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Abstract

Ecosystem processes are influenced by weather and climatic perturbations at multiple
temporal scales with a large range of amplitudes and phases. Technological advances of
automated biometeorological measurements provide the opportunity to apply spectral meth-
ods on continuous time series to identify differences in amplitudes and phases and relation-
ships with weather variation. Here we used wavelet coherence analysis to study the temporal
covariance between soil CO2 production and soil temperature, soil moisture, and photo-
synthetically active radiation (PAR). Continuous (hourly average) data were acquired over 2
years among three vegetation types in a semiarid mixed temperate forest. We showed that soil
temperature and soil moisture influence soil CO2 production differently at multiple periods
(e.g. hours, days, weeks, months, years), especially after rain pulse events. Our results provide
information about the periodicity of soil CO2 production among vegetation types, and provide
insights about processes controlling CO2 production through the study of phase relationships
between two time series (e.g. soil CO2 production and PAR). We tested the performance of
empirical models of soil CO2 production using the continuous wavelet transform. These
models, built around soil temperature and moisture, failed at multiple periods across the
measured dates, suggesting that empirical models should include other factors that regulate
soil CO2 production at different temporal scales. Our results add a new dimension for the
analysis of continuous time series of biometeorological measurements and model testing,
which will prove useful for analysis of increasing sensor data obtained by environmental
networks.
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Introduction

Emissions of CO2 from soils (i.e. CO2 efflux, Rs) repre-

sent a major flux of carbon into the atmosphere (Raich &

Potter, 1995), and climate records indicate that the Earth

is experiencing important biophysical changes

(Hughes, 2000) with an overall trend of increasing

temperatures for the past 100 years (IPCC, 2007).

Changes in precipitation and temperature may influ-

ence the interannual variability of Rs (Raich et al., 2002),

and changes in vegetation distribution will affect car-

bon dynamics at the landscape scale (Bachelet et al.,

2001; Lenihan et al., 2003). Thus, it is crucial to under-

stand how climate and weather variability influences

Rs, and which biophysical factors drive Rs in different

vegetation types.

The general pattern of climate change models sug-

gests that southern California and northern Mexico are

persistent hotspots for changes in interannual climate

variability (Diffenbaugh et al., 2008). The California

mixed conifer forest is like many semiarid forest regions

in that it is composed of patches of trees and small

meadows. In many cases, the meadow patches are

actually small burns resulting from lightning strikes

burning small tree stands, or smoldering fires burning

understory and small tree patches. Today, these dy-

namics have changed and the relative amounts of

meadow and forest are being altered in an unpredict-

able manner. Fires and climate variation in these mixed

forests have affected species composition, forest struc-

ture, and forest function (Minnich et al., 2000; Lenihan
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et al., 2003; Battles et al., 2008). Expected climate change

may influence species composition and interannual

variation in temperature and precipitation in semiarid

forests, thus it is crucial to understand the influence of

biophysical factors on Rs at multiple spatial and tem-

poral scales.

Rs is the result of production of CO2 in the soil (Ps) by

autotrophic (roots and mycorrhizae) and heterotrophic

(decomposers) respiration processes (Hanson et al.,

2000; Ryan & Law, 2005). Variation of Ps in the soil

profile changes soil CO2 concentration gradients, and in

conjunction with changes in soil CO2 diffusivity these

biophysical processes regulate Rs (Šimůnek & Suarez,

1993). While previous studies have focused on Rs in

multiple biomes and vegetation types (e.g. Ryan & Law,

2005), a mechanistic description of soil CO2 dynamics is

needed to understand how Ps may vary in relation to

weather and climate variation (Davidson & Trumbore,

1995; Hashimoto & Suzuki, 2002). The importance of Ps

relies on the fact that it is directly related to the

biological activity in the soil, while Rs provides inte-

grated information about the interaction between soil

structure, biophysical dynamics, and the atmosphere.

Automated continuous measurements of Rs (see

Goulden & Crill, 1997; Savage & Davidson, 2003) pro-

vide insights about processes, which were not possible

to explore before. For example, one can identify phase

lags between Rs and soil temperature, at diel (Tang et al.,

2005; Gaumont-Guay et al., 2006; Riveros-Iregui et al.,

2007; Bahn et al., 2008; Vargas & Allen, 2008a) and

seasonal scales (Moren & Lindroth, 2000; Drewitt

et al., 2002; Vargas & Allen, 2008b), and previous studies

have identified responses of Rs to diel temperature

independence (Liu et al., 2006; Vargas & Allen, 2008c),

rain pulses (Jassal et al., 2005; Daly et al., 2008), and

changes in the influence of soil temperature and soil

moisture on Rs (Goulden & Crill, 1997; Irvine & Law,

2002; Carbone et al., 2008). However, with increasing

numbers and length of continuous measurements of bio-

meteorological variables (e.g. soil CO2 efflux) it is impor-

tant to identify alternative tools to analyze the

dependencies between these series and the series of the

environmental factors (e.g. temperature and soil moisture).

Ecosystem processes are influenced by weather and

climatic perturbations, which often contain oscillations

at multiple temporal scales (Baldocchi et al., 2001;

Bowling et al., 2002). We propose that complex spectral

methods are needed to better understand the tempera-

ture and water dependence of soil CO2 processes. Pre-

vious studies have used Fourier transform (Tang et al.,

2005; Baldocchi et al., 2006) and cross-correlation (Stoy

et al., 2007) analysis to investigate spectral properties of

soil CO2 signals. However, these analyses failed in

presence of nonstationary phenomena (Katul et al.,

2001a) such as a rain pulses, heat waves, or freezing

events. Soil CO2 signals (and most biometeorological

measurements) typically violate the stationary assump-

tion underlying the analysis of ‘global’ spectral proper-

ties. Moreover, as many meteorological variables, these

signals contain strong periodicities that further compli-

cate their interpretation. Here, we use the continue

wavelet transform as a novel approach to the interpre-

tation of soil CO2 time series, where smooth, continuous

variations in wavelet amplitude are expected (Torrence

& Compo, 1998).

