Airborne LiDAR and Hyperspectral Data for Flux Tower Sites

N. Kljun¹, L. Chasmer², C. Hopkinson³, E. van Gorsel⁴, J. Berni⁴, A. Barr⁵, C. Bernhofer⁶, A. Black⁷, R. Leuning⁴, A. Lindroth⁸, H. McCaughey⁹, E. Moors¹⁰, R. Petrone²

¹Dept. of Geography, Swansea University, Swansea, UK (n.kljun@swansea.ac.uk); ²Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Canada; ³Applied Geomatics Research Group, NSCC, Middleton, Canada; ⁴CSIRO CMAR, Canberra, Australia; ⁵Environment Canada; ⁶TU Dresden, Germany; ⁷University, Sweden; ⁹Queens University, Canada; ¹⁰Wageningen University, The Netherlands

Introduction

We present a method to attribute CO_2 and H_2O flux signals measured at flux towers in forested terrain to high-resolution vegetation characteristics. The approach combines flux data with airborne LiDAR, hyperspectral imaging and footprint model results and is applied to several trans-continental flux-tower sites of varying degrees of heterogeneity.

References

Chasmer, L., N. Kljun, C. Hopkinson, et al., 2011: Characterizing vegetation structural and topographic characteristics sampled by EC within two mature aspen stands using LiDAR and a flux footprint model: Scaling to MODIS. J Geophys. Res. G., in press.

Chasmer, L., N. Kljun, A.G. Barr, et al., 2008: Vegetation Structural and Elevation Influences on CO2 Uptake within a Mature Jack Pine Forest in Saskatchewan, Canada. Can. J. Forest Res. 38, 2746-2761.

Kljun, N., P. Calanca, M.W. Rotach, et al., 2004: A Simple Parameterisation for Flux Footprint Predictions. Boundary-Layer Meteorol. 112, 503-523.

Kljun, N., M.W. Rotach, H.P. Schmid, 2002: A 3D Backward Lagrangian Footprint Model for a Wide Range of Boundary Layer Stratifications. Boundary-Layer Meteorol. 103, 205-226.

Acknowledgement

We thank all flux tower technicians, scientists, and field assistants involved in this study, particularly B. Harm, A. Båth, A. Cabello-Leblic, J. Elbers, J. Hacker, A. Held, T. Milne, C. Maloney, H. Morrison, Z. Nesic, and R. Queck, P. Treitz. Funding sources (PI N. Kljun): GEF/NERC 933/909, ARSF/FSF/NERC EU10-01, NCEO/NERC EO Mission Support 2009, NERC NE/G000360/1; various funding sources for flux-tower sites.

NATURAL RESEARCH COUNCIL

Study Sites, Objectives, and First Results

BERMS (Southern Boreal Forest, Saskatchewan, Canada):

Objectives: Study impact of small-scale within-site variability of vegetation structure and topography on CO_2 and H_2O fluxes.

homogeneous forest stands

Findings: Vegetation structure and small changes in elevation significantly impact net fluxes (Chasmer et al. 2008). Accounting for within-site variability by weighting of fluxes may improve upscaling of fluxes (Chasmer et al. 2011). POSTER: Chasmer et al. "Using a Flux Footprint Model and Airborne LiDAR..."

Deviation from Site-Average of LAIe for Top 50% of Growing Season Fluxes

Jack Pine Chronosequence (Saskatchewan, Canada)

Objectives: Determine growth rates using LiDAR data. Compare differences in biomass with differences in fluxes.

Sites: Four jack pine stands; 9, 17, 36, ~82 years old; relatively flat terrain. Airborne surveys in 2005 and 2008.

Findings: Three years between data collections for statistically significant growth estimate with +/- 10% accuracy.

Canopy Growth 2005 - 2008

- Sites: Old Aspen, Old Black Spruce, Old Jack Pine; flat terrain, relatively

Footprint Climatology

	·			
45	LAle	ΟΑ	OBS	OJP
	2005	-3%	-9%	+40%
-90	2006	-8%	-3%	0%
	2007	-3%	-3%	-9%
135	2008	-6%	4%	
0 m	Site Ø [m²/m²]	3.1	2.0	1.8
	<u>.</u>			

Objectives: Test approach for heterogeneous forests typical for Europe.

- Within-site elevation changes (Loobos, Tharandt)
- Allocate CO_2 and H_2O fluxes to specific tree species within a mixed forest (Tharandt, Norunda)
- Impact of disturbance (thinning, Norunda; storm felling, Tharandt)
- Combine tower data with airborne flux measurements (Loobos)

Tumbarumba, (New South Wales, Australia)

Objectives: Test maps of leaf area index, reflectance, maximum carboxylation rate, and potential rate of electron transport as input for land surface models.

- logging during recent past

Take Home Message

The results highlight the importance of accounting for within-site heterogeneity when linking flux-tower observations to remote sensing products to obtain realistic regional or global estimates of net ecosystem exchange and ecosystem productivity.

Site: Eucalyptus stand situated in complex topography; selective and partial

Findings: Surface atmosphere transfer model used to generate map of net ecosystem exchange. Results are validated with footprint weighted observations from flux tower. POSTER: Berni et al., "Mapping Pigment Concentration and Leaf Area Index...". Penman-Monteith model used to estimate land surface evaporation. Results are validated with footprint weighted observations from flux tower. POSTER: van Gorsel et al., "Use of High Resolution LiDAR and Hyperspectral Data to Detect Changes in ... "