem respiration?, 
Agricultural and Forest Meteorology, 207(0), 117-126. 
Baldocchi, D. D., and K. S. Rao (1995), Intra-field variability of scalar flux densities 
across a transition between a desert and an irrigated potato Advection field, Boundary 
Layer Meterology., 76., 109-136. 
Baldocchi, D. D., C. A. Vogel, and B. Hall (1997), Seasonal variation of carbon dioxide 
exchange rates above and below a boreal jack pine forest, Agricultural and Forest 
Meteorology, 83(1-2), 147-170. 
Barford, C. C., S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. 
Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore (2001), Factors controlling long- and 
short-term sequestration of atmospheric CO2 in a mid-latitude forest, Science, 294(5547), 
1688-1691. 
Barr, A. G., G. van der Kamp, R. Schmidt, and T. A. Black (2000), Monitoring the 
moisture balance of a boreal aspen forest using a deep groundwater piezometer, 
Agricultural and Forest Meteorology, 102(1), 13-24. 
Barr, A. G., K. Morgenstern, T. A. Black, J. H. McCaughey, and Z. Nesic (2006), 
Surface energy balance closure by the eddy-covariance method above three boreal forest 
stands and implications for the measurement of the CO2 flux, Agricultural and Forest 
Meteorology 
The Fluxnet-Canada Research Network: Influence of Climate and Disturbance on 
Carbon Cycling in Forests and Peatlands, 140(1-4), 322-337. 
Barr, A. G., T. J. Griffis, T. A. Black, X. Lee, R. M. Staebler, J. D. Fuentes, Z. Chen, and 
K. Morgenstern (2002), Comparing the carbon budgets of boreal and temperate 
deciduous forest stands, Canadian Journal of Forest Research, 32, 813-822. 
Barr, A. G., et al. (2013), Use of change-point detection for friction–velocity threshold 
evaluation in eddy-covariance studies, Agricultural and Forest Meteorology, 171-172, 
31-45. 



ESPM 228, Advanced Topics in Biometeorology and Micrometeorology 

 27

Carrara, A., A. S. Kowalski, J. Neirynck, I. A. Janssens, J. C. Yuste, and R. Ceulemans 
(2003), Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years, 
Agricultural and Forest Meteorology, 119(3-4), 209-227. 
Detto, M., D. Baldocchi, and G. G. Katul (2010), Scaling Properties of Biologically 
Active Scalar Concentration Fluctuations in the Atmospheric Surface Layer over a 
Managed Peatland, Boundary-Layer Meteorology, 136(3), 407-430. 
Falge, E., D. Baldocchi, J. Tenhunen, M. Aubinet, P. Bakwin, P. Berbigier, C. Bernhofer, 
G. Burba, R. Clement, and K. J. Davis (2002), Seasonality of ecosystem respiration and 
gross primary production as derived from FLUXNET measurements, Agricultural and 
Forest Meteorology, 113(1-4), 53-74. 
Falge, E., et al. (2001a), Gap filling strategies for defensible annual sums of net 
ecosystem exchange, Agricultural and Forest Meteorology, 107(1), 43-69. 
Falge, E., et al. (2001b), Gap filling strategies for defensible annual sums of net 
ecosystem exchange, Agricultural and Forest Meteorology, 107, 43-69. 
Feigenwinter, C., C. Bernhofer, and R. Vogt (2004), The influence of advection on the 
short term CO2-budget in and above a forest canopy, Boundary-Layer Meteorology, 
113(2), 201-224. 
Foken, T., and B. Wichura (1996), Tools for quality assessment of surface-based flux 
measurements, Agricultural and Forest Meteorology, 78(1-2), 83-105. 
Gilmanov, T. G., S. B. Verma, P. L. Sims, T. P. Meyers, J. A. Bradford, G. G. Burba, and 
A. E. Suyker (2003), Gross primary production and light response parameters of four 
Southern Plains ecosystems estimated using long-term CO2 -flux tower measurements, 
Global Biogeochem. Cycles, 17, doi:10.1029/2002GB002023. 
Gockede, M., C. Rebmann, and T. Foken (2004), A combination of quality assessment 
tools for eddy covariance measurements with footprint modelling for the characterisation 
of complex sites, Agricultural and Forest Meteorology, 127(3-4), 175-188. 
Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy (1996), 
Measurements of carbon sequestration by long-term eddy covariance: Methods and a 
critical evaluation of accuracy, Global Change Biology, 2(3), 169-182. 
Gove, J. H., and D. Y. Hollinger (2006), Application of a dual unscented Kalman filter 
for simultaneous state and parameter estimation in problems of surface-atmosphere 
exchange, J. Geophys. Res.-Atmos., 111(D8), doi:1029/2005JD006021. 
Gu, L., et al. (2005), Objective threshold determination for nighttime eddy flux filtering, 
Agricultural and Forest Meteorology, 128(3-4), 179-197. 
Gu, L. H., et al. (2007), Influences of biomass heat and biochemical energy storages on 
the land surface fluxes and radiative temperature, J. Geophys. Res.-Atmos., 112(D2), 
doi:10.1029/2006JD007425. 
Hagen, S. C., B. H. Braswell, E. Linder, S. Frolking, A. D. Richardson, and D. Y. 
Hollinger (2006), Statistical uncertainty of eddy flux-based estimates of gross ecosystem 
carbon exchange at Howland Forest, Maine, J. Geophys. Res.-Atmos., 111(D8), 
doi:10.1029/2005JD006154. 
Heusinkveld, B. G., A. F. G. Jacobs, A. A. M. Holtslag, and S. M. Berkowicz (2004), 
Surface energy balance closure in an arid region: role of soil heat flux, Agricultural and 
Forest Meteorology, 122(1-2), 21-37. 
Hollinger, D. Y., and A. D. Richardson (2005), Uncertainty in eddy covariance 
measurements and its application to physiological models, Tree Physiol., 25(7), 873-885. 