Wavelet transforms originated in geophysics in the

early 1980s for the analysis of seismic signals. Since

then, this technique has been applied in many other

scientific fields including for analysis of meteorological

data (Farge, 1992; Collineau & Brunet, 1993; Gao & Li,

1993; Kumar & Foufoula Georgiou, 1997; Torrence &

Webster, 1999; Grinsted et al., 2004), but has rarely been

applied to study time series of biophysical measure-

ments such as fluxes of CO2 and water vapor between

ecosystem and atmosphere (Katul et al., 2001b; Stoy

et al., 2005). Detailed reviews on the application and

theory of wavelet analysis can be found in many studies

(Farge, 1992; Torrence & Compo, 1998; Grinsted et al.,

2004; Cazelles et al., 2008). The advantage of wavelet

analysis over other time series analysis is that the

window size is not fixed, varying as a function of

frequency with an optimal trade-off between time and

frequency resolution overcoming the problems of non-

stationarity in time series. The intrinsic smoothing

property of the wavelet produces results that are more

easily interpretable, without the need of excessive ma-

nipulation of the original signal (e.g. averaging,

smoothing, and tapering) or without restrictive as-

sumptions (e.g. periodicity, stationarity). Furthermore,

wavelet analysis can be performed in two time series of

biophysical interest (e.g. soil CO2 production and tem-

perature) and can provide information of causality

through analysis of the phase relationship between

these two time series (e.g. cross-wavelet transform,

wavelet coherence analysis) (Grinsted et al., 2004; Go-

vindan et al., 2005).

The main goal of this study was to test how the

temporal covariance between Ps and soil temperature,

and soil moisture changed among three adjacent vege-

tation types in a semiarid mixed temperate forest in

Southern California. We compared the variation in

measurements collected from January 2006 to February

2008. The studied vegetations were in a short distance

(o150 m) and represent a transition between mature

mixed forest and an open meadow with similar soil

properties and meteorological conditions (Vargas &

Allen, 2008b). Thus, this experimental design allowed

us to explore how different vegetation types respond to
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similar weather variations. The specific objectives were

(1) to apply wavelet coherence analysis as a novel

approach for soil CO2 research using hourly measure-

ments of Ps, soil temperature, soil moisture, and photo-

synthetically active radiation (PAR). Using this

technique we propose that it is possible to infer addi-

tional information about the biophysical processes that

regulate soil CO2 fluxes by examining the temporal

patterns and relationships (i.e. phase differences)

among these variables. (2) To use wavelet analysis to

test the performance of empirical models among vege-

tation types and identified periods (e.g. hours, days,

months) and time domains (i.e. day of the year) where

the models fail. Empirical models with soil temperature

and soil water content have been widely used to repre-

sent variation in Rs (Davidson et al., 1998; Reichstein

et al., 2003; Ryan & Law, 2005), but they may not

accurately represent the variation of soil CO2 fluxes at

multiple periods along the time domain (i.e. days of the

year).

In this study we tested the following hypotheses:

H1: Ps has a spectral signature with a strong signal at

the 1-day and 1-year (�360 days) periods at all

vegetation types, but the spectral signature at

intermediate scales (weeks–months) may vary

among them.

The pattern of solar radiation at the 1-day (variation in

day and night) and at 1-year period (seasonal variation)

influences plant photosynthesis and microbial hetero-

trophic metabolism. At intermediate scales plant phe-

nology and weather patterns (e.g. cold periods, heat

waves, or rain pulses) that influence soil moisture and

soil temperature could differentially influence plant and

microbial activity among vegetation types. Multiple

studies have investigated the influence of these transi-

ent events in soil CO2 fluxes at intermediate temporal

scales (Schimel & Clein, 1996; Huxman et al., 2004;

Jarvis et al., 2007) and here we explored their influence

in the spectral characteristics of Ps.

H2: The phase differences between two time series,

within a specific period (e.g. 1 day), could provide

insights of the timing of mechanisms that regulate

soil CO2 fluxes.

The phase differences could be seen as the temporal lag

between two time series within a specific period and

can provide information of causality between two pro-

cesses (Grinsted et al., 2004). Therefore, we explore if

changes in the Ps time series occur at the same time (in

phase with no lags) as changes in the soil temperature

or PAR, or is there a tendency for changes in Ps to lag

(out of phase) behind or ahead changes in the other

time series.

Methods

Study site

The study was conducted at the University of California

James San Jacinto Mountain Reserve, a UC Natural

Reserve System field station. The Reserve is a mixed

conifer-oak forest at 1640 m.a.s.l. located in the San

Jacinto Mountains, CA, USA (3314803000N, 1161460

4000W). Most of the precipitation occurs between the

months of November and April with a mean annual

precipitation of 640 mm and a mean air temperature of

10.3 1C. The Reserve serves as the Terrestrial Ecology

Observing Systems field site for the Center for

Embedded Networked Sensing (CENS, http://cens.

ucla.edu) with the goals to research and develop new

wireless environmental-sensing technologies for ecolo-

gical observations (Allen et al., 2007).

In October 2005 we established a 150 m transect from

an area of mature woody vegetation, passing through

an area of young woody vegetation, and ending in an

adjacent open meadow with scattered herbaceous

vegetation (Vargas & Allen, 2008b). These transitions

are becoming more abundant in these mixed forests due

to recurrent fires and climate variation (e.g. long-term

droughts). The vascular plants present at mature woody

vegetation were large individuals (DBH430 cm) of

Quercus chrysolepis Leibem. (Canyon live oak), and

Pinus ponderosa C. Lawson (Ponderosa Pine). The vas-

cular plants present at young woody vegetation were

medium individuals (DBHo20 cm) individuals of

Quercus kelloggii Newb. (California black oak), Caloce-

drus decurrens (Torr.) Florin (Incense cedar), Arctostaphy-

los pringlei Parry (Manzanita), and Pinus lambertiana

Dougl. (Sugar pine). The scattered herbaceous vegeta-

tion at the meadow included individuals of Eriogonum

wrightii Torr. Ex Benth (Bastard sage) of o10 cm in

height and a density of nearly 2 plants m�2. Bastard

sage was also present at the understory of young

woody vegetation with a similar density as at scattered

herbaceous vegetation meadow. Soils had similar phy-

sical characteristics (Table 1) and fine root biomass

(o2 mm in diameter) was low in the scattered herbac-

eous meadow (10 g m�2), medium in young woody

vegetation (18 g m�2), and high in mature woody vege-

tation (25 g m�2).

