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Upscaling methods

e Data-driven approaches

* Neural networks (e.g., Papale and Valentini et al. 2003)

* Ensemble of regression models (e.g., Xiao et al. 2008, Jung et al.
2009, Zhang et al. 2011)

* Support vector machine (e.g., Ichii et al. 2010)

e Data assimilation techniques
* Ecosystem models (e.g., Beer et al. 2010; Xiao et al., JGR, accepted)

e Parameter estimation methods (e.g., Markov chain Monte
Carlo, MCMC)



An example for data-driven methods

This model achieved slightly higher performance than the full
model (relative error = 0.66, average error = 1.01, r=0.72). The
selected model consisted of five committee models, each of
which was made of a number of rule-based submodels. For
example, the first committee model was made of 26 rule-based
submodels:

Rule 1: if land cover = croplands, daytime LST > 30.07,
EVI > 0.40, then

NEE = 20.24 — 430.3B; + 431.7B; + 80.8B, — 108.7Bs
— 23.4EVI + 0.22L; + 11.4NDWI — 27.6B¢ + 4B,

-
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Rule 2: if land cover in {deciduous forests, savannas},
B, > 0.34, NDWI < = —0.36, Ly > 18.06, L,, > 11.13, then

NEE = —5.94 +47.2B; — 35B; — 12.7B, — 7B3 — 3.6NDWI
+8.4B; + 4.4Bs — 0.4EVI

Rule 25: if land cover in [deciduous forests, mixed forests,
croplands), NDWI > 0.02, L, <= 9.68, then

NEE = 0.40 — 37.6B4 + 15.1B: + 8.9B2 + 0.046Ln + 0.9Bs
+0.4B;

Rule 26: if land cover in {deciduous forests, mixed forests,
croplands}, NDWI > 0.02, L,, > 9.68, then

NEE = —2.86 + 56.5Bs — 50.5B¢ + 14.9NDWI — 2.9B; — 0.5B,
—0.5B,

where B,-B; are surface reflectancebands 1-6, L4 is daytime
LST, and L, is nighttime LST.

Xiao et al., 2008



An example for data assimilation methods
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“Advances in Upscaling of Eddy Covariance Measurements of Carbon and
Water fluxes”, a special issue in JGR — Biogeosciences, guest-editors: Jingfeng Xiao,
Kenneth J. Davis, Markus Reichstein, Jiguan Chen

1. Climatic and phenological controls on coherent regional interannual variability
of carbon dioxide flux in a heterogeneous landscape, Desai, A. R.

2. Upscaling carbon fluxes over the Great Plains grasslands: sinks and sources,
Zhang, L. et al.

3. Upscaling key ecosystem functions across the conterminous United States by a
water-centric ecosystem model, Sun, G. et al.

4. Assessing and improving the representativeness of monitoring networks: The
European flux tower network example, Sulkava, M. et al.

5. Characterizing vegetation structural and topographic characteristics sampled by
eddy covariance within two mature aspen stands using LiDAR and a flux footprint
model: Scaling to MODIS, Chasmer, L. et al.

6. Global patterns of land biosphere - atmosphere fluxes derived from upscaling
FLUXNET observations, Jung, M. et al.

7. Upscaling carbon fluxes from towers to the regional scale: influence of parameter
variability and land cover representation on regional flux estimates, Xiao, J. et al.



ISSUE DEVOTED TO
SCALING FLUXES

Scaling Carbon and Water Fluxes from Patches to the

Globe: A Challenge and an Opportunity for the Future
An Editorial by Dennis Baldocchi, Rodrigo Vargas and Laurie Koteern

Today, a new scientific
revolution is  emerging
among the FLUXNET com-
munity where groups of
scientists are  producing
global scale information on
carbon and water fluxes.
They are doing so by merg-
ing of information from
networks of flux towers,
biophysical models, eco-
logical databases and satel-
lite-based remote sensing to
produce a new generation
of flux maps on monthly,
yearly and decadal inter-
vals, The success of this
effort is only possible by the
altruistic sharing of data by
each and every one of us,
and represents a joint ef-
fort, This issue of the
FLUXLETTER profiles
several groups who are
leading the global upscaling
charge with a combination
of statistical and biophysical
models. The effort to pro-
duce flux information with
a global extent grew out of
a general desire to solve
problems related to pertur-

bations to the Earth’s ter-
restrial carbon and water
cycles. A consensus is now
emerging that to be most
effective, scientists must
produce a measurement
and modeling system that is
‘everywhere, all of the
time’. The global network
of networks, FLUXNET, is
a step in this direction be-
cause it produces a system
of flux measurement tow-
ers that are ‘many places,
most of the time’. But is
this good enough?