ESPM 228, Advanced Topics in Biometeorology and Micrometeorology 

 28

Hollinger, D. Y., F. M. Kelliher, E.-D. Schulze, G. Bauer, A. Arneth, J. N. Byers, J. E. 
Hunt, T. M. McSeveny, K. I. Kobak, and I. Milukova (1998), Forest-atmosphere carbon 
dioxide exchange in eastern Siberia, Agricultural and Forest Meteorology, 90(4), 291-
306. 
Hollinger, D. Y., et al. (2004), Spatial and temporal variability in forest-atmosphere CO2 
exchange, Global Change Biology, 10(10), 1689-1706. 
Hui, D., S. Wan, B. Su, G. Katul, R. Monson, and Y. Luo (2004), Gap-filling missing 
data in eddy covariance measurements using multiple imputation (MI) for annual 
estimations, Agricultural and Forest Meteorology, 121(1-2), 93-111. 
Iwata, H., Y. Malhi, and C. von Randow (2005), Gap-filling measurements of carbon 
dioxide storage in tropical rainforest canopy airspace, Agricultural and Forest 
Meteorology, 132(3-4), 305-314. 
Katul, G., et al. (1999), Spatial variability of turbulent fluxes in the roughness sublayer of 
an even-aged pine forest, Boundary-Layer Meteorology, 93(1), 1-28. 
Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy, and 
G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and 
respiration using a light response curve approach: critical issues and global evaluation, 
Global Change Biology, 16(1), 187-208. 
Lee, X. H., J. D. Fuentes, R. M. Staebler, and H. H. Neumann (1999), Long-term 
observation of the atmospheric exchange of CO2 with a temperate deciduous forest in 
southern Ontario, Canada, Journal of Geophysical Research, 104(D13), 15975-15984. 
Leuning, R., E. van Gorsel, W. J. Massman, and P. R. Isaac (2012), Reflections on the 
surface energy imbalance problem, Agricultural and Forest Meteorology, 156, 65-74. 
Li, Z. Q., G. R. Yu, X. F. Wen, L. M. Zhang, C. Y. Ren, and Y. L. Fu (2005), Energy 
balance closure at ChinaFLUX sites, Science in China Series D-Earth Sciences, 48, 51-
62. 
Lloyd, J., and J. A. Taylor (1994), On the Temperature-Dependence of Soil Respiration, 
Functional Ecology, 8(3), 315-323. 
Loescher, H. W., B. E. Law, L. Mahrt, D. Y. Hollinger, J. Campbell, and S. C. Wofsy 
(2006a), Uncertainties in, and interpretation of, carbon flux estimates using the eddy 
covariance technique, Journal of Geophysical Research-Atmospheres, 111(D21). 
Loescher, H. W., B. E. Law, L. Mahrt, D. Y. Hollinger, J. Campbell, and S. C. Wofsy 
(2006b), Uncertainties in, and interpretation of, carbon flux estimates using the eddy 
covariance technique, J. Geophys. Res.-Atmos., 111(D21), doi:10.1029/2005JD006932. 
Matthes, J. H., C. Sturtevant, J. Verfaillie, S. Knox, and D. Baldocchi (2014), Parsing 
variability in CH4 fluxes at a spatially heterogeneous wetland: Integrating multiple eddy 
covariance towers with high-resolution flux footprint analysis, Journal of Geophysical 
Research: Biogeosciences, 2014JG002642. 
Meyers, T. P., and S. E. Hollinger (2004), An assessment of storage terms in the surface 
energy balance of maize and soybean, Agricultural and Forest Meteorology, 125(1-2), 
105-115. 
Moffat, A. M., et al. (2007), Comprehensive comparison of gap-filling techniques for 
eddy covariance net carbon fluxes, Agricultural and Forest Meteorology, 147(3-4), 209-
232. 
Moncrieff, J., Y. Malhi , and R. Leuning (1996), The propogation of errors in long-term 
measurements of carbon and water, Global Change Biology, 2, 231-240. 