Soil CO2 measurements

Along the 150 m transect we established one 40 m2 plot

for each vegetation type. Within these plots, we in-

stalled a suite of soil wireless sensors (i.e. nodes) to

monitor gas-phase CO2 concentrations (CARBOCAP,

GMM 222, Vaisala, Helsiniki, Finland), temperature

M U LT I S C A L E A N A LY S I S O F S O I L C O 2 P R O D U C T I O N 1591

r 2010 Blackwell Publishing Ltd, Global Change Biology, 16, 1589–1605

http://cens.ucla.edu
http://cens.ucla.edu
http://cens.ucla.edu
http://cens.ucla.edu


and moisture (Decagon, ECHO) simultaneously at sev-

eral depths in the soil (2, 8, 16 cm) as described pre-

viously (Allen et al., 2007; Vargas & Allen, 2008b). At

young woody vegetation and scattered herbaceous

meadow we installed four nodes, and at mature woody

vegetation two nodes for a total of 30 CO2 sensors in a

replicated design. The CO2 sensors were protected with

Gore-Texs fiber to avoid possible wetting during rain-

fall events and calibrated every 6 months against re-

ference gases. Measurements were recorded every

5 min and averaged every hour from January 2006 to

February of 2008.

Soil CO2 fluxes were calculated using the flux gradi-

ent method described previously (Vargas & Allen,

2008b) with modifications for signal processing and

calculation of Ps. Briefly, the CO2 concentration from

the sensors was corrected for temperature and pressure

accordingly to the manufacturer (Vaisala, Helsiniki,

Finland). We applied a Savitzky–Golay smoothing filter,

which preserves peak heights and widths of the original

signal to reduce noise of measured CO2 concentrations.

A similar approach was used by Chen et al. (2005) for

continuous measurements of CO2 concentrations using

a cubic polynomial and a frame size of 8. These cor-

rected CO2 concentrations were used to calculate the

flux of CO2 between any two layers at depth ith in the

soil profile using Fick’s law of diffusion. Diffusivity of

soil CO2 in the soil profile was calculated using the

Moldrup model (Moldrup et al., 1999), which is based

on diffusion through porous media:

Ds

Da
¼ f2 e

f

� �bS

; ð1Þ

where Ds is the gaseous CO2 diffusion coefficient in the

soil, Da the CO2 molecular diffusivity of CO2 in the air, b
is a constant (b5 2.9), S 5 silt 1 sand content (S 5 93),

and f is soil porosity (see Vargas & Allen, 2008b, c).

Assuming a constant rate of CO2 production in the soil

profile, Rs can be calculated as

Rs ¼
ziþ1Fi � ziFiþ1

ziþ1 � zi
; ð2Þ

where Fi, and Fi 1 1 are CO2 effluxes (mmol m�2 s�1) at

depths zi and zi 1 1 (m), respectively. The storage term

was negligible at these depths for our study site, and the

condition of constant CO2 production throughout the

soil profile may not be entirely met in productive

ecosystems where soil CO2 storage may be changing.

Fluxes calculated using the flux gradient method and

the Moldrup model for soil CO2 diffusivity have been

extensively validated with the chamber flux method

(LI-8100, LI-COR Lincoln, NE, USA) at the study site

showing good agreement (Vargas & Allen, 2008b, c).

To estimate soil CO2 production (Ps) first we esti-

mated Fi at two depths between 0.02–0.08 and 0.08–

0.16 m. Once Fi was calculated for discrete layers in the

soil profile, Ps was calculated from the difference be-

tween the effluxes across soil layers as a flux divergence

(Šimůnek & Suarez, 1993):

Ps ¼
Fi � Fiþ1

ziþ1 � zi
; ð3Þ

where Ps is soil CO2 production (mmol m�3 s�1) at depth

(zi 1 1�zi) or 8.5 cm depth for this case. We report hourly

averages of Ps as positive values. We averaged time

series of multiple nodes at the same vegetation to report

a mean time series per vegetation type.

Wavelet analysis

Previous works have reviewed in detail the concepts of

wavelet analysis for different applications (Daubechies,

1990; Torrence & Compo, 1998; Cazelles et al., 2008).

Here, we list some important concepts with special

attention to some properties used in this study.

The wavelet transform of a discrete signal xn of length

N recorded at dt interval, is defined as the convolution

integral

WnðsÞ ¼
dt

s

� �1=2XN�1

n0¼0

xn0 c
�
0

n� n0

s=dt

� �
; ð4Þ

where c�0 is the complex conjugate of the scaled and

translated mother wavelet and s is the wavelet scale at

which the transform is applied. The continuous wavelet

Table 1 Soil characteristics and fine root biomass at three vegetation types at the James Reserve, a mixed temperate forest in

Southern California, USA

Site

Soil carbon
Nitrogen (%)

Fine root biomass Soil bulk density
Soil texture (%)

(%) Soil Fine roots (g m�2) (g cm�3) Sand Silt Clay

MWv 3.3 (0.5) 0.07 (0.05) 0.64 (0.29) 25 (2.32) 0.79 (0.2) 83 10 7

YWv 3.1 (0.5) 0.08 (0.02) 0.58 (0.23) 18 (1.56) 0.85 (0.3) 83 10 7

Hv 2.4 (0.5) 0.05 (0.03) 0.53 (0.24) 10 (2.75) 1.2 (0.1) 83 10 7

Numbers in parentheses represent � 1 SD.

MWv, mature woody vegetation; YWv, young woody vegetation; Hv, scattered herbaceous meadow.
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transform is calculated by continuously shifting the

scale and time in Eqn (4). The mother wavelet with all

its dilations and translations form an over-complete

basis of N2 coefficients. Thus, there is redundant infor-

mation in the coefficients of the wavelet transform as

they are not independent. The continuous wavelet

transform can be viewed as a microscope able to reveal

details of the signal at the position n with the magnifi-

cation s. This approach is useful for time series analysis,

where the power of the signal is modulated at different

scales and it varies with time. For this study we used

the continuous wavelet transform because of its ability

to produce a smooth picture in time-scale domain of a

nonstationary process (i.e. soil CO2 production) and it is

suitable for visual interpretation.

The ability to discern small intervals of scales (spec-

tral resolution), depends on the choice of the wavelet

because wavelets with good frequency resolution have

poor time localization (temporal resolution) and vice

versa (‘Heisenberg principle’). One of the most-used

mother wavelets for geophysical applications is the

Morlet wavelet (Torrence & Webster, 1999; Grinsted

et al., 2004), given by

c0 ¼ p�1=4eio0te�t2=2; ð5Þ

where o0 (the base frequency) is set to 6. The Morlet is a

complex nonorthogonal wavelet with a good time and

scale resolution. A complex wavelet function, such as

this, has the advantage to return information about both

amplitude and phase.

