Measuring CO₂ from Space: The NASA Orbiting Carbon Observatory-2 (OCO-2)

David Crisp (Jet Propulsion Laboratory, California Institute of Technology) for the OCO-2 Team

Global Measurements from Space are Essential for Monitoring CO₂ Sources and Sinks over the Globe

To limit the rate of atmospheric carbon dioxide buildup, we must

- -Control emissions associated with human activities
- -Understand & exploit natural processes that absorb carbon dioxide

We cannot manage what we cannot measure

Plumes from medium-sized power plants (4 MtC/yr) elevate X_{CO2} levels by ~2 ppm for 10's of km downwind [Yang and Fung, 2010].

These variations are superimposed on a background of "CO, weather" (Kawa et al. 2010)

OCO-2 16-day ground repeat cycle

Sources and Sinks from Space-Based Measurements CO₂ sources and sinks must be inferred from small spatial variations in the (390 \pm 5 ppm) background CO₂ distribution

High precision is Essential for Quantifying CO.

- · Largest variations near surface
- · Space based observations of reflected sunlight constrain column averaged CO₂ dry air mole fraction, X_{CO2}

Small spatial gradients in CO2 verified by pole-to-pole aircraft measurements [Wofsy et al. 2010]

When integrated over the column, spatial gradients in X_{CO2} are even smaller [Wofsy et al. 2010]

Coverage: Precise Measurements are Space and Ground Based CO₂ Measurements are Complementary **Needed over Oceans as well as Continents**

- •The ocean covers 70% of the Earth and absorbs/emits >10 times more CO2 than all human activities combined
- •While the oceans have few intense sources, coverage of the oceans is essential to minimize errors from CO₂ transport in and out of the observed domain
- •Solar remote sensing observations over the ocean are intrinsically challenging because the ocean typically reflects
- Clouds and optically thick aerosols contribute a larger fraction of the reflected radiance, introducing optical path length uncertainties.

Measuring CO₂ from Space

Current Surface GHG network

•Ground based measurements - greater precision and sensitivity to

Source/Sink models - assimilate space an ground-based data to

•Space-based measurements – improve spatial coverage & resolution.

CO₂ near the surface, where sources and sinks are located.

provide global insight into CO₂ sources and sinks

Record spectra of CO, and O, absorption in reflected sunlight Retrieve the column averaged CO2 dry air mole fraction, X_{CO2} over the sunlit hemisphere

Validate X_{CO2} retrievals to ensure accuracies of 1 - 2 ppm (0.3 - 0.5%) on regional scales.

only 0.5 to 1% of the incident sunlight toward the zenith.

Spatial Resolution and Sampling

A Small Footprint:

- Increases sensitivity to CO2 point sources
- The minimum measureable CO₂ flux is inversely proportional to footprint size
- Increases probability of recording cloud free soundings in partially cloudy regions

· Reduces biases over rough topography

High Sampling Rate:

 Soundings can be averaged along the track to reduce single sounding random errors

GOSAT (circle) and OCO-2 (parallelogram) footprints over Washington DC

MODIS Cloud studies indicate that a smaller footprint vields more cloud free soundings.

The NASA Orbiting Carbon Observatory

NASA's Orbiting Carbon Observatory (OCO) was designed to provide estimates of atmospheric carbon dioxide (CO₂) with the sensitivity, accuracy and sampling density needed to quantify regional scale carbon sources and sinks over the globe and characterize their behavior over the annual cycle.

The Loss of OCO and the Birth of OCO-2

- February 2009: The OCO spacecraft was lost when its Taurus XL launch vehicle's fairing failed to deploy
- December 2009: The U.S. Congress added funding to the NASA FY2010 budget to restart the OCO Mission
- The OCO-2 mission is currently on track for a launch as early as 2013

The OCO-2 Instrument - same as OCO

- 3 co-bore-sighted, high resolution, imaging grating spectrometers
 - O₂ 0.765 μm A-band
 - CO₂ 1.61 μm band
- CO₂ 2.06 μm band
- Resolving Power: > 20,000
- Optically fast: f/1.8
- Narrow Swath: < 0.8°
 - · 8 cross-track footprints sampled @ 3 Hz
- Footprint: < 1.29 x 2.25 km at nadir (< 3 km²)

1:55 AM

24 Feb 2009

Optical layout of each spectral • Mass: 144 kg, Power: 105W channel and major components

OCO-2 Spacecraft Bus - same as OCO

The spacecraft bus is used to:

- Support and point the instrument
- No pointing mechanism needed
- Facilitates Nadir/Glint/Target Obs
- Formation fly in the A-train · Facilitates synergy with other
- · Record and downlink the data

OCO-2 Observation Modes Optimize Sensitivity and Accuracy over Land & Ocean

Glint Observations:

Nadir Observations:

- Low Signal/Noise over

+ Small footprint (< 3 km²) + Improves Signal/Noise over oceans -More cloud dark surfaces (ocean, ice)

 Validation over ground based FTS sites, field campaigns, other

Target Observations:

andom errors for nadii and alint (Baker et al. ACPD, 20081

Experience gained working with the Japanese Greenhouse gases Observing Satellite, GOSAT

- The ACOS/OCO-2 team is retrieving global maps of X_{CO2} from GOSAT
- Close collaboration between calibration, validation, and retrieval algorithm teams has led to rapid progress in data analysis
- · Vicarious Calibration campaigns in Railroad Valley, NV provided data need to identify and correct instrument calibration changes
- · Validation against Total Column Carbon Observing Network (TCCON) measurements and other data sets being used to detect and correct large scale biases

Conclusions

- · Space-based remote sensing observations hold substantial promise for future long-term monitoring of CO₂ and other greenhouse gases, providing:
- Spatial coverage (especially over oceans and tropics)
- sampling density (needed to resolve CO₂ weather)
- The principal challenge is the need for high precision
- To reach their full potential, space based CO₂ measurements must be validated against surface measurements to ensure their accuracy.
- The TCCON network is providing the transfer standard
- · A coordinated global network of surface and spacebased CO₂ monitoring systems as well as sophisticated models that can assimilate these data are needed to provide insight into the processes controlling atmospheric CO₂