ESPM 228, Advanced Topics in Biometeorology and Micrometeorology 

 29

Oncley, S. P., et al. (2007), The Energy Balance Experiment EBEX-2000. Part I: 
Overview and energy balance, Boundary-Layer Meteorology, 123(1), 1-28. 
Ooba, M., T. Hirano, J.-I. Mogami, R. Hirata, and Y. Fujinuma (2006), Comparisons of 
gap-filling methods for carbon flux dataset: A combination of a genetic algorithm and an 
artificial neural network, Ecol. Model., 198(3-4), 473-486. 
Oren, R., C. I. Hseih, P. Stoy, J. Albertson, H. R. McCarthy, P. Harrell, and G. G. Katul 
(2006), Estimating the uncertainty in annual net ecosystem carbon exchange: spatial 
variation in turbulent fluxes and sampling errors in eddy-covariance measurements, 
Global Change Biology, 12(5), 883-896. 
Papale, D. (2012), Data Gap Filling, in Eddy Covariance: A Practical Guide to 
Measurement and Data Analysis, edited by M. Aubinet, T. Vesala and D. Papale, pp. 
159-172, Springer Netherlands, Dordrecht. 
Papale, D., and R. Valentini (2003), A new assessment of European forests carbon 
exchanges by eddy fluxes and artificial neural network spatialization, Global Change 
Biol, 9, 525-535. 
Papale, D., et al. (2006), Towards a standardized processing of Net Ecosystem Exchange 
measured with eddy covariance technique: algorithms and uncertainty estimation, 
Biogeosciences, 3(4), 571-583. 
Pearson, K. (1896), Mathematical Contributions to the Theory of Evolution.--On a Form 
of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of 
Organs, Proceedings of the Royal Society of London, 60(359-367), 489-498. 
Rannik, Ü., P. Kolari, T. Vesala, and P. Hari (2006), Uncertainties in measurement and 
modelling of net ecosystem exchange of a forest, Agricultural and Forest Meteorology, 
138(1-4), 244-257. 
Rebmann, C., et al. (2005), Quality analysis applied on eddy covariance measurements at 
complex forest sites using footprint modelling, Theor. Appl. Climatol., 80(2 - 4), 121-
141. 
Reichstein, M., et al. (2005), On the separation of net ecosystem exchange into 
assimilation and ecosystem respiration: review and improved algorithm, Global Change 
Biology, 11(9), 1424-1439. 
Ruppert, J., M. Mauder, C. Thomas, and J. Luers (2006), Innovative gap-filling strategy 
for annual sums of CO2 net ecosystem exchange, Agricultural and Forest Meteorology, 
138(1-4), 5-18. 
Saleska, S. R., et al. (2003), Carbon in Amazon Forests: Unexpected Seasonal Fluxes and 
Disturbance-Induced Losses, Science, 302(5650), 1554-1557. 
Schmidt, A., C. Hanson, W. S. Chan, and B. E. Law (2012), Empirical assessment of 
uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux 
network, Journal of Geophysical Research, 117(G4). 
Soegaard, H., N. O. Jensen, E. Boegh, C. B. Hasager, K. Schelde, and A. Thomsen 
(2003), Carbon dioxide exchange over agricultural landscape using eddy correlation and 
footprint modelling, Agricultural and Forest Meteorology, 114(3-4), 153-173. 
Stauch, V. J., and A. J. Jarvis (2006), A semi-parametric gap-filling model for eddy 
covariance CO2 flux time series data, Global Change Biology, 12(9), 1707-1716. 
Sun, J., S. P. Burns, A. C. Delany, S. P. Oncley, A. A. Turnipseed, B. B. Stephens, D. H. 
Lenschow, M. A. LeMone, R. K. Monson, and D. E. Anderson (2007), CO2 transport 
over complex terrain, Agricultural and Forest Meteorology, 145(1-2), 1-21. 