The cross-wavelet transform of two time series,

x 5 [xn] and y 5 [yn], at scale s, first introduced by

Hudgins et al. (1993) is defined as

W
xy
n ðsÞ ¼Wx

nðsÞW
y�
n ðsÞ; ð6Þ

where W
y�
n ðsÞ is the complex conjugate of W

y
nðsÞ. The

cross-wavelet amplitude is given then by W
xy
n ðsÞ

�� ��, while

the phase difference is defined as tan�1 =fWxy
n ðsÞg=

�
<fWxy

n ðsÞg�. Here, = represents the imaginary part and

< is the real part of W
y
nðsÞ. The cross-wavelet transform

is simply the bivariate extension of the wavelet analysis

and is used to explore the relationship between two

time series to expose their common power in frequency

domain (Grinsted et al., 2004).

The wavelet coherence analysis is defined as

WCAðsÞ ¼
s�1W

xy
n ðsÞ

� ��� ��2
s�1Wx

nðsÞ
� ��� ��2 s�1W

y
nðsÞ

� ��� ��2 ; ð7Þ

where the angular brackets indicate a smoothing in time

and scale. As in Fourier analysis, it is necessary to

smooth the spectra and the cross spectrum before

calculating coherency (which is otherwise identically

equal to 1). The smoothing is performed in both, time

and scale using the method proposed by Torrence &

Webster (1999), which provides the minimal amount of

smoothing necessary to include two independent points

in both dimensions. Wavelet coherence analysis is simi-

lar to the cross-wavelet transform and can be thought of

as the local correlation, between two time series. Im-

portantly, wavelet coherence analysis finds regions in

time–frequency space where two time series covary but

do not necessarily have high common power (Grinsted

et al., 2004; Cazelles et al., 2008).

In this study we focused on wavelet coherence ana-

lysis instead of the cross-wavelet transform for several

reasons (1) there is some redundancy between the two

measurements but they are complementary, (2) the

wavelet coherence analysis reveals correlations in re-

gions of the frequency domain where the two variables

do not necessarily have high common power, and (3)

there is evidence that the cross-wavelet transform may

not be the best approach for significance testing of the

interrelation between two time series (Maraun &

Kurths, 2004), but the choice of a stationary test can

be challenging (Lau & Weng, 1995). One of the reasons

is that entire subsets of the record may be dropped

below the significant level, due to the intrinsic nonsta-

tionarity of the process. Wavelet coherence analysis

partially avoids this problem because in each region

the copower is normalized by the local power of the two

time series [Eqn (7)]. Although we only present the

wavelet coherence analysis, our interpretations of the

results and discussion are based on both wavelet

coherence analysis and cross-wavelet transform.

The statistical significance (5% significance level) of

common power between two time series (e.g. soil CO2

production and soil temperature) was assessed within

the cone of influence of the wavelet coherence analysis

using Monte Carlo simulations of wavelet coherency

between 10 000 sets (two each) of white noise time series

(Torrence & Webster, 1999). Grinsted et al. (2004)

showed that the color of the noise has little impact on

the 5% significance level analysis. The cone of influence

is the region in which the wavelet transform suffers

from edge effects because of incomplete time-locality

across frequencies (Torrence & Compo, 1998), thus out-

side the cone of influence the results are unreliable and

have to be interpreted carefully. To reduce errors at the

beginning and at the end of the wavelet power spec-

trum the time series were padded with zeros which

introduces discontinuities at endpoints and therefore it

is important to be aware of edge effects delimited by the

cone of influence in the wavelet spectrum (Torrence &

Compo, 1998).

The phase relationships, which can be expressed in

unit of time multiplying by the respective period, in-

form on synchronization between oscillations of the two

time series (Govindan et al., 2005). The delay between
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two time series can provide information on the nature

and origin of coupling between the processes, and

causality under the assumption that the effect must

follow the cause. Here we calculated the mean phase

difference between Ps and soil temperature or PAR (as a

surrogate for photosynthesis) at the 1-day period to

explore H2. Furthermore, we tested the influence of soil

temperature measurement depth on the mean phase

difference at the 1-day period for Ps and soil tempera-

ture to explore the influence of heat transfer in the soil.

We applied the wavelet coherence analysis to the sets

of hourly time series of Ps, soil temperature at depth of

Ps, soil moisture, or PAR previously normalized. Data

analyses were performed using MATLAB R2007a (The

MathWorks Inc.), and wavelet analysis software written

by C. Torrence (ITT Visual Info. Solutions, Boulder, CO,

USA), G. P. Compo (NOAA/CIRES Climate Diagnostics

Center, Boulder, CO, USA) and A. Grinsted (Arctic

Centre, University of Lapland, Finland).

Soil CO2 production modeling and spectral testing

We tested two empirical models for Ps at three vegeta-

tion types using hourly means of the variables involved.

The first model was a simple exponential equation with

soil temperature as an independent variable:

Ps ¼ B1eðB2TÞ: ð8Þ

The second model was a combination of soil tem-

perature and volumetric water content and has been

used in semiarid ecosystems where changes in soil

temperature and water are important drivers for Ps

(Xu et al., 2004; Vargas & Allen, 2008c):

Ps ¼ B1eðB2TÞeðB3yÞþðB4y2Þ; ð9Þ
where Ps is soil CO2 production (mmol CO2 m�3 s�1), T is

soil temperature ( 1C) at depth of Ps, y is soil water

content (m3 m�3, average 2–16 cm depth), and B0–B4 are

model parameters estimated using the Levenberg–Mar-

quardt method. To select the best statistical model for

Ps, we used the root mean squared error (RMSE), and

the Akaike Information Criterion (AIC) as a penalized

likelihood criterion (Burnham & Anderson, 2002):

AIC ¼ �2 lnðLÞ þ 2p; ð10Þ

where L is the likelihood of the fitted model, and p is the

total number of parameters in the model. The best

statistical model minimizes the value of AIC.

Once the best statistical model for Ps was selected, we

used the continuous wavelet power spectrum of the

residuals of that model to identify significant regions in

the spectral signature where the model fails. This ap-

proach allowed testing model performance at multiple

periods and time domains, as we can identify patters

where the signal of the residuals is large (i.e. large

variation in residuals means poor model fit).

Results and discussion

Our results showed how the temporal covariance be-

tween soil temperature and soil moisture with soil CO2

production (Ps) changed at multiple periods (e.g. hours,

days, weeks, months, years) along the time domain (i.e.

days of the year) among adjacent vegetation types in a

semiarid mixed temperate forest. We propose that wa-

velet coherence analysis of continuous time series is a

useful statistical tool to understand interactions among

biophysical factors and provide insights about the per-

iodicity of processes that regulate Ps under weather

variation. Furthermore, we tested empirical models

using continuous wavelet transform and showed that

these models failed to represent soil CO2 fluxes at

multiple periods among vegetation types.