An alternative is to
model carbon and water
fluxes across the globe and
to use the flux towers to
validate and test the mod-
els, But this task requires
quantifying a set of coupled
and highly non-linear equa-
tions that explain biophysi-
cal processes that span 14
orders of magnitude in time
and space (Osmond 1989,
Jarvis 1995),

Looking back, it is in-
(L‘r(‘,‘(ing 10 see hDW our
orientation towards scaling

approaches has changed,
Such an enterprise would
not have arisen in the early
days of scaling, when there
was much resistance to de-
velop models that span
more than 3 ‘levels’,
(scales), let alone fourteen.
In the proceedings of the
famous Trebon, Czechoslo-
vakia workshop of 1969,
the pioneering  modeler
C.T. deWit (de Wit 1970)

wrote:

‘now | believe thar the
simulation in the biologi

cal sciences has to be used
to flll the gap that exists
between specialists  at
various ‘levels’ and that
We may come (0  strategy
of model-building in
biology when we keep this
purpose In mind.  To
build o model we have to
consider and fjoin two
levels of knowledge.
The level with the sort of
relaxation times i then
the level which provides

the explanation or the
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Applications

« Examine spatial and temporal patterns of carbon and water

fluxes and water use efficiency
« Assess impacts of extreme climate events and disturbance

 Estimate ecosystem services (e.g., ecosystem carbon

sequestration, food and wood production, water yield)
* Evaluate simulations of ecosystem models and inversions

* Provide background fluxes for atmospheric inversions



An example for assessing ecosystem carbon dynamics
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Examples for model evaluations

* Ecosystem models

- North American Carbon Program (NACP) Interim Synthesis
- CLM, TEM
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Huntzinger et al. in preparation



« Atmospheric inversions

- Boundary layer model

- 10 -10° km? regions

surrounding 4 flux sites
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Examples for model evaluations

« Atmospheric inversions

- e.g., a nested inversion model (Deng et al., Tellus, 2007)

EC-MOD flux (Pg Clyr}

Deng et al. in preparation

* NASA's Carbon Monitoring System (CMS)

- Bottom-up and top-down estimates
- EC-MOD flux fields extending to global scale
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Challenges

* Accuracy of gridded fluxes
- Overestimation of carbon fluxes?
* Uncertainty assessment
- All sources of uncertainty
* Data availability and sharing
- Some geographical regions
* Sustaining of flux networks

- Essential for future carbon and water studies
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Accuracy of gridded fluxes

* Do flux towers tend to be located at productive sites?

- Possible overestimation of carbon uptake

* Representativeness of flux networks

- Some regions/ecosystem types are underrepresented
* Difficult to estimate ecosystem respiration

* Failure to fully incorporate disturbance effects
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Xiao, J., et al. unpublished



Eddy Flux Data (AmeriFlux and Fluxnet-Canada) and other Site-Specific Data
-Eddy Flux Data  -MODIS ASCIIT Subszetz - Other In-Situ Data (e.g, stand age, biomass leaf %)

h A L

Bavesian Parameter Upscaling Methods Spatial Data
Estimation - Data-driven approach _MODIS data
- Process-based ecosystemmodel - Chimate data
- Aboveground biomass
¥ - Stand Age
Parameter PDFs L4 -Leaf%N
Assimilation of MODIS |

LAT and leaf %N -

h 4
Gridded Carbon Fluxes and Uncertainty

Uncertainty Amnalysis
- Uncertamties of eddy flux data

Fy

- Data-driven approach: 1km B
- Process-based ecosyvstem model: 0.05degree - Input data (e.g., land cover)

i - Representativeness of flux networlks

- Upscaling methods
Evaluation ¥

- Eddy Flux Data Assessing Magnitude, Distribution, and Interannual
-MODIS GPP > Variability of Ecosystem Carbon Exchange over
- Atmosphenc Inversions North America from 2000 to 2012

“Assessing Ecosystem Carbon Dynamics over North America by Integrating Eddy Covariance,
MODIS, and New Ecological Data through Upscaling and Model-data Synthesis”, NSF, $517,685,
2011-2014, Jingfeng Xiao (PI), Scott Ollinger (Co-Pl). We are hiring too ...

A Postdoctoral Research Associate in Ecosystem Modeling

http://www.eos.sr.unh.edu/Faculty/Xiao




Uncertainty assessment

* Input data
- Some input data may have large biases
* Land cover representation
- Scaling, heterogeneity, map accuracy
* Model parameters
- Parameter variability within PFTs
* Model structure

- Imperfect processes and assumptions
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Uncertainty in input data

* Flux observations

* Reanalysis data

* Land cover maps



Example: parameter variability, scaling, and land
cover representation
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* Large gaps in flux networks

Data availability and sharing

« Sharing of flux observations in some regions

Networks
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 Will fair data-use policy and coauthorship help?




Sustaining of flux networks

* A big challenge that flux tower PIs (and modelers) face now
* Large synthesis projects with mini-grants to flux tower PIs?
* Do we really need to maintain all these flux towers?

« Complementary and new networks, e.g., National Ecological

Observatory Network (NEON)



Directions

 Account for effects of disturbance and nitrogen limitation

and better simulate heterotrophic respiration

* Quantify and reduce uncertainties associated with gridded

flux estimates

« Improve and juxtapose various upscaling methods and
gridded flux fields

* Play a more important role in studies of carbon and water
cycles, ecosystem services, and sustainability and in

evaluating Earth System Models