ESPM 228, Advanced Topics in Biometeorology and Micrometeorology 

 30

Suyker, A. E., and S. B. Verma (2001), Year-round observations of the net ecosystem 
exchange of carbon dioxide in a native tallgrass prairie, Global Change Biology, 7, 279-
289. 
Thomas, C. K., J. G. Martin, B. E. Law, and K. Davis (2013), Toward biologically 
meaningful net carbon exchange estimates for tall, dense canopies: Multi-level eddy 
covariance observations and canopy coupling regimes in a mature Douglas-fir forest in 
Oregon, Agricultural and Forest Meteorology, 173, 14-27. 
Twine, T. E., W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. Meyers, J. H. 
Prueger, P. J. Starks, and M. L. Wesely (2000), Correcting eddy-covariance flux 
underestimates over a grassland, Agricultural and Forest Meteorology, 103(3), 279-300. 
Van Gorsel, E., R. Leuning, H. A. Cleugh, H. Keith, and T. Suni (2007), Nocturnal 
carbon efflux: reconciliation of eddy covariance and chamber measurements using an 
alternative to the u*-threshold filtering technique, Tellus B, 59(3), 397-403. 
Wilson, K., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, 
R. Ceulemans, H. Dolman, and C. Field (2002), Energy balance closure at FLUXNET 
sites, Agricultural and Forest Meteorology, 113(1-4), 223-243. 
Wilson, K. B., P. J. Hanson, P. J. Mulholland, D. D. Baldocchi, and S. D. Wullschleger 
(2001), A comparison of methods for determining forest evapotranspiration and its 
components: sap-flow, soil water budget, eddy covariance and catchment water balance, 
Agricultural and Forest Meteorology, 106(2), 153-168. 
Wohlfahrt, G., C. Anfang, M. Bahn, A. Haslwanter, C. Newesely, M. Schmitt, M. 
Drosler, J. Pfadenhauer, and A. Cernusca (2005), Quantifying nighttime ecosystem 
respiration of a meadow using eddy covariance, chambers and modelling, Agricultural 
and Forest Meteorology, 128(3-4), 141-162. 
Xu, L., and D. D. Baldocchi (2004), Seasonal variation in carbon dioxide exchange over 
a Mediterranean annual grassland in California, Agricultural and Forest Meteorology, 
123(1-2), 79-96. 
Yi, C. X., D. E. Anderson, A. A. Turnipseed, S. P. Burns, J. P. Sparks, D. I. Stannard, 
and R. K. Monson (2008), The contribution of advective fluxes to net ecosystem 
exchange in a high-elevation, subalpine forest, Ecol. Appl., 18(6), 1379-1390. 
 
 