We analyzed over 2 years of measurements where the

first year was characterized as a warmer but slightly

wetter year (Table 1), with high precipitation during

spring that substantially increased soil moisture (Fig. 1).

In contrast, the second year was slightly colder (Table 1)

with lower and less variable soil moisture content

during winter and spring (Fig. 1). Although all vegeta-

tion types were exposed to the same meteorological

conditions, they had slightly different patterns in inter-

annual soil temperature and soil moisture (Fig. 1). In

general, the mature woody vegetation was slightly

warmer and the soils were moister than the other

vegetation types likely because of higher canopy cover

that intercepted rainfall and reduced soil evaporation.

We were able to detect two summer rainfall events (Fig.

1; days 200 and 630 after January 1, 2008), where the

effects on soil water content were different between

years and among vegetation types (Fig. 1). Summer

rainfalls are critical because they are drivers for soil

microbial processes (Fierer et al., 2003; Collins et al.,

2008), biological activity (Potts et al., 2006), and soil CO2

pulses at the study site (Vargas & Allen, 2008b) and

other arid and semiarid ecosystems (Huxman et al.,

2004; Xu et al., 2004; Jarvis et al., 2007).

Different interannual patterns of soil temperature and

soil moisture had a large effect on the timing and

patterns of Ps. Our observations showed that, during

the first year, spring rainfall was associated with higher

fluxes and higher variation of Ps in comparison with the

drier following year (Fig. 2). We observed a reduction in

mean annual Ps (and Rs) at the mature woody vegeta-

tion and scattered herbaceous meadow from the first to

the second year, but an increase at the young woody

vegetation (Fig. 2, Table 2). By studying the measured

variables in the time domain, it is clear that rain pulses
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and rapid changes in soil temperature are transient

events that influence patterns of Ps among vegetation

types (Figs 1 and 2). Next we explored the spectral

characteristics of these irregular and nonstationary

time series to extract information from their frequency

domains that could provide insights of the periodicity

at which different processes may regulate soil CO2

fluxes.

Periodicity of soil CO2 production, temperature, soil
moisture

The control of soil CO2 fluxes by soil temperature and

soil water content is well documented in different

ecosystems (Davidson et al., 2000; Curiel Yuste et al.,

2003; Reichstein et al., 2003), but by studying the time

series in the frequency domain one can identify the

main periodic components. First, we studied the global

wavelet power spectrum (Fig. 3), which is defined as

the averaged variance contained in all wavelet coeffi-

cients of the same frequency and provides quantifica-

tion of the main periodic components of a time series

(Torrence & Compo, 1998).

The global power spectrum of soil temperature

showed a strong periodicity at the 1-day and 1-year,

while the global power spectrum of soil moisture had a

strong periodicity at intermediate scales (weeks to

months) and 1-year (Fig. 3a). Variation in soil moisture

at weeks and months was a result of seasonal precipita-

tion events (Fig. 1). Similarly, the global power spec-

trum of Ps showed the expected pronounced peaks at

1-day and 1-year periods for all vegetation types

(Fig. 3b). This pattern is common to most biological

processes because they respond to diel and seasonal

variations of meteorological phenomena of changes in

temperature. Differences at the 1-year period among

vegetation types were likely a result of stochastic fluc-

tuations due to site differences, and these fluctuations

Fig. 1 Seasonal trends of (a) soil temperature and (b) soil moisture at the James San Jacinto Mountains Reserve from January 2006 to

February 2008 at three vegetation types. The time series represents DOY after January 1, 2006. DOY, day of the year; MWv, mature woody

vegetation; YWv, young woody vegetation; Hv, scattered herbaceous meadow. Arrows indicate the approximate date of summer rainfall

events.

Fig. 2 Hourly and daily means of soil CO2 production (Ps) at

(a) mature woody vegetation, (b) young woody vegetation, and

(c) scattered herbaceous meadow from January 2006 to February

2008. DOY, day of the year after January 1, 2006.
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may influence the interannual response of the auto-

trophic and heterotrophic components of Ps among

vegetation types.

The global power spectrum showed that the spectral

characteristics of Ps varied among vegetation types at

intermediate periods (e.g. weeks–months) supporting

H1. Possible factors that regulate Ps at these periods are

different responses of microbes (Fierer et al., 2003) and

vegetation (Xu et al., 2004) to water and temperature

pulses, site variation in plant phenology (DeForest et al.,

2006), differences in canopy photosynthesis (Baldocchi

et al., 2006; Irvine et al., 2008), and differences in root

and rhizomorph dynamics (Vargas & Allen, 2008a). Our

results are consistent with previous findings that have

identified strong periodicities in biometeorological

measurements at similar intermediate periods (Baldoc-

chi et al., 2001), and these results support the impor-

tance of understanding biophysical factors that may

influence interannual variability of ecosystem CO2

fluxes (Mahecha et al., 2007). The fact that Ps (and likely

ecosystem CO2 fluxes) varied among vegetation types

at intermediate periods is a critical property that pro-

cess-based ecosystem models should take into consid-

eration. Our results showed that the relationships

between Ps and soil moisture and soil temperature are

dynamic and change along the frequency and time

domains as discussed in the following two sections.

Wavelet coherence analysis: soil CO2 production and soil
water content

We used wavelet coherence analysis to quantify the

degree of linear relationship between the nonstationary

series of soil Ps and soil water content. Our results

showed that the relationships between soil moisture

and Ps were significant at intermediate periods (be-

tween 2- and 32-day), but were associated with discrete

pulses in soil moisture (Fig. 4). The darker red areas

inside the contour lines in Fig. 4 represent high local

correlation between these two time series (representing

5% significance level; see ‘Methods’), and the arrows

indicate the phase relationship between these time

series. Although we found a consistent correlation

between Ps and soil moisture at intermediate periods

(indicated by the y-axis), we found that the localization

of these correlations varied in the time domain (repre-

sented by the x-axis) among vegetation types (Fig. 4).

In general, the local correlation (denoted by darker

red areas in Fig. 4) was higher at mature woody

vegetation than at the other vegetation types suggesting

a strong link between variations in Ps and soil water

content especially at the beginning of the winter rains

(DOY 350 and 700 after January 1, 2006; Fig. 4a). In the

young woody vegetation and herbaceous meadow, the

effects of the summer rainfalls (DOY � 200 and � 600

after January 1, 2006) in soil water content appeared to

be largely correlated with Ps (Fig. 4b and c). The

different response to water pulses between vegetation

types could be associated with differences in plant

phenology, root biomass (Table 1), mycorrhizal strategy

(Vargas & Allen, 2008b), or the ability of larger plants to

tap groundwater (Querejeta et al., 2009) during the dry

summer months by mature woody vegetation. At the

herbaceous meadow we observed the importance of

water pulses for Ps as seen in other herbaceous semiarid

ecosystems (Huxman et al., 2004). With lower plant, fine

roots, and rhizomorphs density, heterotrophic respira-

tion is likely to be dependent on pulses of water input

during warm conditions, where a large pool of readily

digestible carbon may be rapidly consumed by the

rehydrated microbial community (Fierer et al., 2003;

Schimel et al., 2007).

Our results showed that Ps responded differently to

variation in soil water content among vegetation types,

and using wavelet coherence analysis we were able to

Table 2 Mean values divided by measurement years of soil

temperature, air temperature, soil moisture, soil CO2 produc-

tion (Ps), and soil respiration (Rs)

Variable Depth MWv YWv Hv

Soil temperature ( 1C)

Mean of 2 years 2 cm 10.8 11.1 10.9

Mean of 2 years 8 cm 10.5 11.8 10.6

Mean of 2 years 16 cm 10.3 11.6 10.5

Air temperature ( 1C)

Mean of 2 years 9.7 9.4 9.4

Mean year 1 9.5 9.6 9.6

Mean year 2 9.2 9.3 9.3

Soil moisture (m3 m�3)

Mean of 2 years 0.11 0.10 0.11

Mean year 1 0.13 0.11 0.11

Mean year 2 0.09 0.08 0.10

Ps (mmol CO2 m3 s�1)

Mean of 2 years 18.7 13.6 8.3

Mean year 1 28.0 12.2 11.0

Mean year 2 10.4 14.9 6.0

Rs (mmol CO2 m2 s�1)

Mean of 2 years 2.2 2.1 1.1

Mean year 1 2.7 2.0 1.3

Mean year 2 1.9 2.1 0.8

Rs sum (gC m2 yr�1)

Mean of 2 years 1130 797 539

Year 1 1171* 763 524

Year 2 1090 831 555

*Measurements of 50 days were missing at MWv during the

beginning of the first year.

Hv, scattered herbaceous meadow; MWv, mature woody

vegetation; YWv, young woody vegetation.
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identify significant correlations in frequency (y-axis)

and time domains (x-axis; Fig. 4). These results could

be applied for pulse responses analyses and models as

we identified that the variation of Ps to the pulse is

associated to specific periods between 2- and 32-days.

Further rain pulse experiments could be design to

identify processes that regulate the fluxes at those

periods among different vegetation types, climate con-

ditions, soil textures, and soil nutrient gradients.

Wavelet coherence analysis: soil CO2 production and soil
temperature

Wavelet coherence analysis was also applied to quantify

the relationship between the time series of soil Ps and

soil temperature. A strong significant local correlation

was observed at the 1-day period (see dark red areas

along the 1-day period in y-axis; Fig. 5) at all vegetation

types as biological processes depend on diel tempera-

ture cycles (Fig. 3a). Noteworthy, the local correlation

was substantial at the 1-day period for mature woody

vegetation (Fig. 5a), while there was a wide range of

periods that showed local correlation at the young

woody vegetation and the scattered herbaceous mea-

dow (Fig. 5b and c).

The local correlation at the meadow was stronger at

the 4–64-day periods. These coherencies were significant

during increasing temperatures under wet conditions

during spring (Fig. 5c, DOY 100–200 and 400–500 after

January 1, 2006). These local correlations were also

observed during the same time of the year at young

woody vegetation, but we also observed significant local

correlations when soil moisture increased early in the fall

(Fig. 5b, DOY 350 and 700 after January 1, 2006). The

influence of changes in soil temperature on Ps at larger

periods was more sensitive at herbaceous meadow

where the vegetation cover is reduced as seen previously

in grasslands (Bahn et al., 2008). Furthermore, the local

correlation between soil temperature and Ps was signifi-

cant during conditions of high soil water content, sug-

gesting the importance of temperature during these wet

conditions. These results support the general observation

that soil CO2 fluxes are related to changes in soil tem-

perature (Lloyd & Taylor, 1994), but we showed that

these relationships vary in the frequency and time

domains, likely as a result of changes in moisture avail-

ability and substrate supply (Davidson et al., 2006).

Using wavelet coherence analysis one can extract

phase relationships between two time series (repre-

sented as arrows in Figs 4 and 5), and this information

could provide insights of biophysical controls on soil

CO2 fluxes (H2). To test this hypothesis we calculated

the wavelet coherence between the time series of Ps and

soil temperature, Ps, and PAR at the 1-day period to

study diel responses.

Our results showed that lags between Ps and both soil

temperature and PAR varied each day showing that

there is not a constant diel lag for each vegetation type

(Fig. 6). Overall we found that PAR increased 5 and 3 h

before Ps at woody and herbaceous vegetation types,

Fig. 3 Global wavelet power spectrum of (a) soil temperature and soil moisture, and (b) soil CO2 production (Ps) at three vegetation

types. MWv, mature woody vegetation; YWv, young woody vegetation; Hv, scattered herbaceous meadow.

M U LT I S C A L E A N A LY S I S O F S O I L C O 2 P R O D U C T I O N 1597

r 2010 Blackwell Publishing Ltd, Global Change Biology, 16, 1589–1605



respectively. In contrast, soil temperature increased

between 3 and 4 h after Ps at woody vegetation types,

but soil temperature was in phase (no lags) with Ps at

the herbaceous site. When comparing lags between

these time series we found that variation in phase

angles between Ps and PAR explains nearly 70% and

80% of the variation in phase angles between Ps and soil

temperature (Po0.001) in woody vegetation sites (Fig.

6a and b). This was not the case for the scattered

herbaceous meadow (Fig. 6c).

At woody vegetation sites nearly 62% of the measure-

ments showed lags 41 h between Ps and both soil

temperature and PAR (Fig. 6a and b). The relationship

of lags between soil temperature and Ps was strongest

during the spring when soil moisture was decreasing

but temperature was increasing. Furthermore, early

spring was also the time where lags between Ps and

PAR explained the variation in lags between soil tem-

perature and Ps (Fig. 6a and b). Our results suggest that

at the 1-day period photosynthesis of woody vegetation

is likely to precede soil CO2 fluxes and support previous

observations (Tang et al., 2005).

At herbaceous vegetation nearly 64% of the measured

days had lags o1 h between Ps and soil temperature (at

the 1-day period), but there was a more constant pattern

of lags between Ps and PAR among days (Fig. 6c). These

Fig. 4 Wavelet coherence analysis and phase difference between soil CO2 production (Ps) and soil water content at (a) mature woody

vegetation, (b) young woody vegetation, and (c) scattered herbaceous meadow from January 2006 to February 2008. The phase difference

is shown by arrows: in-phase pointing right (no lags between time series), out of phase pointing in other direction (representing lags

between time series). The color codes for power values are from dark blue (low values) to dark red (high values). Black contour lines

represent the 5% significance level and thick black line indicates the cone of influence that delimits the region not influenced by edge

effects. DOY, day of the year after January 1, 2006. Arrows at the top of the panels indicate the approximate date of summer rainfall

events.
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results suggest that the biophysical mechanisms that

regulate Ps are tightly coupled with the frequency of the

soil temperature signal, and support previous observa-

tions that photosynthesis regulates Rs (at the 1-day

period) by a rapid transfer of carbon for respiratory

use in short stature vegetation (Carbone & Trumbore,

2007; Bahn et al., 2009).

Our results support the fact that PAR (as a surrogate

for photosynthesis) regulates soil CO2 fluxes at the

1-day period at different vegetation types, but showed

that this influence is not consistent with time. We

propose that different mechanisms prevail under dif-

ferent weather, plant physiological, and soil conditions

at the 1-day period. These results bring attention to the

need for understanding the biophysical mechanisms

that regulate the diel variation of lags between CO2

fluxes and soil temperature, and PAR. Possible general

mechanisms that influence the lags between these time

series are (a) changes in soil CO2 diffusivity; (b) daily

variation in carbon phloem transport that may influence

the transport to labile carbon to the root and the

microbes (Thompson & Holbrook, 2004); (c) changes

in heat transfer in the soil due to changes in soil

moisture; and (d) changes in daily transport of dis-

solved CO2 in the xylem among vegetation types

(McGuire & Teskey, 2004). We propose that isotope

Fig. 5 Wavelet coherence analysis and phase difference between soil CO2 production (Ps) and soil temperature at (a) mature woody

vegetation, (b) young woody vegetation, and (c) herbaceous vegetation from January 2006 to February 2008. The phase difference is

shown by arrows: in-phase pointing right (no lags between time series), out of phase pointing in other direction (representing lags

between time series). The color codes for power values are from dark blue (low values) to dark red (high values). Black contour lines

represent the 5% significance level and thick black line indicates the cone of influence that delimits the region not influenced by edge

effects. DOY, day of the year after January 1, 2006. Arrows at the top of the panels indicate the approximate date of summer rainfall

events.

M U LT I S C A L E A N A LY S I S O F S O I L C O 2 P R O D U C T I O N 1599

r 2010 Blackwell Publishing Ltd, Global Change Biology, 16, 1589–1605



analysis for tracking the fate of carbon among vegeta-

tion types are an important complement to time series

analysis to better understand the mechanisms that

regulate the lags between environmental variables and

soil CO2 fluxes.

Our results were based on soil temperature measured

at the soil depth (8 cm) where Ps was measured, but the

interpretation of these results do not change using soil

temperatures measured at different depths. The effect of

heat transfer in the soil influenced the calculation of the

phase angles among sites (Fig. 7), but because of the

consistency on changes among vegetation types our

conclusions are robust. However, it is critical to identify

the depth of highest Ps to better associate a respective

temperature with soil CO2 processes (Pavelka et al.,

2007). Future studies should identify the depth of max-

imum Ps in the soil profile, and explore which are the

mechanisms that regulate the vertical distribution of

production of CO2 in the soil.

Wavelet analysis and soil respiration modeling

Multiple empirical soil respiration models are based on

variation in soil temperature and soil water content (e.g.

Davidson et al., 1998; Reichstein et al., 2003), but their

performance may vary depending on the frequency

analyzed (e.g. using daily average or monthly average).

Given the complexity of mechanisms involved in soil

CO2 processes, a first step is to reevaluate the perfor-

mance of simple empirical models. Here we evaluated

empirical models using inputs at 1-h intervals, and

compared their performances in the frequency domain.

We believe that a first step to improve model structure

and model performance is first to identify were the

models fail in both the frequency and time domains.

We analyzed two simple empirical models previously

used in Mediterranean ecosystems (Xu et al., 2004;

Vargas & Allen, 2008c) and selected the best fit based

on the RMSE and the AIC (Table 3). We determined that

an empirical model with soil temperature [Eqn (8),

Fig. 6 Average phase difference (in hours) between soil CO2 production (Ps) and soil temperature (Ts phase angle), and between Ps and

photosynthetic active radiation (PAR phase angle) at (a) mature woody vegetation, (b) young woody vegetation, and (c) scattered

herbaceous meadow. Average phase differences were calculated for the 1-day period when the wavelet coherence power was significant

(a5 0.5). Positive values mean that Ps precedes temperature or PAR. Open circles (� ) represent days at the end of the rainy season and

asterisks (*) represent days at the beginning of the rainy season. Data represented by an asterisk (*) were not included to calculate the

linear regression statistics. Dashed line represents 1 : 1 line.

Fig. 7 Average phase difference (in hours) between soil CO2

production (Ps) and soil temperature at 2, 8, and 16 cm depth for

the 1-day period when the wavelet coherence power was sig-

nificant (a5 0.5). Positive values mean that Ps precedes tempera-

ture. Dashed line represents zero shift (i.e. no lag in hours)

between variables.
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model I] was the best fit for Ps in the scattered herbac-

eous meadow, whereas a model including soil tempera-

ture and soil moisture was the best to represent Ps at

mature and young woody vegetation [Eqn (9), model

II]. Using hourly data the r2 values of the models were

low (r2o0.5, Table 3), but allowed us to represent

variation of Ps at multiple periods (Fig. 8). We used

the continuous wavelet transform on the residuals of

the models to identify significant regions in the spectral

signature where the error variance was significant (Fig.

8). Significant regions of error are represented by the

red areas within the cone of influence in Fig. 8. The

models failed to represent high-frequency (� 1-day

period) and low-frequency components (436-day per-

iods) for each vegetation type (see dark red areas inside

contour lines). These results can be compared with the

observations in the lack of coherence between soil

temperature and moisture with Ps at similar periods

(blue areas outside contour lines in Figs 4 and 5).

In mature woody vegetation the model failed to

explain variation at 1-day period from DOY 150 to 240

and from DOY 550 to 600 (after January 1, 2006) as

represented by the red areas inside the contour lines at

the 1-day period (Fig. 8a). These results support the

observations that other variables rather than soil tem-

perature and soil water content would be needed to

explain soil CO2 fluxes at the study site (Vargas & Allen,

2008b). Noteworthy, the regions where the model failed

were associated with periods of stress characterized by

high temperatures and low soil water content (Fig. 1).

The effect of the summer rainfall events can be seen at

periods between 2- and 8-day. In addition, we found a

significant large model failure between DOY 150 and

450 (after January 1, 2006) at periods between 8- and

128-day associated with large fluctuations of Ps during

the wet spring conditions of the year of 2006 (Fig. 1).

In the young woody vegetation, the model failed to

explain variation at periods larger than 4-day and

especially over 64-day (red areas inside contour lines,

Fig. 8b). In general, the model represented well the 1-

day period except when soil water content increased

during the summer rainfall events and during the

winter rains. The effect of the summer rainfall can also

be seen at periods between 2- and 8-day. The largest

source of error was associated with low temperatures

and high moisture content (DOY 350–450; after January

1, 2006), but the influence of seasonal precipitation on Ps

was difficult to represent at 432-day periods. These

results bring special attention to the role of water and

temperature pulses and how to better understand their

influence and prediction of soil CO2 fluxes.

At the scattered herbaceous meadow, we used a

simple exponential model using only soil temperature

(Table 3), and this model accurately represented varia-

tion in Ps at most periods along the time domain.

However, this model failed to explain variation at

periods 432-day (red areas inside contour lines) mainly

influenced by seasonal changes in soil water content

(Fig. 8c). Noteworthy, this model accurately represents

variation at 1-day period supporting the results that

temperature is the main control of soil CO2 fluxes in

grassland sites (Bahn et al., 2009). The effect of the

summer rainfall events can be seen at periods between

2- and 8-day and 432-day for the first year, but only at

16- and 32-day periods for the second year (Fig. 8).

It has been reported that terrestrial ecosystem models

performed poorly in Mediterranean sites because of

problems in the representation of water stress effects

on CO2 dynamics (Morales et al., 2005). Our results

suggest that water stress effects are likely to influence

the variance in Ps at intermediate periods (i.e. weeks

to months), but we showed that the relationship

Table 3 Nonlinear regression results relating soil CO2 production to soil water content and soil temperature at three vegetation

types at the James Reserve

Vegetation type Model B1 B2 B3 B4 r2 RMSE AIC

MWv I 2.973 0.143 – – 0.22 31.18 22.95

II 0.059 0.235 5.107 792.247 0.36 28.45 21.64

YWv I 8.002 0.041 – – 0.24 7.76 20.65

II 4.771 0.056 4.861 –18.601 0.31 7.42 18.65

Hv I 4.817 0.043 – – 0.40 4.17 17.5

II 0.053 5.019 �16.734 0.053 0.44 4.02 19.5

Model I has the form Ps ¼ B1eðB2TÞand model II the form Ps ¼ B1eðB2TÞeðB3yÞþðB4y2Þ. The best-fit model parameters (B1–B4) are reported

for each model together with the squared coefficient of regression (r2), the RMSE and the AIC. T is temperature ( 1C) at 8 cm depth,

y is volumetric water content (m�3 m�3), and Ps is soil CO2 production (mmol CO m�3 s�1). Model parameters were estimated using

the Levenberg–Marquardt method. The models are fit with the hourly data in the three vegetation types.

AIC, Akaike Information Criterion; MWv, mature woody vegetation; RMSE, root mean-squared error; YWv, young woody

vegetation; Hv, scattered herbaceous meadow.
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between Ps and soil moisture is dynamic and change

along the frequency and time domains. Thus, there

is a need to integrate modeling and experimental

efforts in water stressed systems to better understand

biophysical processes that act at intermediate periods

for better representation of CO2 responses to weather

variation.

Conclusions

Soil respiration processes are complex because the

interactions between climatic forcing and biological

components act at multiple temporal scales. In order

to understand these interactions we used wavelet co-

herence analysis on continuous measurements of soil

CO2 production as a novel approach for terrestrial CO2

flux research. The main advantage of wavelet coherence

analysis approach is the ability to analyze transient

dynamics for the association between two time series

and the calculation of the phase difference. Our analysis

has helped to identify repeating periods (i.e. hours,

days, weeks, months, years) along the time domain

(i.e. day of year) where different biophysical factors

influence soil CO2 fluxes. Our results provide several

key points: first, rain pulses and rapid temperature

changes influence soil CO2 fluxes differently depending

on the vegetation type. The influence of these water and

temperature pulses can be seen at intermediate periods

(e.g. weeks to months) in the frequency domain. Sec-

ond, we propose that the information extracted from

wavelet analysis is an alternative method for the under-

Fig. 8 Continuous wavelet power spectra for residuals of models for soil CO2 production (Ps) at (a) mature woody vegetation, (b)

young woody vegetation, and (c) herbaceous meadow from January 2006 to February 2008. The models used were selected based on the

Akaike Information Criterion (AIC) and the root mean-squared error (see Table 3). The color codes for power values are from dark blue

(low values) to dark red (high values). Black contour lines represent the 5% significance level and thick black line indicates the cone of

influence that delimits the region not influenced by edge effects. DOY, day of the year after January 1, 2006. Arrows at the top of the

panels indicate the approximate date of summer rainfall event.
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standing of biophysical frequency relations of soil CO2

fluxes that have remained unclear so far. Here we

showed that PAR (as a surrogate for photosynthesis)

influenced soil CO2 fluxes at the 1-day period but this

influence is not consistent through time. Third, a first

step to improve modeling of soil CO2 fluxes is to

evaluate model performances at multiple frequency

and time domains. The temporal domains where the

models fail provide information about biophysical

processes that are not captured by these empirical

models. Finally, we expect that time series analyses will

become more common with increasing growth of con-

tinuous biometeorological measurements (e.g. ecosys-

tem CO2 fluxes, CH4, NO2, and O3) by environmental

networks such as the National Ecological Observatory

Network (NEON), Integrated Carbon Observation Sys-

tem (ICOS), and FLUXNET.
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